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Abstract-Textures show multi-scale properties and hence 

multiresolution techniques are considered appropriate for 
texture classification. Recently, the authors proposed a 
multiresolution texture classification system based on scale 
space theory and combined classifiers. However, the use of 
multiresolution techniques increases the computational load 
and memory space required. Sub-sampling can help to reduce 
these side effects of multiresolution techniques. However, it 
may degrade the overall performance of the classification 
system. In this paper the effect of sub-sampling is investigated 
in scale space texture classification using combined classifiers. 
It is shown that sub-sampling can help to reduce both 
computational load and memory space required without 
compromising the performance of the system. 

I. INTRODUCTION 

Multiresolution techniques become more and more 
important in texture classification due to the intrinsic multi-
scale nature of textures [1-4]. Among the multiresolution 
techniques, scale space theory is a natural framework to 
construct multi-scale textures by deploying multi-scale 
derivatives up to certain order [5, 6]. The main issue in 
multiresolution techniques is the large feature space 
generated. In the literature, the most common approach for 
the construction of a feature space is the fusion of the 
features generated from different resolutions to come up 
with one feature space to be fed to a classifier. This 
generates a high dimensional feature space that may affect 
the performance of the classifier due to the 'curse of 
dimensionality' [7]. To tackle this problem typically severe 
feature reduction is applied in multiresolution techniques, 
e.g. by calculating moments of the histogram [5] or 
calculating the energy [8]. 

An alternative solution, based on combined classifiers, 
was recently proposed by the authors for this problem [9]. 
Using combined classifiers alleviates the problem of 
generating a large feature space, as the features generated 
from each scale/derivative are directly fed to an independent 
base classifier. In this approach, instead of concatenating 
features generated from each scale/derivative, the decisions 
made by the base classifiers are combined in a two-stage 
combined classifier. 

In scale space texture classification, the patch sizes have to 
be increased at higher scales [9]. This is because at higher 
scales the coarser structures are emphasized and we look at 

these structures through larger windows. It has been shown 
in [9] that by increasing the patch sizes at higher scales, the 
performance of scale space texture classification system 
using combined classifiers is improved [9]. 

On the other hand, increasing the patch sizes at higher 
scales generates more features. As discussed in [10], by 
deploying principal component analysis (PCA) as feature 
extraction technique in our texture classification system, it 
can adaptively reduce the dimension of the feature space 
according to scale, i.e. more reduction is performed at 
higher scales. 

In this paper the effect of sub-sampling at higher scales is 
to be investigated. It will be shown that based on the 
adaptive feature reduction property of PCA, sub-sampling 
does not affect the performance of the texture classification 
system. Better, it reduces the size of the datasets used for 
training and testing the system and this will reduce the size 
of memory required. It may also improve the performance 
of the system in terms of speed as the computation has to be 
performed on smaller datasets. 

II. THEORY 

The texture classification system used in this paper is 
shown in Fig. 1. This structure was first introduced in [9] by 
the authors as a technique for multiresolution texture 
classification. As can be seen from Fig. 1, in this approach 
the features extracted from each scale are directly fed to a 
base classifier and instead of fusion of features obtained 
from different scales, the decisions made by these base 
classifiers are combined to decide on the class that a texture 
may belong to. 

Here, the N-jet of derivatives up to the second order at 
multiple scales is used to construct the multi-scale textures. 
Then patches are extracted from these multi-scale textures to 
generate the feature space. As discussed in [9], the patch 
sizes are increased at higher scales to enable looking at 
coarser structures. 

The method of feature reduction used in Fig. 1 is principal 
component analysis (PCA). In [10], it is shown that PCA 
can adaptively reduce the dimensionality of feature space 
according to the scale. This means that PCA reduces the 
feature space dimension more at higher scales due to less 
detailed structures obtained at higher scales. 
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III. EXPERIMENTS 

To compare the performance of the scale space texture 
classification using combined classifier (SSTCUCC) system 
with and without sub-sampling, two set of experiments are 
arranged. First, the performance of PCA is investigated in 
terms of the number of components required to maintain 
certain amount of cumulative fraction of variance with and 
without sub-sampling. Second, a supervised classification of 
some test images is performed using SSTCUCC with and 
without sub-sampling. The test images are from the well-
known Brodatz album as shown in Fig. 2. Original Brodatz 
images are of size 640×640. However, in the experiments, 
the size is reduced to 512×512. The images have 256 gray 
levels. 

