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Abstract. The need to quantify similarity between two groups of ob-
jects is prevalent throughout the signal processing world. Traditionally,
measures such as the Kullback-Leibler divergence are employed, but
these may require expensive computations of covariance or integrals.
Maximum mean discrepancy is a modern distance measure that is com-
putationally simpler – involving the inner product between the difference
in means of two groups’ feature distributions – yet statistically powerful,
because these distributions are mapped into a high-dimensional, nonlin-
ear feature space using kernels, whereupon the means are estimated via
the Parzen estimator. We apply this metric and leverage several powerful
data representations from the supervised image classification world, such
as bag-of-visual-words and sparse combinations of SIFT descriptors, to
locate scene change points in videos with promising results.

Keywords: visual changepoint detection, unsupervised learning, maxi-
mum mean discrepancy, scene boundary detection, video indexing

1 Introduction

A vast literature has established that scene change detection algorithms have
broad application in video indexing, analytics, summarization, and compres-
sion (see [20] for one representative survey). We introduce a novel method for
detecting scene changes in videos, with several desirable properties — it is un-
supervised, can work in an online or offline fashion, is not sensitive to thresholds
or the genre of the video, allows for decimation of framerates and resolutions for
high speed processing, and enables detection of different scenes, not just shot
boundaries. It is tolerant to rotations, fast movement, and other non-semantic
changes.

Work in this field has been underway for many years, under names such as
video summarization, keyframe extraction, shot boundary detection, and change-
point detection. Inspired by the nomenclature of [3], such systems may be broadly
decomposed and distinguished by the features used, their spatial support, the
feature similarity metric employed, the region of temporal support chosen, and
finally the boundary detection method.
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Our system differs from others in two main ways. First, we adopt a more mod-
ern and powerful feature descriptor, the visual bag of words [4] using densely
sampled scale-invariant feature transform (SIFT) keys [12] as the base words,
which ensures robustness to noise, rapid motion, rotations, colour shifts, and
global brightness/contrast changes. This approach has been shown to perform
strongly in still-image scene recognition applications [11]. Secondly, we use a
kernelized distance metric, the maximum mean discrepancy (MMD) [7] that is
computationally simple, involving the inner product between the difference in
means of the two distributions, yet statistically powerful, because these distribu-
tions are mapped into a high-dimensional, nonlinear feature space using kernels,
whereupon the means are estimated via the Parzen estimator. The kernel repre-
sentation allows us to efficiently use very high dimensional feature descriptors,
by enabling computation of the MMD to occur in dissimilarity space and not
using the original feature descriptors.

The MMD is computed over the frames of a video sequence in an overlap-
ping sliding window fashion, successively forming ‘current’ and ‘next’ groups of
frames. A standard peak finding routine is used on the MMD sequence to find
local maxima, which are interpreted as scene change points. Previous work has
demonstrated the usefulness of MMD and closely related variants in tasks such
as speaker discrimination [8]; for segmenting musical notes [5], and EEG/ECG
data [18]; and in matching small image patches for visual tracking [2].

To the best of our knowledge, neither of these two elements (the feature de-
scriptor or similarity measure) have been previously proposed for scene boundary
detection, although high-level video feature extraction [22] uses similar descrip-
tors to summarize an entire video, obtaining its ‘gist’, without localizing the
endpoints of individual scenes.

1.1 Previous Work

A review of the recent literature and surveys from the last decade ([20, 3, 9])
suggests continued research interest and activity in shot boundary and keyframe
extraction techniques; fifty-seven groups and approaches participated in the an-
nual NIST TRECVID [19] shot boundary detection competition held between
2001 and 2007. We suspect this popularity is in part because this application
provides a nice testbed for new theoretical approaches in feature representations,
dimensionality reduction techniques, distance measures, classifiers and cluster-
ing algorithms. Commercial applications of video indexing/summarization tech-
niques include the keyframe summary that is available in the Google Youtube
video service, and the multimedia indexing and search features for large corpo-
rate video collections in Autonomy Virage1.

Based on the final TRECVID SBD workshop report [19], we may remark on
some commonly observed characteristics of the top-performing shot boundary
detection systems. They are based on local or global changes, as measured by

1 http://www.virage.com
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some similarity measure, of raw pixel feature vectors, colour histograms, or 2D-
transformed versions of the frame (e.g. Fourier transform, wavelets), or of the
frame’s edges. One recent, representative work is in [13], which used wavelet
features modeled using a generalized Gaussian distribution, and compared with
the Kullback-Leibler divergence. The local maxima of the divergence in a fixed
size window is marked as a shot boundary (cluster in their terminology) if it
exceeds a threshold determined experimentally. However, a ‘shot segment’ or
cluster derived using such an approach does not necessarily correspond to notable
semantic changes in the video; rather, new shot segments may be formed due to
camera or object motion.

