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ABSTRACT

This paper proposes the application of texton-based approach for
textural characterization of quantitative ultrasound parametric maps,
in order to assess noninvasively the progressive effects of cancer
treatment in preclinical animal models. Xenograft tumour-bearing
animals were treated with chemotherapy. Ultrasound data were ac-
quired from tumours prior to, and at different times after exposure,
and quantitative ultrasound spectral parametric maps were gener-
ated. Texton-based features were extracted from 0-MHz Intercept
parametric maps and applied to differentiate between pre- and post-
treatment states. The classification error was then translated into
a quantitative measure of the treatment effects. Obtained results
demonstrated a very good agreement with histological observations,
and suggested that the proposed approach can be used noninvasively
to evaluate the progressive effects of cancer treatment.

Index Terms— Texture, quantitative ultrasound, texton, dictio-
nary learning, cancer therapy, SVM

1. INTRODUCTION

Early assessment of the effects induced in tumours by cancer ther-
apies is of great interests for oncologists, as it can facilitate treat-
ment adjustments and/or alterations for patients, or even switching
to a salvage therapy, on an individual basis [1]. Imaging techniques,
in this regard, have considerably gained attentions as noninvasive
methods that can provide quantitative evaluations of cancer treat-
ment response [2]. In this context, ultrasound (US) imaging has
been recently proposed for cancer treatment response monitoring.
Ultrasound is the most frequently used clinical imaging modality in
the world accounting for almost 25% of all imaging procedures [3].
It has the advantage of low cost, rapid imaging speed, portability,
and high spatial resolution. However, due to many instrument pa-
rameters that can be chosen during an imaging session, it is diffi-
cult to compare standard B-mode images between different US ma-
chines and even for the same machine when different settings are
used [4]. Quantitative ultrasound methods [5] have been proposed to
overcome this limitation. Such methods use metrics that are predom-
inantly independent of the instrument settings to analyze the data.

Responses developed in tumours as a result of cancer treatment
are often heterogeneous [6]. This highlights potential advantages for
textural analysis techniques which can characterize these features for
a more accurate evaluation of therapy response. Textural analysis
techniques have been previously applied for ultrasonic tissue char-
acterization in order to discriminate between tissues with different
intrinsic microstructures [7]. However, such techniques were fre-

quently applied on US conventional B-mode images and thus highly
dependent on the instrument and the scan settings. Quantitative ul-
trasound parametric maps, in this regard, are expected to provide
more informative measures independent of settings applied in each
scan.

As texture is a complicated phenomenon, there is no unique def-
inition that is agreed upon by researchers [8]. Hence, there are many
different approaches for texture analysis in the literature, each of
which tries to model texture according to one or a few of its proper-
ties [9]. However, among these approaches, the techniques based on
dictionary learning and sparse representation (DLSR) have shown
great success in texture analysis [10, 11]. Texton-based approach is
one of the DLSR-based methods, which is particularly tailored for
texture analysis [10, 12].

In this paper, a texton-based approach has been investigated
along with a support vector machine (SVM) to assess cancer treat-
ment effects noninvasively, using conventional-frequency quanti-
tative ultrasound spectral parametric maps. Ultrasound data were
acquired from xenograft tumours before and at different times after
chemotherapy exposure, and texton-based features were extracted
from quantitative ultrasound spectral parametric maps. Obtained
results were compared with histological analyses of tumour sections
stained for cell death. Comparative investigations demonstrated that
the proposed approach can effectively monitor development of treat-
ment effects noninvasively, using quantitative ultrasound parametric
images as a basis for texture analysis.

2. DICTIONARY LEARNING IN TEXTURE
CLASSIFICATION

Dictionary learning and sparse representation are two closely related
topics that have roots in the representation of data by bases. Al-
though predefined bases such as those based on Fourier or wavelets
transform can be used, recent investigations have shown that learned
bases from data lead to state-of-the-art results in many applications
such as face recognition [13], texture classification [11, 14], and
biomedical tissue characterization [10, 12].

The first developed and customized dictionary learning tech-
nique for the application of texture analysis is the well-known
texton-based approach [15]. This approach is mainly based on the
Julesz’ theory, which expresses that the textures can be represented
by few primitive elements called textons [16]. Leung and Malik
were the first who could propose a complete texture classification
system based on textons [15]. Their main contribution was that they
showed how the textons can be computed from textures by using
k-means and the resulting cluster centers. The technique was further



refined by Varma and Zisserman [14] to a fully developed state-of-
the-art system for texture classification that outperforms many other
approaches in the field.

The classification systems based on texton-based approach is
mainly consisting of three steps: 1) learning the dictionary, 2) sparse
representation for learning the texture models, and 3) training a clas-
sifier. In following subsections, we explain each of these steps in
more details.

