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Abstract—Recently, a supervised dictionary learning (SDL)
approach based on the Hilbert-Schmidt independence criterion
(HSIC) has been proposed that learns the dictionary and the
corresponding sparse coefficients in a space where the dependency
between the data and the corresponding labels is maximized.
In this paper, two multiview dictionary learning techniques are
proposed based on this HSIC-based SDL. While one of these
two techniques learns one dictionary and the corresponding
coefficients in the space of fused features in all views, the other
learns one dictionary in each view and subsequently fuses the
sparse coefficients in the spaces of learned dictionaries. The effec-
tiveness of the proposed multiview learning techniques in using
the complementary information of single views is demonstrated
in the application of speech emotion recognition (SER). The
fully-continuous sub-challenge (FCSC) of the AVEC 2012 dataset
is used in two different views: baseline and spectral energy distri-
bution (SED) feature sets. Four dimensional affects, i.e., arousal,
expectation, power, and valence are predicted using the proposed
multiview methods as the continuous response variables. The
results are compared with the single views, AVEC 2012 baseline
system, and also other supervised and unsupervised multiview
learning approaches in the literature. Using correlation coefficient
as the performance measure in predicting the continuous dimen-
sional affects, it is shown that the proposed approach achieves the
highest performance among the rivals. The relative performance
of the two proposed multiview techniques and their relationship
are also discussed. Particularly, it is shown that by providing an
additional constraint on the dictionary of one of these approaches,
it becomes the same as the other.

Index Terms—Dictionary learning, emotion recognition, multi-
view representation, sparse representation, supervised learning.
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I. INTRODUCTION

T HERE are many mathematical models with varying
degrees of success to describe data, among which dictio-

nary learning and sparse representation (DLSR) have attracted
the interest of many researchers in various fields. Dictionary
learning and sparse representation are two closely-related
topics that have roots in the decomposition of signals to some
predefined bases, such as the Fourier transform. Representation
of signals using predefined bases is based on the assumption
that these bases are general enough to represent any kind
of signal, however, recent research shows that learning the
bases1 from data, instead of using off-the-shelf ones, leads
to state-of-the-art results in many applications such as tex-
ture classification [1]–[3], face recognition [4]–[6], image
denoising [7], [8], biomedical tissue characterization [9]–[11],
motion and data segmentation [12], [13], data representation
and column selection [14], and image super-resolution [15]. In
fact, what makes DLSR distinct from the representation using
predefined bases is that first, the bases are learned here from
the data, and second, only a few components in the dictionary
are needed to represent the data (sparse representation). This
latter attribute can also be seen in the decomposition of signals
using some predefined bases such as wavelets [16].
For a more formal description, let

be a finite set of data samples, where is the dimension-
ality and is the number of data samples. The main goal in
classical dictionary learning and sparse representation (DLSR)
is to decompose the data over a few dictionary atoms by mini-
mizing a loss function as follows

(1)

where is the dictionary of atoms, and
are the coefficients. The most common loss function in the
DLSR literature is the reconstruction error between the original
data samples and the decomposed data in the space of the
learned dictionary , regularized using a sparsity inducing
function to guarantee the sparsity of the coefficients. The most
common sparsity inducing function is norm. Hence, (1) can
be rewritten as

(2)

1Here, the term basis is loosely used as the dictionary can be overcomplete,
i.e., the number of dictionary elements can be larger than the dimensionality
of the data, and its atoms are not necessarily orthogonal and can be linearly
dependent.
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where is the th column of .
The optimization problem in (2) is mainly based on the min-

imization of the reconstruction error in mean-squared sense,
which is optimal in applications such as denoising, inpainting,
and coding [17]. However, the representation obtained from (2)
does not necessarily lead to a discriminative representation,
which is important in classification tasks.
Several approaches have recently been proposed in the

literature to include class labels into the optimization problem
given in (2) to yield more discriminative representations. These
approaches can broadly be grouped into five categories as
suggested in [18]2, including: 1) Learning one dictionary per
class, where one subdictionary is learned per class and then
all these subdictionaries are composed into one. Supervised
-means [3], [19], sparse representation-based classification
(SRC) [5], metaface [20], and dictionary learning with struc-
tured incoherence (DLSI) [21] are in this category. 2) Pruning
large dictionaries, in which, initially a very large dictionary is
learned in an unsupervised manner, and then the atoms in the
dictionary are merged according to some objective function
that takes into account the class labels. The supervised dictio-
nary learning approaches based on agglomerative information
bottleneck (AIB) [22] and universal visual dictionary [23] are
in this category. 3) Learning the dictionary and classifier in
one optimization problem, where the optimization problem
for the classifier is embedded into the optimization problem
given in (2) or its modified version. Discriminative SDL [24]
and discriminative K-SVD (DK-SVD) [25] are two techniques
in this category. 4) Including class labels in the learning of
the dictionary, such as the technique based on information
loss minimization (known as info-loss) [26] and the one based
on randomized clustering forests (RCF) [27]. 5) Including
class labels in the learning of the sparse coefficients or both
the dictionary and coefficients such as Fisher discrimination
dictionary learning (FDDL) [6].
Recently, a supervised dictionary learning approach has been