A more general concern shared with other approaches, particularly paramet-
ric modeling approaches, is that there are a great number of parameters to be
set. One way to handle this is to learn these parameters in a supervised manner;
seven out of the top ten systems in the TRECVID 2005 competitions used SVMs
[19], which require manually annotated groundtruth and may limit the system’s
ability to generalize to other video content genres.

Statistical models of scene change probability can also be built using super-
vised training data, and an a posteriori estimate of scene change probability
computed, as in [17]. However as one might imagine, they are highly content-
dependent (consider sports vs. nightly news) and also medium-dependent; that
is, very different models may be seen in movies vs. surveillance video vs. mobile
robotics.

Our approach differs from these works in major ways that have not been
previously considered in the scene recognition field. We model the desired feature
intent in a more direct fashion, borrowing from the scene recognition world, in
order that the similarity measures may discriminate between different scenes
more precisely while being less sensitive to intra-scene changes.

2 Methodology

2.1 Maximum Mean Discrepancy

Objects can be represented by either features or (dis)similarities. In a feature-
based representation, a set of measurements (features) are computed based on
expert knowledge domain. In (dis)similarity-based representations, objects are
represented by their pairwise comparisons [14]. (Dis)similarity based represen-
tation can be computed on features or by comparing objects directly using a
(dis)similarity measure [15]. There are cases, however, in which computing de-
scriptive features to represent objects for a specific learning task is difficult or
impossible due to insufficient knowledge on the domain [16]. To avoid this prob-
lem, objects can be represented in (dis)similarity space. In this approach, pairs
of objects are compared by a (dis)similarity measure reflecting their mutual re-
semblance.

If we assume that objects whose dissimilarities are to be computed come from
two different distributions, our ultimate goal is to find the distance between these
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Fig. 1. Two Gaussian distributions with the same mean and different variances.

two distributions. One way to measure the distance or dissimilarity between two
distributions is computing the distance between cluster means

d(p, q) = ‖E(p)−E(q)‖
2
, (1)

where p and q are two distributions whose distances are to be computed, and E

is the expectation function. The main drawback of using (1) is that it only takes
into account the first order statistics of data samples taken from distributions.
In case that the two distributions have the same mean (first order statistics), (1)
cannot discriminate between them. An example is shown in Fig. 1. In this fig-
ure, p and q are two Gaussian distributions with the same mean but different
variances and hence, using (1) by itself is not sufficient to discriminate them.

Given data samples X = {x1, ..., xn}, X ∼ p and Y = {y1, ..., yn}, Y ∼ q, by

using a mapping such as X
ϕ
→

[

X X2
]

, we, effectively, bring data to a higher
dimensional feature space. If we compute (1) in this augmented feature space,
in fact, the second order statistics of the distributions are also taken into ac-
count. This, for example, can discriminate the two distributions given in Fig. 1.
We use this basic concept to introduce maximum mean discrepancy (MMD) in
reproducing kernel Hilbert space (RKHS). By using an appropriate kernel such
as RBF kernel, this effectively maps data to a very high dimensional feature
space and computing MMD in this space takes into account all statistics of the
distributions up to infinity. This introduces a metric which is also called Hilbert
Schmidt independent criterion (HSIC) that can discriminate two different dis-
tributions efficiently by mapping them to high dimensional feature spaces [6,
10].

Distance Based on Hilbert Schmidt Independent Criterion. Let’s sup-
pose that X = {xi}

n
1
and Y = {yi}

m
1

are data samples drawn independently
and identically distributed (i.i.d.) from p and q, respectively. We define a feature

mapping function ϕ such thatX ∼ p,X
ϕ
→ ϕ(X) and similarly Y ∼ q, Y

ϕ
→ ϕ(Y )

that maps data to a high dimensional feature space. By computing MMD in this
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space, we compute a metric in RKHS with the following formulation

MMD(ϕ, p, q) = ‖E{ϕ(p)} −E{ϕ(q)}‖2

=
[

E{[ϕ(X)− ϕ(Y )]⊤[ϕ(X)− ϕ(Y )]}
]

1

2

=
[

E{ϕ(X)⊤ϕ(X)− 2ϕ(X)⊤ϕ(Y ) + ϕ(Y )⊤ϕ(Y )}
]

1

2

=
[

1

n2

∑

i,j k(xi, xj)−
2

nm

∑

i,j k(xi, yj) +
1

m2

∑

i,j k(yi, yj)
]

1

2(2)

where k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉.

The last equation in (2) is the metric that measures the distance between
two distributions using data samples which are drawn i.i.d. from these two dis-
tributions.