2.1. Dictionary learning

In texton-based approach, textons correspond to dictionary elements.
Although with the recent advances in the field of dictionary learn-
ing, there are several approaches to learn the dictionary from the
data unsupervised, e.g., using K-SVD [17] or supervised, e.g., using
discriminative K-SVD [18], texton-based approach can be consid-
ered as the first and tailored approach for learning the dictionary in
the application of texture analysis with competent results compared
to other approaches. To construct the dictionary in a texton-based
approach, small patches are extracted from each texture image in
the training set. These patches are then translated into proper patch
representation such as filter banks or raw pixels. They are, finally,
aggregated over all texture images of one class in the training set and
submitted to a k-means algorithm. The resulting cluster centers are
considered as the dictionary elements (textons) representing the tex-
ture images in the corresponding class. The subdictionaries learned
from each class in the training set are eventually composed into one
dictionary for representing all textures.

2.2. Sparse representation and model learning

The second step in a texton-based approach is sparse representation
and model learning for each texture image. Sparse representation is a
closely related topic to dictionary learning and it mainly implies that
few elements in the dictionary are sufficient to represent the data. To
represent an image in texton-based approach, patches of the same
size as what was used during dictionary learning are systematically
extracted from the top left to the bottom right of the image with
one pixel sliding each time. Then the most similar element in the
dictionary using a similarity measure such as Euclidean distance is
considered as the dictionary element representing each patch. In
other words, in texton-based approach, each patch in a texture image
is represented by only one dictionary atom. The closest match in the
dictionary is used to update a histogram of textons and by repeating
this process over all patches extracted from an image, a histogram is
eventually computed as the model for that image.

2.3. Classifier training

The final step in texton-based approach is to train a classifier. To this
end, the models learned on training images in previous step are sub-
mitted to a classifier. It has been shown that SVM typically outper-
forms k-NN in texton-based approach [12]. Hence, SVM has been
adopted in this research as the classifier.

3. EXPERIMENTAL SETUP

3.1. Data description and preparation

Human breast cancer cells (MDA-MB-231) were injected and per-
mitted to grow to a size of 7-9 mm xenograft tumours in the hind
leg of SCID mice. Animals were anaesthetized and treated with

Table 1. Data description.
Group No. of Images per Subject

Subject Pre- Post-
“0H” 1 12 10

2 11 10
“4H” 3 14 14

4 14 15
5 13 14

“12H” 6 12 12
7 12 14
8 15 13
9 12 13
10 12 12

“24H” 11 12 15
12 13 14
13 13 14
14 14 16

“48H” 15 14 12
16 11 12
17 14 14

paclitaxel-doxorubicin through intravenous tail vein injection. Ex-
perimentation used five groups of animals. Each group was assessed
at a different time after chemotherapy exposure, i.e., 0, 4, 12, 24, and
48 hours (named 0H, 4H, 12H, 24H, and 48H, respectively). Each
mouse was imaged before and after the treatment. All tumours were
excised following post-treatment imaging for histological examina-
tion.

Ultrasound radiofrequency (RF) data were collected using a
Sonix RP system (Ultrasonix, Vancouver, Canada) with a L14-5/38
transducer pulsed at 10 MHz with a central frequency of ∼7 MHz,
focused at 1.5 cm depth, with data sampled at 40 MHz. The sys-
tem was used to collect three dimensional data with scan plane
separations of ∼0.5 mm.

Ultrasound data was analyzed across 11-15 scan planes with a
size of 3.8 by 3.0 cm (Table 1). Standardized regions of interest
(ROI) were used for analysis which were located at the tumour cen-
tre. Power spectra were calculated using a Fourier transform of the
raw radiofrequency data for each scan line through the ROI using
a sliding window method. Data were normalized with the averaged
power spectrum obtained from an agar-embedded glass-bead phan-
tom model [19]. Linear regression analysis was performed on the
averaged power spectrum within a central-frequency based -6 dB
window to generate a best-fit line [20]. 0-MHz intercept paramet-
ric maps were generated via the sliding window analysis within the
ROI on a pixel by pixel basis, using a Hamming window of approx-
imately 9-11 wavelengths.

Histological analysis was performed on tumour samples fixed
in 5% formalin for 24 to 48 hours. Fixed tumour sections were
cut in 3 representative planes with ISEL (in situ end nick label-
ing) staining for cell death. Microscopy was performed using a Le-
ica DC100 microscope with a 20× objective and a Leica DC100
camera (Leica GmbH, Germany). Cell-death areas were quantified
from immunohistochemistry-stained tumour sections using Image-J
(NIH, Maryland, USA). At higher magnifications (40×) apoptotic
cells were also counted manually by identifying typical apoptotic
bodies.



3.2. Dictionary and model learning

For the purpose of the computation of the dictionary, 500 patches of
size 3×3 were extracted from each 0-MHz intercept parametric im-
age in the training set. As suggested in [14], raw pixel representation
was used and no filter bank was applied on the patches. Then all ex-
tracted patches from the training images of one class in each group
were aggregated and submitted to the k-means clustering algorithm.
This yields a subdictionary for this particular class, whose size de-
pends on the number of cluster centers generated by the k-means.
We have chosen k = 10 in k-means, i.e., there are 10 elements in
each subdictionary. The subdictionaries were eventually merged to
make the whole dictionary, with the total size of 20 in a two-class
problem.