proposed [18] which is based on the Hilbert Schmidt indepen-
dence criterion (HSIC) [28], in which the category information
is incorporated into the dictionary by learning the dictionary in
a space where the dependency between the data and class labels
is maximized. The approach has several attractive features such
as closed-form formulation for both the dictionary and sparse
coefficients, very compact dictionary, i.e., discriminative dic-
tionary at small size, and fast efficient algorithm [18]. Thus, it
has been adopted in this paper.
There are instances where the data in a dataset is represented

in multiple views [29]. This can be due to the availability of
several feature sets for the same data such as representation of
a document in several languages [30], representation of web-
pages by both their text and hyperlinks, etc., or due to the avail-
ability of information from several modalities, e.g., biometric
information for the purpose of authentication that may come
from fingerprints, iris, and face. Although single-view represen-
tation might be sufficient in a machine learning task for the anal-
ysis of the data, complementary information provided by mul-

2The interested reader is urged to refer to [18] and the references thereof for
a more extensive review on various supervised dictionary learning approaches
in the literature and their main advantages and shortcomings.

tiple views usually facilitates the improvement of the learning
process.
In this paper, we provide the formulation for multiview

learning based on the supervised dictionary learning proposed
in [18]. Two different methods for multiview representation
are proposed and the application to speech emotion recognition
using two different feature sets are investigated. Additionally,
the multiview approach is extended to continuous labels, i.e.,
to the case of a regression problem (it was originally proposed
for classification tasks using discrete labels [18]). It is worth
to note that not all the proposed supervised dictionary learning
approaches in the literature can be extended to regression
problems. For example, in supervised -means, the discrete
labels are needed and it cannot be extended to continuous
labels. We will show that the proposed approach can effectively
use the complementary information in different feature sets
and improve the performance of the recognition system on
the AVEC (audio/visual emotion challenge) 2012 emotion
recognition dataset compared with some other supervised and
unsupervised multiview approaches.
The organization of the rest of the paper is as follows: in

Section II, the mathematical formulation of the proposed multi-
view supervised dictionary learning is provided. The application
to speech emotion recognition will be discussed in Section III,
followed by a discussion of the experimental setup and the re-
sults in Section IV. Section V concludes the paper.

II. METHODS

In this section, the formulation of the proposed multiview
supervised dictionary learning (MV-SDL) is provided. To this
end, we first briefly review the Hilbert-Schmidt independence
criterion (HSIC). Then we provide the formulation for the
adopted supervised dictionary learning as being proposed in
[18]. Eventually, the mathematical formulation for the proposed
MV-SDL is presented.

A. Hilbert-Schmidt Independence Criterion

HSIC is a kernel-based independence measure between
two random variables and [28]. It computes the
Hilbert-Schmidt norm of the cross-covariance operators in
reproducing kernel Hilbert Spaces (RKHSs) [28], [31].
Suppose that and are two RKHSs in and , respec-

tively. Hence, by the Riesz representation theorem, there are
feature mappings and such
that and .
HSIC can be practically estimated in the

RKHSs using a finite number of data samples. Let
be independent

observations drawn from . The empirical estimate
of HSIC can be computed using [28]

(3)

where is the trace operator,
, and ( is the

identity matrix, and is a vector of ones, and hence,
is the centering matrix). According to (3), maximizing the
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empirical estimate of HSIC, i.e., , will lead to the
maximization of the dependency between two random variables
and .

B. HSIC-Based Supervised Dictionary Learning

The HSIC-based supervised dictionary learning (SDL) learns
the dictionary in a space where the dependency between the
data and corresponding class labels is maximized. To this end,
it has been proposed in [18] to solve the following optimization
problem

s.t. (4)

where is data samples
with the dimensionality of ; is the centering matrix, and
its function is to center the data, i.e., to remove the mean
from the features; is a kernel on the labels ; and is the
transformation that maps the data to the space of maximum
dependency with the labels. According to the Rayleigh-Ritz
Theorem [32], the solution for the optimization problem given
in (4) is the corresponding eigenvectors of the top eigenvalues
of .
To explain how the optimization problem provided in (4)

learns the dictionary in the space of maximum dependency with
the labels, using a few manipulations, we note that the objective
function given in (4) has the form of empirical HSIC given in
(3), i.e.,

(5)

where is a linear kernel on the trans-
formed data in the subspace . To derive (5), it is noted
that the trace operator is invariant under cyclic permutation, e.g.,

and also that
.

