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Abstract. Since texture is scale dependent, multi-scale techniques are quite use-

ful for texture classification. Scale-space theory introduces multi-scale differen-

tial operators. In this paper, the N-jet of derivatives up to the second order at 

different scales is calculated for the textures in Brodatz album to generate the 

textures in multiple scales. After some preprocessing and feature extraction us-

ing principal component analysis (PCA), instead of combining features ob-

tained from different scales/derivatives to construct a combined feature space, 

the features are fed into a two-stage combined classifier for classification. The 

learning curves are used to evaluate the performance of the proposed texture 

classification system. The results show that this new approach can significantly 
improve the performance of the classification especially for small training set 

size. Further, comparison between combined feature space and combined classi-

fiers shows the superiority of the latter in terms of performance and computa-

tion complexity. 
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1   Introduction 

There is a vast literature on texture analysis, as can be judged from the innumerable 

applications of texture analysis in various fields [1].  

In recent years, multi-scale and multiresolution techniques have been recognized as 

vital tools for texture analysis. This is because texture displays a multi-scale property. 

Whatever may be the representation, it is applicable in different scales. 

Some of multiresolution techniques on texture analysis in the literature are: mul-

tiresolution histograms [2, 3] including locally orderless images [4], techniques based 

on multi-scale local autocorrelation features [5], multi-scale local binary patterns [6], 

multiresolution Markov random fields [7], wavelets [8, 9], Gabor filters [8, 10, 11], 

Gabor wavelet filters [12], Markov models in the wavelet domain [13], and tech-

niques based on scale-space theory [4, 14]. 



In almost all papers related to multiresolution texture classification, the features 

obtained from different scales are concatenated to construct a combined feature space. 

These combined features are then fed to a classifier for the purpose of texture classifi-

cation. However, fusion of features obtained from different scales produces a high 

dimensional feature space. Working in this high dimensional feature space usually 

imposes problems as we need more data samples for training the classifier. This phe-

nomenon is called the ‘curse of dimensionality’. It may cause the peaking phenomena 

in classifier design [15]. 

This problem is addressed in some of above papers by using classifiers that behave 

better in high dimensional feature space, e.g. support vector machines (SVMs) [3, 11]. 

The rest of the papers try to solve this problem by applying severe feature reduction 

by using feature selection/extraction techniques. 

On the other hand, the multiresolution papers in texture classification only report 

the classification error for a single specific training set size (usually a large training 

set size). This keeps the behavior of the classifier unrevealed in small training set 

sizes that might be important in some applications especially those where obtaining a 

large training set size is difficult, costly or even impossible. This is particularly the 

case in texture classification applications on medical images: obtaining medical im-

ages for some specific diseases is cumbersome especially as standardized protocols 

for image acquisition need to be followed [16]. 

In this paper, we address these two issues. Firstly, we use combined classifiers in-

stead of combining features. In combined classifiers, features produced in each scale 

are applied to a base classifier and hence feature fusion is no longer required. The 

outputs of these base classifiers are then combined using a combining rule for a final 

decision on the class of each texture. Secondly, the learning curves for training the 

classifiers are constructed using different training set sizes. This clearly shows how 

the training of the classifier evolves as we increase the training set size. As the results 

show, this leads to an important conclusion: the classifier performance is improved 

especially in small training set size which is important in applications mentioned 

above. 

Scale-space theory in the context of multi-scale texture classification is presented 

in section 2. In section 3, the experiments are explained followed by the results in sec-

tion 4. Eventually, the effectiveness of the method especially in small training set 

sizes is discussed in section 5. 

2   Scale-space Texture Classification 

A texture classification system typically consists of several stages such as preprocess-

ing, feature extraction and classification. Each stage is explained below in the context 

of scale-space texture classification. 

2.1   Scale-Space Theory 

Texture is usually considered as a repetitive pattern and the basic repetitive structure 

is of varying size in different textures. This inspires us to apply multi-scale techniques 



in texture analysis. Here, scale-space theory, which is biologically motivated by the 

models of early stages of human vision [14], is used for multi-scale texture classifica-

tion. 

The key notion in scale-space theory is that images are observed through a finite 

aperture device (CCD element, rod/cone etc.). The size is a free parameter (scale). A 

linear scale-space is a stack of Gaussian blurred images. The generating equation of 

the images at different scales is the linear isotropic diffusion equation as given in (1) 
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where ∆ is the Laplacian, t = σ
2
/2 is the variance, and σ is the scale. Diffusion of in-

tensity is equivalent to convolving the image with Gaussian kernels of variance σ
2
 

given in (2), as the Gaussian kernel is the Green’s function of (1). 
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This convolution blurs the image and depending on the scale of the Gaussian ker-

nel will emphasize coarser structures in the image, which is desirable in texture analy-

sis as textures are scale dependent. 