 
A. Construction of Multi-Scale Texture Images 

The N-jet of all scaled derivatives up to the second order 
is chosen to construct the multi-scale texture images from 
each texture. Based on the steerability of Gaussian 
derivatives [9], we have used the zeroth order derivative, i.e. 
the Gaussian kernel itself, Lx, Ly, Lxx, Lxy, Lyy, and Lxx + Lyy 
where the last one is the Laplacian. For each derivative 
(including the zeroth order) three scales are computed. The 
variances (σ2) of the Gaussian derivatives in scales s1, s2, 
and s3 are 1, 4 and 7 respectively. In this way, out of each 
texture image, 7×3 texture images are obtained. 

B. Preprocessing 
To make sure that for all textures the full dynamic range 

of the gray level is used contrast stretching is performed on 
all textures in different scales. Also, to make the textures 
indiscriminable to mean or variance of the gray level, DC 
cancellation and variance normalization are performed. 

C. Construction of Train and Test Sets  
To ensure that the train and test sets are completely 

separate, they are extracted from the upper and lower half of 
each image respectively. For one texture, the patches have 
sizes of 18×18, 24×24, and 30×30 pixels before sub-
sampling at scales s1, s2 and s3 respectively. After sub-
sampling, the patch sizes are 18×18 at all scales. Test set 
size is fixed at 900. Train set size increases from 10 to 1500 
to construct the learning curves. 

 

 
 

Figure 1. The structure of texture classification system used in this paper. 
 

  

  
Figure 2. Textures D4, D9, D19 and D57 from Brodatz album used in 

the experiments. 

D. Feature Extraction 
PCA is used for feature extraction in the combined 

classifier approach. The number of components used for 
dimension reduction is chosen to preserve 95% of the 
original variance in the transformed (reduced) space. 

E. Classifier 
In the combined classifier approach, a two-stage parallel 

combined classifier is used as shown in Fig. 1. The type of 
base classifier used is a quadratic discriminant classifier 
(QDC); the type of combiner is fixed mean combiner for 
both stages as explained in [9]. Altogether, twenty one base 
classifiers, one for each scale in one derivative order are 
used. Since the number of components maintained in scale 1 
is high even after applying PCA which may cause peaking 
phenomenon, regularization is used in QDC at scale 1 to 
resolve this problem. 

F. Evaluation 
The performance of the texture classification system is 

evaluated by drawing the learning curves for training set 
sizes up to 1500. The error is measured 5 times for each 
training set size and the results are averaged. 

IV. RESULTS 

Fig. 3 and Fig. 4 show the results of the first set of 
experiments, i.e. the performance of PCA with and without 
sub-sampling. 

The effect of sub-sampling at scale 2 of the zeroth order 
derivative is shown in Fig. 3. The top graph shows the 
cumulative fraction of variance (eigen-values) in respect to 
the number of components without sub-sampling; the 
bottom graph shows the same with sub-sampling. Only 100 
components are shown to make the comparison easier; it 
must be reminded that since the patch size is 24×24 in scale 
2, the total number of components before sub-sampling is 
576 and after sub-sampling 324. As can be seen, only very 
small change can be noticed in the performance of PCA 
with and without sub-sampling. 

Fig. 4 is similar to Fig. 3 but for scale 3 in the zeroth order 
derivative. The feature space comprises 900 and 324 
components before and after sub-sampling respectively. 
Only 50 components are shown in Fig. 4. As in the case of 
scale 2, the difference in the performance of PCA with and 
without sub-sampling is very small. Similar graphs are 
obtained for other derivative orders. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The cumulative fraction of variance (eigen-values) in respect to 
the number of components in scale 2 of the zeroth order derivative before 

sub-sampling (top graph) and after sub-sampling (bottom graph). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. The cumulative fraction of variance (eigen-values) in respect to 
the number of components in scale 3 of the zeroth order derivative before 

sub-sampling (top graph) and after sub-sampling (bottom graph). 
 
Table I provides a comparison between the number of 

components required to retain 95% of the original variance 
after applying PCA with and without sub-sampling. Table II 
provides the same comparison to retain 99% of the original 
variance after applying PCA. 