Now, it is easy to observe that the form given in (5) is the
same as empirical HSIC in (3) up to a constant factor and there-
fore, it can be easily interpreted as transforming centered data
using the transformation to a space where the dependency be-
tween the data and class labels is maximized. In other words, the
computed transformation constructs the dictionary learned in
the space of maximum dependency between the data and class
labels.
After finding the dictionary , the sparse coefficients

can be computed using the formulation given in (2). As ex-
plained in [18], (2) can be either solved using iterative methods
such as the lasso or in closed-form using soft-thresholding [33],
[34] with the soft-thresholding operator , i.e.,

(6)

Algorithm 1 HSIC-Based Supervised Dictionary Learning
[18]

Input: Training data, , test data, , kernel matrix of
labels , training data size, , size of dictionary, .

Output: Dictionary, , coefficients for training and test
data, and .

1:

2:

3: Compute Dictionary: eigenvectors of
corresponding to top eigenvalues

4:Compute Training Coefficients: For each data sample
in the training set, use

to compute the corresponding coefficient

5: Compute Test Coefficients: For each data sample
in the test set, use to

compute the corresponding coefficient

where is the th data sample, and are the
th elements of and , respectively, and is defined
as follows

if
if
otherwise

The steps for the computation of the dictionary and coeffi-
cients using the HSIC-based SDL is provided in Algorithm 1.
The main advantages of the HSIC-based SDL are that the dic-

tionary and coefficients are computed in closed form and sepa-
rately. Hence, unlike many other SDL techniques in the litera-
ture, learning these two do not have to be performed iteratively
and alternately. Another remark on the HSIC-based SDL is that
unlike many other SDLs in the literature, the labels are not
restricted to discrete values and can also be continuous. In other
words, the HSIC-based SDL can be easily extended to regres-
sion problems, in which the target values are continuous, which
is the case in this paper as will be discussed in next sections.

C. Multiview Supervised Dictionary Learning

In this section, the formulation for two-view supervised
dictionary learning is provided; the extension to more than two
views is straightforward. The main assumption is that both
views agree on the class labels of all instances in the training
set. Let and be two views/rep-
resentations of training samples with the dimensionalities
of and , respectively. Having these two representations,
the main question is how to perform the learning task using
the proposed SDL provided in Algorithm 1. There are two
approaches, as follows:
Method 1: One approach is to fuse the feature sets from the

two views to obtain , where . To
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Algorithm 2 Multiview Supervised Dictionary
Learning-Method 1 (MV1)

Input: Training data at multiple views, ,
test data at multiple views, , kernel matrix
of labels , training data size, , size of dictionary, .

Output: Dictionary, , coefficients for training and test
data, and .

1: ...

2: ...

3:

4:

5: Compute Dictionary: eigenvectors of
corresponding to top eigenvalues

6: Compute Training Coefficients: For each
data sample in the fused training set , use

to compute the
corresponding coefficient

7: Compute Test Coefficients: For each data sample
in the fused test set , use
to compute the corresponding coefficient

learn the supervised dictionary, one needs to use the optimiza-
tion problem in (4). The columns of , which are the eigen-
vectors of , construct the dictionary

, where is the number of dictionary atoms. Using
the formulation given in (2), the sparse coefficients
can be subsequently computed for both the training and test sets.
These coefficients are submitted to a classifier such as SVM for
training or classifying an unknown test sample, respectively.
As mentioned in the previous subsection, given the data sam-
ples and the dictionary ,
the formulation given in (2) can be either solved using iterative
methods such as the lasso or using a closed-form method such
as soft-thresholding given in (6). The latter has the main advan-
tage that it provides the solution in closed form and hence, in
lower computation cost compared to iterative approaches like
the lasso.
Method 2: The alternative approach is to learn one subdic-

tionary from the data samples in each view. In other words, by
replacing in (4) we have

s.t. (7)

By computing the corresponding eigenvectors of the largest
eigenvalues of , a subdictionary

is obtained, where is the size of the subdic-
tionary for this view.

Similarly, another subdictionary with the size
of can be computed by replacing in (4), i.e.,

s.t. (8)

and computing the corresponding eigenvectors of the top eigen-
values of . By replacing the data
samples of each view and their corresponding subdictionaries
computed in the previous step in the formulation given in (2),
the sparse coefficients and can
be computed in each view for the training and test samples3.
Each of these coefficients can be interpreted as the representa-
tion of the data samples in the space of the subdictionary of the
corresponding view. These coefficients are then fused such that

, where . Fused coefficients are

eventually submitted to a classifier such as SVM for training or
classifying an unknown test sample. Algorithms 2 and 3 sum-
marize the computation steps for the two multiview approaches
proposed in this paper.
The connection between the two proposed multiview

methods is provided in the Appendix. As proved, by adding an
additional constraint on provided in (13) of the appendix,
Methods 1 and 2 yield the same results, i.e., the same dictionary
and coefficients. This special form of , effectively, decouples
the computation of the dictionary and coefficients over two
views.
In the following sections, the relative performance of these

two multiview approaches is shown in the application of emo-
tion recognition.