Derivatives are additional information about textures. Derivatives of discrete data 

are ill-posed. According to scale-space theory, observed data is a Gaussian convolu-

tion with the image 
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where ⊗ is the convolution operator. If we take the derivative of both sides we obtain 
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Both convolution and differentiation are linear operators, so we can exchange the 

order of these two operators 
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which means that the derivative of an observed image can be calculated by convolv-

ing the image with the derivative of the Gaussian kernel. The order of the derivative 

determines the type of structure extracted from the image, e.g. the 1
st
 order derivative 

emphasizes on the edges, the 2nd order on ridges and corners and so on. 

To construct multi-scale texture images we simply convolve the Gaussian deriva-

tives including the zeroth order derivative (the Gaussian kernel itself) with the texture 

image. However, there are two main questions in this multi-scale texture construction. 

First, up to what order do we need to consider the derivatives? Second, in each order, 

in how many different orientations the derivatives should be taken? The answer to the 

first question is application dependent. Practically, we only consider the derivatives 

up to the second order to prevent excessive computational load. The answer to the 

second question is based on the steerability property of Gaussian derivatives [14]. The 

n
th
 order derivative at any given orientation can be constructed from n+1 independent 



orientations. E.g. if n = 1, from only Lx and Ly the derivatives in all other orientations 

can be calculated using  
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where θ

xL indicates the derivative of image )(xL in orientation θ. 

To discriminate two or more textures, we use the additional information provided 

in different scales/derivatives to achieve a better performance (comparing to single 

scale). To this end, the patches are extracted from the textures in the original and de-

rivative scale spaces. The size of the patch is scale dependent. As we go to higher 

scales, i.e. lower resolutions, more emphasis is given to coarser structures and (in 

similar fashion as our visual system) we need to look at these structures through lar-

ger windows. Thus, we increase the size of patches when we go to higher scales. 

These patches can be subsampled to reduce the computation load.  

The main goal in this multi-scale texture classification system is to identify to what 

extent the additional information provided by other scales/derivatives can improve the 

performance. Hence, the patches should be taken from the same spatial locations in 

the scale-space. This is shown graphically in Fig. 1 for one patch extracted from dif-

ferent scales/derivatives for a typical texture image. 

 

 

Fig. 1. Illustration of the method for selection of a typical patch from three different scales of 

the same texture. The patches are taken from the same spatial locations in different scales. 

However, the size of patch increases as we go to higher scales. The spatial location should be 

also the same in different derivatives of the same texture. 

2.2    Feature Extraction 
 

The patch size affects the dimensionality of the feature space as larger patches gener-

ate more features. This may impose problems with respect to the computation speed 

and the necessary training set size. Increasing the feature space dimension usually de-

grades the performance of the classifier unless we dramatically increase the number 

of data samples for training (curse of dimensionality) and may cause the peaking phe-

nomena in classifier design. There are two solutions to this problem: to increase the 

training set size, and to reduce the feature space dimension using feature selec-

tion/extraction techniques, e.g. Principal Component Analysis (PCA). 
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2.3   Combined Classifier 

As mentioned in the introduction, the common practice in multiresolution texture 

classification is concatenating the features obtained from different resolutions to con-

struct a combined feature space. This combined feature space is fed to a classifier. 

This produces a high dimensional feature space and therefore severe feature reduction 

is required using feature selection/extraction techniques. The alternative method pro-

posed in this paper is using combined classifiers.  

Combined classifiers are used in multiple classifier source applications like differ-

ent feature spaces, different training sets, different classifiers applied for example to 

the same feature space, and different parameter values for the classifiers, e.g. k in k- 

nearest neighbor (k-NN) classifiers.  

In this approach, the features obtained from each scale are applied to a base classi-

fier. As the features spaces generated from different scales/derivatives are different in 

our method, parallel combined classifiers seem to be natural choice. Use of combined 

classifiers lifts the requirement for feature space fusion. Moreover, each base classi-

fier can be examined separately, e.g. by drawing the corresponding learning curve, to 

determine the contribution of each scale/derivative towards the overall performance 

of the classification algorithm as will be shown in section 4.  