2.2 A Spatial Relationship-Preserving Scene Descriptor

We next turn our attention to the base feature vector used in the MMD com-
putations when comparing one group of frames against another, that is, the
scene descriptor that describes each frame. Given a greyscale input frame, SIFT
keys are first computed on a dense grid spacing. The closest match to this key
is found from a linear combination of visual ‘words’ in a dictionary, using a
technique called locality-constrained linear coding (LLC) [21], and the coeffi-
cients of the linear combination used to increment each word’s histogram bin by
an amount proportional to their coefficients, thus forming the descriptor for the
image. Rather than choosing a combination of words that minimizes ℓ1 or ℓ2 con-
straints, as in many sparse coding approaches, LLC regularizes the constraint
equation using the distances between keys xi and atoms di, as shown in (3),
where B is the dictionary of words, and ci the coefficient vector (⊙ represents
element-by-element multiplication).

min
C

N
∑

i=1

||xi −Bci||
2 + λ||di ⊙ ci||

2 s.t. 1T ci = 1, ∀i (3)

The coefficients are constrained to be shift-invariant, which was found in
[21] to have highest accuracy amongst the alternatives evaluated. The dictio-
nary is built offline using the k-means unsupervised clustering technique with a
dictionary size D. Larger dictionary sizes led to higher precision and recall, but
are limited by increasing clustering time and memory requirements. Dictionaries
from other videos may be used to enable scene change detection in online appli-
cations. Spatial relationships between words are utilized through the use of the
spatial pyramid matching (SPM) technique, which, in a series of levels L, recur-
sively subdivides the image by factors of four into regions, as illustrated in Fig.
2, and computes a LLC-based histogram within each region. These histograms
are then concatenated together to form a final descriptor. We refer readers to
[11] for further details.
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Fig. 2. An illustration of the spatial pyramid matching technique, showing a three-level
pyramid of histograms. Each histogram bin represents one ‘visual word’.

2.3 Scene Detection System

Finally, we discuss the integration of the MMD and the scene descriptor into a
scene detection system, which is summarized in a block diagram, Fig. 3.

Aside from hard cuts from one scene to another, other common editing tech-
niques that may confuse scene detectors (causing false negatives) are dissolves,
fades, and wipes. Whereas many previous works have dealt with the problems of
these special effects by essentially developing an independent detector for each
special case [3], our scene descriptor deals with them in a simplified, unified, and
elegant manner. Dissolves and wipes to a new scene, or fades to white/black, ap-
pear as prominent maxima in the MMD due to the significant change in the bag
of words histogram. For accurate localization, we only need to ensure that the
window size is longer than the longest expected fade. One benefit of the LLC-
based feature descriptor is that dissolves and wipes involving two scenes may
be directly modeled as a linear combination of words from the past and future
scenes. This should, in theory, give us a smooth MMD peak rather than creating
a noisy MMD signal by incorrectly allowing unrelated words to be matched to
the image patch. Camera flashes are another kind of video content that can cause
false positives, but may be dealt with by ensuring that there are no descriptors
immediately on both sides of the large peak that have low mutual dissimilarity.

The histogram intersection kernel (HIK), (4), popularized in [11], is used
to compare the descriptors of two images A and B, as it is parameterless and
outperformed alternatives such as the RBF kernel in our tests.

KHIK(A,B) =

r
∑

j=1

min (Aj , Bj) (4)

The MMD is then computed as in (2) in a sliding window fashion for each
frame t, with the w/2 frames prior to t forming group P , and the next w/2 frames
forming group Q. The necessary SIFT keys and scene descriptors may also be
computed in small batches which lends itself to online computation and reduced
memory requirements. The common kernel computations between windows may
be reused; only the kernel distance between each new frame and the w− 1 other
frames in its window need to be computed.

Finally, a standard peak finding approach is used to find local MMD maxima
within the window. This falls in the class of adaptive thresholding methods,
where a scene change is declared for a frame if it is a local maxima, and was
preceded in time by a MMD value lower by at least δ.
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Fig. 3. Visual summary of our visual changepoint detection system.

3 Experimental Results

We demonstrate our system on a 30 minute documentary video used in the
NIST TRECVID 2001 shot boundary detection competition, ‘Challenge at Glen
Canyon’, featuring complex natural outdoor scenes, compression artifacts and
noise, and a wealth of object and camera motion. SIFT keys are computed at
every 8 pixels in both dimensions, with each SIFT key having a spatial support
of 16 × 16 pixels. A visual dictionary of D = 768 visual words was learned by
applying k-means clustering over 25% of the video. Using a three-level pyramid
(L = 3), as recommended in [21], this yields a 768 + 4 · 768 + 42 · 768 = 16, 128
dimension feature descriptor for each image.