III. SPEECH EMOTION RECOGNITION (SER)

Although automatic speech recognition has been around for
many years now, it is not always sufficient only to know what
is said in a conversation, but sometimes we need to know how
something is said. That is due to the fact that a piece of speech
can convey much more information than the mere verbal con-
tent [35]. Speech emotion recognition attempts to unveil a part
of this information, which is related to affection. A natural ap-
plication of this is to human-computer interaction. That is, to
enable computers to adapt to the emotional states of the users,
in order to reduce their frustration during interactions [36]. Dif-
ferent modalities (also referred to as social cues) have been used
for this purpose, among which only voice cues have led to the
discussion of the current section.
Given the speech signal , there are two major phases

into a solution for speech emotion recognition: 1) extraction of
low-level descriptors (LLDs) (acoustic features) from speech,
and 2) statistical modeling. Extraction of LLDs is essential, as
on the one hand, each speech sample does not convey more than
the air pressure recorded by the microphone at a very small frac-
tion of time, therefore one is required to calculate some useful
measures of speech that have closer relationship with its affec-
tive qualities; on the other hand, speech signals are usually of
very high dimensions, hence extracting LLDs also counts as

3The solution can be provided in closed form using (6) as mentioned in
Method 1.
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Algorithm 3 Multiview Supervised Dictionary
Learning-Method 2 (MV2)

Input: Training data at multiple views, ,
test data at multiple views, , kernel matrix
of labels , training data size, , size of dictionary, .

Output: Dictionary, , coefficients for training and test
data, and .

1:

2: for do

a:

b: eigenvectors of corresponding to top
eigenvalues

c: For each data sample in the training set

, use to compute the
corresponding coefficient

d: For each data sample in the test set ,

use to compute the
corresponding coefficient

3: end for

4: Compute Dictionary:

...
...

. . .
...

5: Compute Training Coefficients: ...

6: Compute Test Coefficients: ...

a dimensionality reduction stage. Subsequently, at the second
stage, given the LLDs, as the covariates (i.e., ),
and an affective quality of speech, as the response variable (i.e.,

in case of discrete affects4, or in case of
continuous affects), the idea is to find a mapping between the
two: . Later on, this mapping will be used to make pre-
dictions on the affective qualities of speech samples.
As for the affective qualities, denoted by , two points of

view for representing emotional states have been used: categor-
ical and dimensional. According to the categorical view, emo-
tional states [37], [38] can be described using discrete emotion
categories such as anger or happiness. On the other hand, a
dimensional point of view, also known as the primitive-based
point of view, suggests the use of some continuous lower level
attributes, e.g., arousal and valence. Theories behind the di-
mensional representation claim that the space defined by those

4 is the set of nonnegative integers.

dimensions can subsume all the categorical emotional states
[39]–[41]. Therefore, depending on the choice of affective qual-
ities, the modeling problem can be recognized as either classi-
fication, if the categorical point of view is of interest, or regres-
sion, otherwise.
Acoustic LLDs are categorized by their domain of extraction.

Those which are interpreted in the time and frequency domains
are respectively known as prosodic and spectral LLDs. Among
prosodic LLDs, pitch, speaking rate, jitter, shimmer, and
harmonics-to-noise ratio (HNR) are frequently applied to emo-
tional speech recognition. On the other hand, Mel frequency
cepstrum coefficients (MFCC), formant frequencies, energy in
different spectral bands (250-650 Hz and 1-4 kHz), and spec-
tral characteristics such as flux, entropy, variance, skewness,
and kurtosis, are among the most commonly-used spectral
LLDs [42]. A list of about forty LLDs, including prosodic
and spectral, has been recently set as a standard [42]–[44],
and it appears that the list has been adopted by the research
community [45]–[50]. Except for a very few studies [49]–[53],
the recent research does not show a major investigation for
introduction of new LLDs.
On the statistical modeling side, various models and learning

algorithms have been used to tackle the problem at hand.
Nonetheless, the literature of speech emotion recognition
leaves a vast amount of space for experiencing methods based
on dictionary learning, particularly those that can incorporate
multiple feature sets of different natures, known as multiview
dictionary learning. In this work, since we are using two
different types of features sets, that is the baseline features
of the AVEC 2012, and a set of features that are meant for
the analysis of the spectral bands of the speech signal, the
multiview dictionary learning approach makes a perfect choice.
As for the regression model, we have made use of the lasso,
due the sparsity of the linear regression coefficients that it
allows, which commonly gives way to a model with better
generalization capabilities, and more transparent interpretation
of the features space [53].

IV. EXPERIMENTAL RESULTS

In this section, first an overview of the emotional speech data-
base used in our experiments is provided, then our choice of
acoustic features is described followed by a brief description
of some state-of-the-art techniques with which the proposed
methods are compared. Eventually, the experiments and the re-
sults are presented.