Here, we propose a two-stage parallel combined classifier with the structure shown 

in Fig. 2. As can be seen in this figure, in the first stage, the feature space from each 

scale/derivative is applied to a base classifier. At the output of this stage a fixed com-

bining rule is applied to combine the outputs of different scales for one particular or-

der of derivative. For example scales s1, s2 and s3 for the Lx are combined using a 

fixed combining rule. In the second stage, the outputs of the first stage, i.e. all differ-

ent derivatives, are combined to produce the overall decision on the texture classes. 

 

 

Fig. 2. The structure of two-stage combined classifier proposed in this paper. 

This two-stage parallel combined classifier provides a versatile tool to examine the 

contribution of each derivative in the overall performance of the classifier. However, 

it must be noticed that if two combining rules are the same, e.g. if both are fixed 

‘mean combining’ rule, this two stage combined classifier is not different from one 

Sn BC 

S1 BC 

S2 BC 

M

CC k 

Sn BC 

S1 BC 

S2 BC 

M

CC 1 

M OCC  M

First Stage Second Stage 

Abbreviations: 

S: Scale 

BC: Base Classifier 

CC: Combining Classifier 

OCC: Overall Combining Classifier 



stage where all the feature spaces are applied to the base classifiers and the outputs 

are combined using the same combining rule. 

Two parameters have to be selected in this combined classifier: the type of the base 

classifier and the combining rule. The selection of these two options is discussed in 

section 4. 

2.4   Evaluation 

One of the main shortcomings of the papers in multiresolution texture classification is 

reporting the performance of the algorithm for one single training set size. This causes 

that the behavior of the algorithm for different training set sizes remains unrevealed. 

In this paper, to overcome this problem and to investigate the performance of the 

classifier, the learning curves are drawn by calculating the error for different training 

set sizes. 

Since the train and test sets are generated from the same image in each 

scale/derivative, they may spatially overlap in the image domain. Hence, to assure 

that the train and test sets are separate, we split the texture images spatially into two 

halves and generate the train and test sets from each half. 

As we have constructed the train set and test sets from two different halves of the 

image we can use a fixed test set size for calculating the error of the combined classi-

fier trained using different train set sizes. This may improve the accuracy of error 

computation as we can increase the test set size independent from the train set size at 

the cost of higher computational load. 

3   Experiments 

To evaluate the effectiveness of the proposed method, some experiments are per-

formed on a supervised classification of some test images. The test images are from 

the Brodatz album as shown in Fig. 3. 

Construction of Multi-scale Texture Images. The N-jet of scaled derivatives up to 

the second order is chosen to construct the multi-scale texture images from each 

texture. Based on steerability of Gaussian derivatives, we have used the zeroth order 

derivative, i.e. the Gaussian kernel itself, Lx, Ly, Lxx, Lxy, Lyy, and Lxx+ Lyy where the last 

one is the Laplacian. For each derivative (including the zeroth order) three scales are 

computed. The variances (σ
2
) of the Gaussian derivatives in scales s1, s2 and s3 are 1, 

4 and 7 respectively. In this way, for each texture image 7×3 texture images are 

computed. 

Preprocessing. To make sure that for all textures the full dynamic range of the gray 

level is used contrast stretching is performed on all textures in different scales. Also, 

to make the textures indiscriminable to mean or variance of the gray level, DC 

cancellation and variance normalization are performed. 

 



 

Fig. 3. Textures D4, D9, D19 and D57 from Brodatz album used in the experiments 

Construction of Train and Test Sets. To ensure that the train and test sets are 

completely separate, they are extracted from the upper and lower half of each image 

respectively. For one texture, the patches are with sizes of 18×18, 24×24, and 30×30 

in scales s1, s2 and s3 respectively. For the time being no subsampling is performed 

in higher scales but this might be considered in future for optimization of the 

algorithm in terms of speed and memory usage. Test set size is fixed at 900. Train set 

size increases from 10 to 1500 to construct the learning curves. 

Feature Extraction. PCA is used for feature extraction. The number of components 

used for dimension reduction is chosen to preserve 95% of the original variance in the 

transformed (reduced) space. 

Combined Classifier. A two-stage parallel combined classifier is used. A variety of 

base classifiers and combining rules are tested to find the best one. Among the base 

classifiers tested are some normal-based density classifiers like quadratic discriminant 

classifier (qdc), linear discriminant classifier (ldc), and nearest mean classifier (nmc). 

The Parzen classifier was also tested as a representative of non-parametric based 

density classifier. Twenty one base classifiers, one for each scale in one derivative 

order are used. The mean, product and voting fixed combining rules as well as the 

nearest mean trainable combining rule are tested for comparison. 

