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Abstract—In text categorization (TC), which is a supervised 

technique, a feature vector of terms or phrases is usually used 

to represent the documents. Due to the huge number of terms 

in even a moderate-size text corpus, high dimensional feature 

space is an intrinsic problem in TC. Random subspace method 

(RSM), a technique that divides the feature space to smaller 

ones each submitted to a (base) classifier (BC) in an ensemble, 

can be an effective approach to reduce the dimensionality of 

the feature space. Inspired by a similar research on functional 

magnetic resonance imaging (fMRI) of brain, here we address 

the estimation of ensemble parameters, i.e., the ensemble size 

(L) and the dimensionality of feature subsets (M) by defining 

three criteria: usability, coverage, and diversity of the 

ensemble. We will show that relatively medium M and small L 

yield an ensemble that improves the performance of a single 

support vector machine, which is considered as the state-of-

the-art in TC. 
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I. INTRODUCTION  

Text categorization (TC) is one of the fast paced 
applications of machine learning and data mining [1]. There 
are many applications in natural language processing and 
information retrieval employing TC techniques [1]. For 
example, news stories are typically organized by subject 
categories (topics) or geographical codes; academic papers 
are often classified by technical domains and sub-domains; 
patient reports in health-care organizations are indexed from 
multiple aspects, using taxonomies of disease categories, 
types of surgical procedures, and so on. 

Two main issues in TC are the high dimensional feature 
space and high feature-to-instance ratio, both related to using 
term frequency as features that generates a very high 
dimensional feature space. Two main solutions for these 
problems in the literature are: first, feature selection to 
reduce the dimensionality of feature space [2]. However, 
even using feature selection, the dimensionality of feature 
space remains high unless a very aggressive feature selection 
technique is used that degrades the performance of the 
classification systems [2]. Second, using classifiers that 
behave well in high dimensional feature space. This is one of 
the reasons that among many classifiers reported in the 
literature for TC, support vector machines (SVM) are 
considered as the-state-of-the-art with higher performance 
than others [3]. 

The third technique, which is the focus of this paper and 
not very much investigated in the literature for text 
categorization, is random subspace method (RSM), which is 
a combining technique [4]. RSM is used for efficient 
handling of high dimensional feature space by using 
randomized classifier ensembles [5]. In a high dimensional 
feature space, a classifier usually suffers from the 'curse of 
dimensionality' [6], i.e., many data samples are needed to 
adequately train the classifier. By dividing the feature space 
randomly to some subsets and submitting each one to a 
(base) classifier (BC), we reduce the dimensionality of 
feature space of each classifier while use the same number of 
samples for training. This can effectively resolve the 
problem of suffering from the 'curse of dimensionality'. RSM 
is mainly investigated on weak classifiers such as linear 
discriminant classifiers (LDC) to improve their performance 
[7]. However, it is not extensively investigated on strong 
classifiers such as SVM (that perform rather well in high 
dimensional feature space) nor in the area of text 
categorization.  Recently, the RSM is investigated on SVM 
for the classification of brain images obtained from 
functional magnetic resonance imaging (fMRI) [8]. The 
same as TC, in brain images of fMRI, the dimensionality of 
feature space is very high and the feature-to-instance ratio is 
extremely large. 

Two main parameters of RSM are the number of BCs in 
the ensemble and the dimensionality of each random 
subspace submitted to the BCs. Inspired by the work in [8], 
we address estimation of these two parameters in the context 
of text categorization. We show that RSM improves the 
performance of the classification system comparing to a 
single SVM. 

II. THEORETICAL BACKGROUND 

In this section, first the feature selection techniques used 
in this research are explained. Then the RSM and the 
probabilistic framework for choosing the number of BCs and 
feature subset size are presented. 

A. Feature Selection 

In TC, the unique terms that occur in documents 
constitute the feature space. There can be hundreds of 
thousands terms even in a moderate-size text dataset. Hence, 
the dimensionality of feature space is very large. This 
degrades the performance of the classification system due to 
the 'curse of dimensionality', reduces the generalization 



capability of the classifier, and increases the computational 
cost. Feature selection can reduce these problems partially. 
Five feature selection techniques are investigated and 
compared in [2], among which document frequency (DF) 
and information gain (IG) are adopted in this research. These 
two techniques are briefly explained here. 

DF is one of the simplest feature selections techniques 
used in TC with lowest computational cost. DF is the number 
of documents in which a term occurs. It is usually computed 
for each unique term in the dataset and those terms whose 
DF is less than some predetermined threshold are removed. 
The main assumption is that rare terms are not informative in 
category prediction and will not affect the global 
performance. 