A. Dataset

Although dozens of emotional speech databases have been
collected in the past few years, not all could attract the attention
of the research community. SEMAINE, however, has been one
of the most well-received databases. A major part of the recent
studies on emotional speech recognition [42], [45]–[57] have
been conducted relying on the solid-SAL part of the database.
Since we have chosen to adopt the database in our experiments,
in this subsection, it will be introduced.
SEMAINE is recorded using three different sensitive artifi-

cial listener (SAL) interaction scenarios [58]: solid SAL, semi-
automatic SAL, and automatic SAL. 150 participants (93 female
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and 57 male) have taken part in the recordings, where their ages
range from 22 to 60 ( ). The aim of SAL is to evoke
strong emotional responses in a listener by controlling the state-
ments of an operator, i.e., the script is predefined in this scenario.
For this purpose, four agents are introduced, and a user can de-
cide which operator to talk to at any time. Each of those agents
tries to simulate one of four different emotions: happiness, sad-
ness, anger, and sensibility. Solid SAL [59], [60], on the other
hand, is a similar scenario to SAL, for which there is no prede-
fined script given to the operators. Instead, they are free to act
as one of the four SAL agents at any time. This is done for the
sake of a more natural face-to-face conversation.
Despite the relatively young age of the database, it has been a

target of various studies already. Themain reasons for the attrac-
tion towards the SEMAINE are first [42] and second [61] audio/
visual emotion challenge (AVEC), which have set the solid SAL
part of the database as the benchmark. For the sake of these chal-
lenges, four dimensions were used: arousal, expectation, power,
and valence. Our study is conducted based on the fully-contin-
uous sub-challenge (FCSC) of the AVEC 2012. For the FCSC,
the features are extracted at 0.5 second intervals, considering
only the spoken parts of the recordings [61]. To extract fea-
tures from the spoken parts of the speech signal, we have used
the same timing as provided by the baseline features. In other
words, each instant in the SED features vector corresponds to an
instant in the baseline feature vector, where the two are extracted
from the same window. According to the settings of this chal-
lenge, three subsets of the database were used for the training,
development, and testing purposes. Since the labels of the test
subset were not released to the public, our experiments are per-
formed based on the other two subsets. That is to say, for each
experiment, a model is trained using the training set, and it is
evaluated using the development set. To be more specific, all
training and tuning the parameters are performed on the training
set, during which the development set is remained unseen. The
performance of the systems is eventually evaluated on the de-
velopment set, which serves as the test set in the experiments.
The number of samples in the training and development sets are
10806 and 9312, respectively. This number of samples comes
from 31 and 32 different interaction sessions, for training and
developments sets, respectively.

B. Audio Features

Different acoustic low-level descriptors (LLDs), also referred
to as low-level descriptors, have been employed for the emo-
tional recognition of speech. In the following, a review of the
spectral energy distribution is provided, followed by a brief in-
troduction of the baseline features of the AVEC 2012 [61]. In
the previous works [53], [62], we have observed the efficiency
of the spectral energy distribution as a set of features for ana-
lyzing emotional speech, in this work we have decided to com-
bine those with the prevalently used set of features. Farther in
this study, we show how the addition of this set of features im-
proves the prediction accuracy of the overall model.
1) Spectral energy distribution (SED): Spectral energy distri-

bution (SED) is comprised of a set of components, where each

Fig. 1. (a) A speech signal (b) SED component for , and (c) SED com-
ponent for , where is the normalizing factor as introduced in (10).

component represents the relative energy of the signal in a spe-
cific band of the spectrum [53], [62]. For a speech signal ,
the definition of the component is as follows.

(9)

where is the discrete Fourier transform of ; is the
unit step function (a.k.a. the Heaviside step function); and
indicate the lower and upper bounds of the component in the

spectrum; and is a normalizing function, the use of which
is discussed in the remainder of this section. In this equation,
denotes the number of samples of the signal, which by principle
equals the length of the signal times its sampling frequency.
Fig. 1(a) and 1(b) show an arbitrary speech signal and the

SED components of the signal, respectively. In Fig. 1(b), the
normalizing function is assumed to be the identity function,
therefore the SED components form a binned power spectrum
of the speech signal.
Regardless of how informative each of the components is,

they can take arbitrarily large or small values. In other words,
although some intervals appear to carry a relatively minor part
of the energy of the signal, they can play a role as important as
that of the others, if not more so. Therefore, as a natural solu-
tion, we normalize the Fourier transform of the signal over the
spectrum by incorporating the function in the definition of
the SED:

(10)