For the purpose of sparse representation of each patch and for
learning the model for each image, patches of 3×3 were systemat-
ically extracted from the top left to the bottom right of each image
with one pixel shift each time. The closest dictionary element (tex-
ton) to each extracted patch was computed using Euclidean distance
to update a histogram of textons for each image. After normaliza-
tion, this histogram was used as the model or feature set representing
the image.

3.3. Classifier and evaluation

The main goal in the classification step is to measure how much
the images in pre- and post-treatment in each group, e.g., “4H”, are
separable. This can indicate a quantitative measure of the treatment
effects developed on average in each group. In other words, a higher
percentage of classification error shows that the treatment effects
have not been considerably apparent yet, while a lower percentage is
an indication of more treatment effect development. In keeping with
this, a two-class problem was defined, having all the pre-treatment
images in one class, whereas the images in post-treatment were as-
signed to the other class.

Since there are several pre- or post-treatment images per subject
(animal) in each group (Table 1), it should be ensured that these im-
ages are not mixed in the training and test sets. For this purpose, we
considered each imaging session of each animal as a different case.
The assignment of labels, subjects and cases are illustrated in Ta-
ble 2 for group “0H” as an example. In this special case, to evaluate
the effectiveness of the treatment, we have performed the evaluation
of the classification system using leave-one-case-out (LOCO) ap-
proach. This means that in each group, e.g., “0H”, all images of one
case, i.e., pre- or post-treatment session of one subject, were used as
the test set, and all other images in the group were considered as the
training set. The process was repeated for all the cases in the group
to obtain the classification error.

For the SVM classifier, an RBF kernel was adopted as suggested
in [21]. To choose the optimal values for the kernel width (γ) and the
trade-off parameter (C) for the SVM, we have performed grid search
using 3-fold cross-validation at case level on the training set. In other
words, the training set was divided three-fold at case level. One fold
was used as the validation set and the other two folds as the training
set. The dictionary was learned on these two folds each time. The
experiments were repeated ten times and the average and standard
deviation of the classification error was reported. The variation in
classification error comes from selecting random patches from each
image to learn the dictionary and also from using k-means to form
the cluster centers as the dictionary elements. Recall that the cluster
centers learned by the k-means are dependent on its initialization and
can be different in each run.

Table 2. Subjects, labels, and cases for group “0H”.
PRE/POST PRE PRE POST POST
Subject No. 1 2 1 2
Label 1 1 2 2
Case 1 2 3 4
No. of Images 12 11 10 10

Table 3. The classification error of the proposed approach and
the extent of histological apparent cell death for different treatment
groups. The experiments were repeated 10 times using a LOCO eval-
uation scheme, and the average and standard deviation of the error
reported.

Group Error (%) Average Histological Cell Death (%)
“0H” 94.42 ± 2.50 8 ± 2
“4H” 62.14 ± 6.29 20 ± 12
“12H” 37.24 ± 7.62 22 ± 10
“24H” 12.70 ± 2.96 61 ± 24
“48H” 0.91 ± 0.62 42 ± 11

4. RESULTS AND DISCUSSION

Representative parametric images of the 0-MHz intercept overlaid
on the corresponding US B-mode images obtained before and at dif-
ferent times after treatment are presented in Fig. 1. These images
demonstrate the use of a quantitative ultrasound parameter to evalu-
ate cancer treatment effects. Spatial heterogeneities are also apparent
in the parametric images which can be characterized using textural
analysis techniques.

The classification error obtained using the texton-based ap-
proach for textural analysis is provided in Table 3. As explained
in previous section, the classification was performed by defining
two-class problems in each group to discriminate between pre-and
post-treatment cases. Since no treatment has been performed in
control (“0H”) group, the pre- and post-treatment images are very
similar. Therefore, using a LOCO evaluation scheme, most of the
images in a test set (case) are expected to be misclassified, since
the classifier have been already trained on similar images labeled
with the other class tag. The results given in Table 3 for this group
demonstrated an encouraging performance of the proposed approach
in this application. The classification error was reasonably decreased
after longer times following the treatment, as therapy effects become
progressively more apparent. This can be more appreciated consid-
ering the amounts of histological apparent cell death, as a principal
effect of cancer therapy, where longer times after treatment typically
resulted in larger areas of cell death within the tumor (Table 3).

5. CONCLUSION

In this paper, texton signatures along with the SVM classifier were
proposed to derive objective measures from quantitative ultrasound
parametric maps in order to assess noninvasively the progressive ef-
fects of cancer treatment in well-controlled preclinical animal tu-
mour models. The proposed techniques incorporates the response
heterogeneities frequently developed within tumours as a result of
cancer therapy, by characterizing textural properties of ultrasonic
spectral parametric maps. The obtained results demonstrated that
the proposed approach can reasonably identify the gradual develop-
ment of treatment effects within tumours. As such, this technique
can be considered as an important step forward towards a precise



Fig. 1. Representative ultrasound B-Mode images with ROI parametric overlays of the 0-MHz intercept.

evaluation of cancer therapy regimens, early on during the treatment
period. Such noninvasive assessment can facilitate addressing the
necessities required for an efficacious implementation of personal-
ized cancer therapy, which is expected to offer considerably better
prognoses for the patients.
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