IG measures the entropy required for category prediction 
by knowing the presence or absence of a term in a document. 
If  is the set of classes, the IG of each term t is 
defined as follows: 

 

 

 

 

(1) 

 
All features are ranked according to their IG values. 

Thus, the problem of choosing an IG threshold for feature 
reduction is converted to the selection of number of features 
to be removed. The computational complexity of IG is 
higher than DF, with the benefit of having control on the 
number of retained features. 

B. Random Subspace Method (RSM) 

Even after feature selection, the dimensionality of feature 
space can be easily few thousands. Although SVM with 
linear kernel is proved to perform well in such a high 
dimensional feature space [3], we expect that RSM can 
improve its performance by dividing this high dimensional 
feature space to smaller ones. 

In RSM, after dividing the original feature space to L 
feature subsets of dimensionality M, each subset is submitted 
to a base classifier (BC) in the ensemble. The final decision 
on the class of the document is obtained by combining the 
decisions of these BCs using a combining rule such as 
majority vote. Since the features subsets submitted to the 
BCs are different, parallel ensemble is a natural choice [4] 
(Fig. 1). 

There are two main parameters in a RSM to be 
determined, i.e., L (the number of BCs) and M (the 
dimensionality of feature subsets). Recently, the selection of 
these two parameters is addressed in a similar problem, i.e., 
the classification of brain images of fMRI [8]. The same as 
TC, fMRI classification suffers from high dimensional 
feature space as well as large feature-to-instance ratio. 

Here, we briefly explain the approach in [8] for L and M 
selection and extend it to the TC problem. 

 

 
 
 
 
 
 
 
 
 
 

Figure 1.  The structure of RSM. 

Suppose  is the set of original feature space, 
among which  features are important and the rest are 
noise. While all features in TC may contain information, 
some may be less important. The above assumption is made 
for probabilistic formulation [8]. 

For a good performance of the ensemble, The BCs 
should be as accurate and diverse as possible [4].   Hence, if 
all features given to a BC are noise, it may not perform better 
than the prior. On the other hand, if all BCs perform on the 
same important features, there is no diversity in the 
ensemble. Based on these observations, three criteria are 
defined in [8] based on which, the performance of an 
ensemble can be predicted, i.e., usability, coverage, and 
diversity. 

A BC is usable if its feature subset includes at least one 
important feature. The probability of having a completely 
usable ensemble,  is  
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where, n and Q are the dimensionality of the original feature 
space and important features, respectively [8]. 

Coverage is defined to take into account the percentage 
of important features included in the feature subsets 
submitted to the ensemble. The probability of complete 
coverage , i.e., the probability of submission of all 
important features to the ensemble is 
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If all feature subsets submitted to the BCs are the same, 

we will not have an ensemble any more as all BCs are 
identical. Thus, another criteria, i.e., diversity has been 
introduced in [8] as  
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where, Si is the feature subset submitted to the i
th
 BC and Ii is 

the subset of important features in Si. If I1 = I2 in (4), then the 
diversity between BCs 1 and 2 is zero. The probability of 
having all pairs non-identical,  in the ensemble is 
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The optimum values for the ensemble parameters, i.e., M 

and L, can be found by maximizing three criteria defined in 
(2), (3), and (5) in respect to these two parameters. However, 
as shown in [8], there is no single M and L for which all 
these criteria are maximized. Nevertheless, it is 
experimentally shown in [8] that relatively medium M and 
small L for the fMRI data yield high performance of the 
ensemble. We will investigate, using a grid search, the 
optimum values of M and L of the ensemble in TC 
application. 

III. EXPERIMENTAL SETUP AND RESULTS 

In this section, the experimental setup and the results are 
presented. A text dataset is used in the experiments, which is 
consisting of 495 text samples from Brown corpus [9] 
classified into 15 categories, i.e., press: reportage, press: 
editorial, press: reviews, religion, skill and hobbies, popular 
lore, belles-letters, miscellaneous: government and industry 
house organ, learned, fiction:general, fiction:mystery, 
fiction:science, fiction:adventure, fiction:romance, and 
humor. The dimensionality of feature space (number of 
terms) is 22244 while there are only 495 documents in the 
dataset. This is a clear example of a text dataset with high 
dimensional feature space and very large feature-to-instance 
ratio. 