Evaluation. The performance of the texture classification system is evaluated by 

drawing the learning curves for training set sizes up to 1500. The error is measured 5 

times for each training set size and the results are averaged. 

4   Results 

A variety of tests are performed using different parameters as explained in the previ-

ous section. Among the tested base classifiers qdc performed the best. This can be 

understood as PCA is a linear dimension reduction that performs integration in the 

feature space. Consequently, the features tend to be normally distributed based on the 

central limit theorem. Of the tested combining rules ‘mean combiner’ performs best. 

Hence, the results are shown here based on experiments using qdc as base classifier 

and mean combining rule for both stages. 

The left graph in Fig. 4 displays the learning curves obtained at the output of stage 

1 (combined scales for each derivative order) and stage 2 (combine all derivatives in 

all scales) of the two-stage combined classifier. As can be seen, the overall perform-

    



ance of the classifier is improved comparing to each derivative order in different 

scales. This is especially significant in small training set sizes. However, for very 

small training set sizes, i.e. below 200, the output of the combined classifier is de-

graded significantly. This is because of peaking phenomena as the dimension of fea-

ture space in scale 1 is rather high even after applying PCA. 

Combined Classifier with Regularization of Base Classifiers in Scale 1. To 

overcome the size problem, we applied regularization to the qdc base classifier in 

scale 1 for all derivative orders (right graph in Fig. 4). The performance improved 

significantly in very small training set sizes, i.e. below 200. One of the major 

drawbacks of regularization is that it ruins the results for large training set sizes. 

However, as we have only applied the regularization to scale 1, the information from 

other scales prevents deteriorating the performance in large training set sizes as can be 

judged from the graph. 

Combined Classifier with the Same Patch Size in All Scales. The left graph in Fig. 

5 illustrates the importance of increasing patch size in higher scales. In this figure, the 

patch sizes extracted from the multi-scale texture images in different scales are the 

same (18×18). It is apparent that the performance of the classifiers in higher scales is 

degraded compared to Fig. 4. 

Combined Feature Space versus Combined Classifier. To demonstrate the 

superiority of our method to the common trend in the literature on multiresolution 

texture classification, we compare the results of two classification tests: combining 

the features obtained from different scales in the zeroth order derivative with the case 

that we use a combined classifier for the same derivative order in different scales. The 

results are shown in the right graph of Fig. 5 and the superiority of using a combined 

classifier to combined feature space is obvious. Combining all features generated 

from different scales/derivatives produces very high dimensional feature space that 

leads to extremely poor performance in combined feature space technique. Hence, the 

comparison has been made in only one derivative order. It should be also highlighted 

here that combined classifier approach is computationally much less expensive than 

combined feature space technique as applying fused feature space to one base 

classifier needs huge amount of memory space simultaneously and runs slowly 

compared to the combined classifiers. 

5   Discussion and Conclusion 

Scale-space theory, PCA and combined classifiers are integrated into a texture 

classification system. The algorithm is very efficient especially in small training set 

size. The system can significantly improve the performance of classification in com-

parison with single scale and/or to single derivative order based on the information 

provided in multiple scales and multiple derivative orders. 
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Fig. 4. Learning curves for the classification of 4 textures from the Brodatz album at multiple 

scales of single and multiple derivative orders without regularization (left graph) and with regu-

larization (right graph) of base classifiers at scale 1. 
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Fig. 5. Learning curves for the classification of 4 textures from the Brodatz album with regu-

larization of base classifiers at scale 1 using the same patch size for all scales (Left graph). 

Learning curves obtained using the combined classifier and the combined feature space meth-

ods for the zeroth order derivative (Right graph). 

The two-stage combined classifier along with the learning curves proposed in this 

paper provides a versatile means to investigate the significance of different 

scales/derivatives in overall performance of the classifier. Regularization of qdc base 

classifier in scale 1 further improves the performance especially in small and very 

small training set sizes. This, however, does not deteriorate the results in large train-

ing set sizes thanks to the information provided from other scales. This approach is 

superior to the combined feature space in terms of performance and computation load. 

This algorithm is effective in situations where gathering many data samples for the 

train/test sets is difficult, costly or impossible. E.g. in ultrasound tissue characteriza-

tion image acquisition has to be standardized and the ground truth for diffused liver 

diseases is biopsy, which is invasive, and collection of data is very time consuming. 

In these situations this algorithm can improve the performance of the classification 

over classical approaches as the train set size is small. 



In future work, we want to apply this method to distinguish normal from abnormal 

lung tissue in high resolution CT chest scans.  
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