The reason why is set to take values from is because
we normalize the amplitude of the speech signal to take values
between zero and one; since this property will be preserved by
the discrete Fourier transform, raising to the power of inflates
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. Fig. 1(c) shows the effect of this normalization on SED
components. This is similar to the idea of log spectrum, how-
ever, this provides a degree of freedom, i.e., , that could be set
through cross-validation, given the problem of interest.
As for the parameter setting of SED, except the maximum

value of the higher bound on the spectrum, which is dictated by
the sampling frequency (Nyquist theorem), the length of each
interval and the power have to be set according to themodeling
criteria.
For the purpose of our experiments, extraction of SED

components is done from non-overlapping 100 ms windows
of speech signal. The spectral interval length is set to 100 Hz.
They cover from 0 to 8 kHz. The value of is selected as 0.2.
These parameters are all chosen based on a line search. The
min, max, median, mean, and standard deviation of the features
are used as the statistics computed over the windows of the
speech signal. The dimensionality of this SED feature set is
400.
2) AVEC 2012 audio baseline features: The baseline features

provided by the AVEC 2012 [61] have the dimensionality of
1841, consisting of 25 energy and spectral-related
functionals, 6 voice-related functionals, 25 delta
coefficients of the voice-related functionals, and 10
voiced/unvoiced durational features. The details of the features
and functionals are provided in [61, Tables 4 and 5].

C. Comparison to the State of the Art

In this subsection, the explanation is provided for four ap-
proaches in the literature, with which our results are compared.
These four approaches are two from dictionary learning and
sparse representation literature, one from a recently published
paper in multiview emotion recognition, and the AVEC 2012
baseline system [61] as described in the following paragraphs.
1) Unsupervised k-means: Although -means is known as

a clustering approach and hence, an unsupervised technique,
in dictionary learning and sparse representation (DLSR) liter-
ature, it has been used in both unsupervised and supervised
paradigms [18], [19]. In this context, if -means is applied to
all training samples on all classes, it is considered as an un-
supervised dictionary. However, if the cluster centers are com-
puted on the training samples of each class using -means sep-
arately, eventually composed into one dictionary, the dictionary
obtained is supervised, and the approach is called supervised
-means, which is belonging to one dictionary per class cat-
egory of SDL approaches mentioned in Section I. Supervised
-means is designed for discrete labels and it cannot be ex-
tended to continuous labels which is the case in speech emo-
tion recognition application using dimensional affects. Hence,
here, unsupervised -means has been used as one of the dic-
tionary learning approaches to be compared with the proposed
approach.
For multiview learning using -means, the feature sets are

first fused and then submitted to the -means for computing the
dictionary. The sparse coefficients are learned using (2). Since
the dictionary is not orthogonal in this case, unlike the proposed
approach, (2) can be only computed using iterative approaches
and it does not have closed-form solution.
2) Discriminative K-SVD: To provide a comparison with

the supervised dictionary learning (SDL) approaches in the

literature, as mentioned in Section I, not all the proposed SDL
methods in the literature are extendible to continuous labels.
For example, all of the SDL methods in category 1 mentioned
in Section I, i.e., one dictionary per class category, need discrete
class labels and none of them can be applied to continuous
labels. Among the SDL approaches in the literature, we have
chosen the discriminative K-SVD (DK-SVD) [25] approach
that jointly learns the dictionary and a linear classifier in
one optimization problem. Although DK-SVD was originally
proposed for classification problem, i.e., for discrete labels, it
can be easily extended to regression problems (for continuous
labels). It is sufficient to replace the discrete labels in the
formulation provided in [25] with continuous labels, all other
steps remain unchanged.
To implement multiview DK-SVD, the same as multiview
-means, the features from single views are fused and then sub-
mitted to the DK-SVD formulation provided in [25].
3) Cross-Modal Factor Analysis (CFA): The proposed multi-

view SDL approach in this paper is a supervised multiview tech-
nique as the class labels are included in the learning process.
There are, however, unsupervised approaches in the literature
that perform multiview analysis by including the correlation
among the views into the learning process without taking into
account the class labels. Cross-modal factor analysis (CFA) [63]
is one of these approaches, which has recently been introduced
in the context of multiview emotion recognition [64]. CFA is an
unsupervised approach that includes the relationship between
the two views by minimizing the norm distance between the
projected points into two orthogonal subspaces.
Subsequently, the projected data points into the coupled sub-

spaces are computed and concatenated to jointly represent the
data. They are eventually submitted to a regressor for its training
using the training set, and subsequently predicting the dimen-
sion of an unknown emotion. Unlike other approaches discussed
in this paper, CFA does not lead to a sparse representation.
4) AVEC 2012 Baseline System: The AVEC 2012 baseline

system [61] is comprising of baseline features submitted to sup-
port vector machines regression (SVR). Here, the original base-
line feature set is used with a dimensionality of 1841 features,
whereas in previous three approaches, the dimensionality is de-
termined by the dictionary size (in unsupervised -means and
DK-SVD) or the number of components in the jointly learned
subspaces (in CFA), which is far less than the original feature
set size in our experiments (maximum 64).