To prepare the data before submission to the classifiers, 
two-step feature selection is performed on the dataset to 
reduce its dimensionality. In first step, DF is used as a coarse 
feature reduction technique with the threshold of 1% on 
document vectors. This reduces the dimensionality of Brown 
corpus from 22244 to 7454. In second step, IG is used for 
fine feature reduction. The number of features retained is 
selected to be the nearest thousand of 25% of the original 
feature space, which is 5000 for Brown corpus. It is shown in 
[2] that feature reduction to 25% of original space does not 
degrade the performance of the classification system. 

As mentioned in Section 1, SVM is considered as the 
state-of-the-art in TC and hence is used as the type of the 
base classifier in the ensemble. Linear kernel is used and the 
trade-off parameter (C) is selected using a grid search and 5-
fold cross-validation on the whole dataset as shown in Fig. 2. 
It can be seen from this figure that for C > 4, the SVM 
performs almost optimum. Although, this optimum value 
might be different for random feature subsets, since 
performing grid search on each BC is computationally 
expensive, C = 100 is chosen for all BCs. Majority vote is 
used for combining the outputs of the BCs. 

The experiments are repeated 5 times and the results are 
averaged. In each experiment, 80% of the documents are 
randomly chosen as the training set and the remaining as the 
test set. 

Eventually, a grid search is performed on L and M to find 
their optimum values. L is changed from 1 (single classifier) 
to n/5 with the steps of 100 and M is changed from 1 to n 

with the steps of 500, where n is the dimensionality of 
reduced feature space, i.e., 5000 here.  This grid search is 
shown in Fig. 3a in whole searching space for the accuracy 
of the ensemble. It can be seen that the performance is 
relatively low for M < 1000 and hence the error surface on 
the grid search is zoomed for M larger than 1000 in Fig. 3b. 

To compare the performance of the proposed approach 
with other classifiers used in the literature, the accuracy of 
two classifiers, i.e., SVM and k-NN on the original dataset 
(with all features) and on reduced feature space using two 
feature selection techniques described above is provided in 
Table I. Linear kernel is used for SVM and the trade-off 
parameter (C) is found using a grid search and 5-fold cross-
validation with the amount indicated in the forth column of 
Table I. As for k-NN, the optimal value of k is found using 
leave-one-out approach.  

As can be seen from Table I and also Fig. 3b, while 
maximum accuracy for single SVM is 52.83%, the accuracy 
is improved by 3.69% using the RSM. According to Fig. 3b, 
the error is minimum for almost the middle of grid, i.e., M = 
n/2.5 and L = n/12.5, which is 2000 and 400 in this 
experiment, respectively. The performance of k-NN is 
clearly inferior to single SVM and RSM on both original and 
reduced feature spaces. 

 

TABLE I.  THE PERFORMANCE OF SINGLE K-NN, SINGLE SVM, AND RSM 

ON BROWN CORPUS AT DIFFERENT FEATURE SIZES. 

Classifier 
Feature 
Selection 

Technique 

No. of 
Features 

Optimal 
Classifier 

Parameter 
(k* or ) 

Accuracy 

k-NN 

None 22244 19 44.85 

DF 7454 3 20.61 

DF + IG 5000 133 17.37 

SVM 

None 22244 > 3 43.43 

DF 7454 11.31 48.69 

DF + IG 5000 > 11.31 52.83 

RSM with 
SVM 

DF + IG 5000 100 56.52 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  The grid search to find optimized trade-off parameter (C) in 

Brown corpus. 
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Figure 3.  The grid search on L (ensemble size) and M (dimensionality of 

feature subsets) for Brown corpus: (a) the averaged accuracy on whole grid 
search and (b) the averaged error on part of the grid that shows better 

performance. 

 

IV. DISCUSSION AND CONCLUSION 

Text categorization has the intrinsic problem with the 
high dimensionality of feature space and sometimes large 
feature-to-instance ratio. 

Random subspace method (RSM) is clearly an approach 
that can help in these situations by dividing the original 

feature space to smaller ones. However, it is not yet 
investigated on strong classifiers like SVM in the literature 
in TC application. Inspired by the recent research in similar 
problem, i.e., fMRI classification [8], the parameters of the 
ensemble, L (ensemble size) and M (dimensionality of 
feature subsets) are formulated in a probabilistic framework 
by defining three criteria: usability, coverage, and diversity. 
It is shown on Brown corpus that relatively medium M and 
small L improves the performance of the ensemble in 
comparison to single SVM, which is considered as the state-
of-the-art in TC. 

There might be two reasons for this improvement. First, 
the dimensionality of feature subsets submitted to the BCs is 
reduced. Second, using majority vote for combining the 
outputs of the BCs can create an overall nonlinear decision 
boundary at the output of ensemble. This may help to 
improve the performance over linear SVM on whole feature 
space. 
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