The top graph of Fig. 4 shows sample scene changes and the output MMD
values. For video summarization and change detection purposes, we observe that
it is unnecessary to locate the shot boundary with frame accuracy; a latency may
be specified, which allows us to reduce computational complexity significantly
by temporal subsampling. We hypothesize that the similarity operators used
in systems based on the motion field, edges, or colour histograms would likely
produce spurious false peaks due to the scene discontinuities, in contrast with
our system. To investigate this we have decimated the framerate from 29.97 fps
to 1 fps.

Results are shown in Table 3 using the well known precision and recall
metrics, where Precision = TP/(TP + FP) and Recall = TP/(TP + FN), us-
ing a set of 233 manually annotated groundtruth scene changes. TP, FP, and
FN are the number of true positives, false positives and false negatives, re-
spectively. The table entries are ordered by overall harmonic mean of the two,
F1 = 2 · Precision · Recall/(Precision + Recall). The first entry is the system as
presented in Section 2. We set the window size to w = 2 experimentally with
the aim of ensuring that we do not have any scenes shorter than this window.
We examined the dynamic range R of the MMD over the video sequence and
experimentally set the peak finding parameter δ = 0.05R, but found the results
are not too sensitive to this value.

We also wished to isolate the contribution of MMD on F1, from the contribu-
tion of the features. To test this, we treated the minima of the similarity kernel
between successive frames without using MMD as scene changes, resulting in



8 Michael Diu, Mehrdad Gangeh and Mohamed S. Kamel

entry 2 of Table 3 and the bottom graph of Fig. 4. We can see it is inferior in
terms of precision and recall to the MMD solution.

In Section 1 we hypothesized that by computing the difference of group means
in a remapped feature space, increased discrimination could be obtained. This
is tested in entry 3 of Table 3, where the simple Euclidean distance (denoted by
ℓ2) is used as a similarity measure. One reason for its reduced performance can
be visually seen in the middle plot of Fig. 4 – the dynamic range is much lower
than with the kernel solutions, which makes it very sensitive to peak finding
thresholds. Next, the fourth entry of Table 3 illustrates the improvement in
performance gained from the LLC and SPM techniques compared to the base
bag of words (BOW) approach. Finally, the last two entries of Table 3 test two
representative schemes on the same data in order to illustrate their ability to
adopt to different content genres and framerates. Entry 5 is a change-of-edge-
intensity approach using fixed thresholds and local subregions compared with
the sum of absolute differences (SAD) function, while entry 6 is a shot boundary
detector tuned for a particular genre, sports videos [1]. Settings were left at their
default values for both systems, and we observe that they do not perform well
in the domain outside one that they were trained in, which suggests there is a
role for our unsupervised, non-parametric robust scene detection scheme to fill.
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Fig. 4. Changepoints detected in the first four minutes of ‘Challenge at Glen Canyon’
film

4 Conclusions

We have presented the design and experimental results of a scene detection sys-
tem that models the concept of ‘scene’ at a higher level of abstraction than
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Table 1. Visual Changepoint Detection results on ‘Challenge at Glen Canyon’ video.

Approach # Detections Precision Recall F1

1) LLC + SPM + HIK + MMD 247 0.887 0.940 0.913

2) LLC + SPM + HIK 247 0.879 0.931 0.904
3) LLC + SPM : 〈µ1 − µ2, µ1 − µ

2
〉ℓ2 255 0.839 0.919 0.877

4) BOW + HIK + MMD 245 0.853 0.897 0.875
5) Local edge-based SAD approach |µ1 − µ2| > τ 730 0.315 0.987 0.478
6) Rank tracing approach [1] 158 0.544 0.369 0.440

previous works, using the visual bag of words approach and linear combinations
of densely sampled SIFT keys. In doing so, elements of a video that do not rep-
resent a true scene change, such as object motion or contrast changes that other
feature representations would be sensitive to, are treated as ‘noise’, reducing
the false positive rate. The maximum mean discrepancy kernelized distance was
then used with the histogram intersection kernel, with the aim to use nonlinear
basis function expansion to increase separability of group means. Results showed
higher dynamic range, precision, and recall compared to conventional methods.

Our system works well with varying framerates, enabling a CPU vs detec-
tion latency tradeoff, whereas most other scene change detectors are tuned with
framerate-dependent thresholds on color or intensity features. We also illustrated
how many special types of editing transitions can be handled naturally by the
framework instead of requiring special cases and detectors. Three directions for
future work are to expand the range of content tested, to use the MMD statis-
tical significance tests in [7] to further filter out false positives, and to utilize
the visual changepoint information and temporal segmentation information in
the supervised problem of place recognition in videos; that is, to enforce tempo-
ral consistency in classification results by averaging out individual false positive
classifications over a contiguous segment.

The contribution of this work, then, has been to demonstrate the applica-
tion of the MMD to time series of visual data, and to ‘marry’ powerful feature
descriptors from the world of computer vision with a problem based in the more
traditional image processing world.
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