D. Implementation Details

Two feature sets described above have been used, i.e., SED
and baseline features, as the two views and for a speech
emotion recognition (SER) system based on the multiview SDL
proposed earlier in this paper. Hence, the two views are

and , where is 10806 in the training
set (which is used for both training and tuning the parameters)
and 9312 in the development set (which serves as the test set)
for the FCSC part of the dataset in the experiments.
There are four dimensional affects, i.e., arousal (A), ex-

pectation (E), power (P), and Valance (V), as the continuous
response variables to be predicted. Hence, a regressor is to
be deployed in the SER system. The lasso regressor and its
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Fig. 2. The percentage of correlation coefficient ( ) of the speech expression recognition (SER) systems based on single-view (SV) and multiview (MV) learning
approaches. MV1 and MV2 are the multiview SDL techniques based on Algorithms 2 and 3, respectively as discussed in Section II-C. The results are shown at
four different dictionary sizes for (a) arousal, (b) expectation, (c) power, (d) valence, and (e) average over all dimensional affects.

GLMNET5 implementation are used in all approaches except
for DK-SVD that learns its own linear regressor and AVEC
2012 baseline system that deploys a SVR. The sparsity pa-
rameter of the lasso regressor has been optimized over the
training set by a 10-fold cross validation. As for the SVR,
a linear-kernel is used in the experiments and the trade-off
parameter ( ) of the SVR is tuned by a line search over the
set of values of , and by 5-fold
cross validation on the training set. An RBF kernel is used over

5http://www-stat.stanford.edu/tibs/glmnet-matlab/.

the response variable in each dimension, which serves as the
kernel over the target values ( ) to compute in Algorithms
2 and 3. The kernel width of the RBF kernel has been set by
using a self-tuning approach similar to what is explained in
[65], i.e., , which is the average
(Euclidean) distance between a response variable and all others.
The training set is used to compute the dictionary. The optimal
value of the regularization parameter in soft thresholding ( )
for the proposed multiview dictionary learning methods, which
controls the level of sparsity, has been computed by 10-fold
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cross-validation on the training set. The is then used to
compute the coefficients for both training and test sets6.
In all experiments, the data in each view is normalized such

that each feature is mapped to the range of [0,1]. As suggested
in [61], the performance of the SER system is evaluated using
Pearson’s correlation coefficient ( ) for each session:

(11)

where, is the total number of data samples in a session;
and represent the actual and predicted dimensional affects
in a session, respectively; and are the means of those
values.
The correlation between the predicted and actual values is

calculated for each session according to (11). However, since
sessions are of different lengths, the contribution of each ses-
sion in the total correlation should be different. Therefore, to
calculate the overall correlation coefficient ( ), we have used
the weighted average of session correlations, where sessions’
lengths are used as for the weights:

(12)

where is the total length of sessions (which is equivalent to
the total number of data samples), and are the length and
the correlation coefficient of session , respectively, and is the
total number of sessions.

E. Results and Discussions

The correlation coefficients ( ) for HSIC-based SDL at single
view (Algorithm 1) and also for the proposed multiview SER
systems (Algorithms 2 and 3) and rival multiview approaches
computed over the two feature sets, i.e., SED and baseline fea-
tures, are reported in Fig. 2 for the arousal, expectation, power,
and valence dimensions at four dictionary sizes, i.e., 8, 16, 32,
and 64. The average over all four dimensions of learning time
(including the time required to learn the dictionary and coef-
ficients, the tuning time for the sparsity coefficient of the re-
gressor, and also the time for training the regressor) as well as
recall (test) time are provided in Table I. Since there is no dictio-
nary associated with the AVEC 2012 baseline system, the results
related to this approach are separately provided in Table II. The
values for the statistical test of significance (paired -test) per-
formed pairwise between the proposed multiview approaches
and all single view or rival approaches are reported in Table III.
As can be seen in Fig. 2, both proposed multiview approaches

(MV1 and MV2) benefit from the complementary information
in two-view features sets. The performance of the single-view
system based on the SED is usually inferior to the one based
on the baseline feature set. However, combining these two rep-
resentations using one of the proposed multiview approaches
discussed earlier leads to higher correlation coefficients in all
dimensions (except for MV1 in expectation dimension). The re-
sults of statistical significance test (Table III) show that both

6One is computed for each data point in the training set. However, the
averaged over the whole training set is used to compute the coefficients on
the training and test sets as it yields better generalization.

TABLE I
THE AVERAGE LEARNING TIME (INCLUDING THE TIME REQUIRED FOR

LEARNING THE DICTIONARY AND THE COEFFICIENTS, TUNING THE SPARSITY
PARAMETER FOR THE LASSO REGRESSOR, AND EVENTUALLY TRAINING

THE REGRESSOR USING TUNED PARAMETERS) AND RECALL TIME (BOTH IN
SECONDS) FOR THE SINGLE-VIEW AND MULTIVIEW SER SYSTEMS. THE
COMPUTATION TIME IS AVERAGED OVER ALL THE DIMENSIONAL AFFECTS
FOR EACH METHOD. THE RESULTS ARE REPORTED FOR FOUR DICTIONARY