As can be seen from Table I, for PCA with 95% of 
retained variance, the maximum percentage of feature 
reduction using sub-sampling is 10.26% and 11.11% at 
scales 2 and 3 respectively. Similarly, from Table II, it can 
be noticed that for PCA with 99% of retained variance, it is 
8.2% and 10.91% at scales 2 and 3 respectively. This means 
that sub-sampling may improve the feature reduction at 
scales 2 and 3 by only about 10%. However, it significantly 
reduces the size of the original datasets at scales 2 and 3 
which is important in terms of memory space required for 
the calculations. This may also reduce the computational 
cost as the calculations have to be performed on smaller 
datasets. 

Fig. 5 shows the results of scale space texture 
classification using two-stage combined classifiers with (top 
graph) and without (bottom graph) sub-sampling, i.e. the 
results of the second set of experiments as explained in the 
previous section. As can be seen, there is no significant 
difference in the performance of the classifier with and 
without sub-sampling. 

 

V. CONCLUSION 

We conclude that sub-sampling can save the memory 
space for the computations and improve the computation 
speed. However, it almost has no effect on the performance 
of the combined classifier in scale space texture 
classification. This is mainly due to the adaptive feature 
reduction property of PCA at multiple scales. 
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TABLE I 
THE PEROFORMACE OF PCA WITH 95% RETAINED FRACTION OF VARIANCE  

Derivative-
Scale 

No. of 
components 
without sub-

sampling 

No. of 
components 

with sub-
sampling 

Percentage of 
feature 

reduction 

L-S1 142 142 0.00 
L-S2 39 35 10.26 
L-S3 24 22 8.33 
Lx-S1 136 136 0.00 
Lx-S2 40 37 7.50 
Lx-S3 27 24 11.11 
Ly-S1 138 138 0.00 
Ly-S2 38 36 5.26 
Ly-S3 25 24 4.00 
Lxx-S1 185 185 0.00 
Lxx-S2 46 42 8.70 
Lxx-S3 29 27 6.90 
Lxy-S1 162 162 0.00 
Lxy-S2 56 51 8.93 
Lxy-S3 34 31 8.82 
Lyy-S1 195 195 0.00 
Lyy-S2 43 40 6.98 
Lyy-S3 27 25 7.41 
Lxx+ Lyy-S1 254 254 0.00 
Lxx+ Lyy-S2 63 58 7.94 
Lxx+ Lyy-S3 38 35 7.89 

 

TABLE II 
THE PERFORMANCE OF PCA WITH 99% RETAINED FRACTION OF 

VARIANCE 
Derivative-

Scale 
No. of 

components 
without sub-

sampling 

No. of 
components 

with sub-
sampling 

Percentage of 
feature 

reduction 

L-S1 246 246 0.00 
L-S2 66 61 7.58 
L-S3 38 35 7.89 
Lx-S1 215 215 0.00 
Lx-S2 63 58 7.94 
Lx-S3 41 37 9.76 
Ly-S1 219 219 0.00 
Ly-S2 61 56 8.20 
Ly-S3 39 36 7.69 
Lxx-S1 257 257 0.00 
Lxx-S2 72 67 6.94 
Lxx-S3 45 41 8.89 
Lxy-S1 223 223 0.00 
Lxy-S2 83 77 7.23 
Lxy-S3 51 46 9.80 
Lyy-S1 267 267 0.00 
Lyy-S2 69 64 7.25 
Lyy-S3 43 39 9.30 
Lxx+ Lyy-S1 304 304 0.00 
Lxx+ Lyy-S2 90 83 7.78 
Lxx+ Lyy-S3 55 49 10.91 
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Figure 5. The results of scale space texture classification using combined 

classifiers with (top graph) and without (bottom graph) sub-sampling. 
 

APPENDIX 

In these experiments matrices Sa and Sb given below are 
used for the sub-sampling of patches of 24×24 and 30×30 to 
18×18 respectively. These matrices are not unique and there 
are other possibilities. However, it will not affect the overall 
performance of the sub-sampling. 

 

Sa=

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
 

aSpacthSapatchS ′⋅⋅=  where patchS is a sub-sampled 
patch and the operator used is the inner product. 
 

Sb=

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz  
 

Similarly, a sub-sampled patch at scale 3 can be obtained 
using: bSpatchSbpatchS ′⋅⋅= . 
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