SIZES 8, 16, 32, AND 64

MV1 and MV2 significantly outperform ( ) single view
method based on SED features. Moreover, MV2 significantly
outperforms the other single view method, which is using base-
line features.
For the purpose of comparing the proposed multiview SDL

methods with the AVEC 2012 baseline system, if we take the
average of correlation coefficient over all dimensions and dic-
tionary sizes, MV1 and MV2 achieve an average performance
of 15.27% and 16.17%, respectively, whereas the average
correlation coefficient over all four dimensions for the AVEC
2012 baseline system is 14.8%, which is less than (although
not significant according to Table III) the performance of the
proposed methods. Also, since original baseline features, i.e.,
1841 features, are used in the AVEC 2012 baseline system,
the dimensionality is much higher than the dictionary learning
approaches (maximum 64). Consequently, the computational
time for both learning and recalling are much longer than all
other approaches. For example, the average recall time over all
dimensions for the AVEC 2012 baseline system (665 s) is more
than 10000 times longer than the same for the proposed MV1
(0.057) and MV2 (0.062 s).
Furthermore, the proposed MV2 significantly (see Table III)

outperforms other multiview approaches in the literature. Also,
the performance of the proposed MV1 is significantly better
than MV DK-SVD. Supervised multiview methods, i.e., mul-
tiview DK-SVD, MV1, and MV2 particularly benefit from the
information in target values’ information (dimensional affects)
at small dictionary size as can be observed from the results at
the dictionary size of 8 in Fig. 2. For example, for power dimen-
sional affect, MV1 performs about twice as good as the unsu-
pervised multiview techniques, i.e., -means and CFA. By in-
creasing the dictionary size, however, the unsupervised multi-
view approaches can capture the underlying correlation among
the single view feature sets, hence their performance approaches
those of the supervised multiview techniques. Nevertheless, the
main advantage of better performance at small dictionary sizes
is much lower computational cost, as increasing the number of
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TABLE II
THE PERCENTAGE OF CORRELATION COEFFICIENT ( ), LEARNING, AND RECALL TIME (IN SECONDS) FOR THE AVEC 2012 BASELINE

SYSTEM USING THE BASELINE FEATURES AND A SUPPORT VECTOR MACHINE REGRESSION (SVR) WITH LINEAR KERNEL

TABLE III
TESTS OF STATISTICAL SIGNIFICANCE (PAIRED -Test) BETWEEN PROPOSED MULTIVIEW METHODS (MV1 OR MV2) AND SINGLE VIEW OR RIVAL

MULTIVIEW APPROACHES. -VALUES ARE SHOWN FOR THE PROPOSED MV METHODS VS. THE SINGLE VIEW OR RIVAL APPROACH

dictionary atoms also increases the computational time. On the
other hand, between the two supervised approaches, while the
proposed multiview approaches provide a closed-form solution
for both the dictionary and coefficients, multiview DK-SVD op-
timization problem is nonconvex and the solution has to be per-
formed iteratively and alternately for the dictionary and coef-
ficients [25] using an iterative algorithm such as K-SVD [66].
This has two main disadvantages, first, it increases the compu-
tation time, and second, the algorithm may get stock in a local
minimum solution. The latter disadvantage of DK-SVD algo-
rithm explains its poor performance in expectation dimension
for the dictionary sizes of 16, 32, and 64. Moreover, in average,
the performance of DK-SVD is far behind the proposed MV1
and MV2. Not to mention that it is learning time is the longest
after AVEC 2012 baseline system, as tuning its parameters is
very time consuming, and makes this approach unsuitable in the
applications where online learning is required.
In terms of the complexity of methods, the proposed multi-

view approaches are the least complex as their solution is closed
form for both the dictionary and coefficients. Although learning
the dictionary and coefficients does not have to be done itera-
tively and alternately for the MV -means method, neither the
dictionary nor the coefficients can be learned in closed form,
which makes both learning and recalling time for this method
relatively long (see Table I). As can be seen in Table I, the pro-
posed MV1 and MV2 are computationally much more efficient
than the other two dictionary-based multiview approaches, i.e.,
-means and DK-SVD. Although CFA also offers a closed-form
solution using singular value decomposition, unlike MV1 and
MV2, it does not lead to a sparse representation in the subspaces.
Both CFA and proposed multiview approaches can be kernel-

ized. The formulation for the kernelized CFA has been provided
in [64]. A kernelized version of HSIC-based SDL was proposed
in [18]. The extension to multiview learning is straightforward
and leads to similar algorithms as in Algorithms 2 and 3. How-
ever, the kernelized version of the proposed multiview approach
will lead to a sparse representation, which is an advantage for
the approach compared to the kernelized CFA. The proposed
MV1 and MV2 approaches can be easily extended to more than
two views as shown in Algorithms 2 and 3. This is not the case
for the extension of the CFA to more than two views as the cor-
relation between every two views has to be computed pairwise

using an optimization problem given in [64]. However, this may
not lead to unique solutions for the subspaces.
Considering that MV1 and MV2 achieve an average corre-

lation coefficient over all dictionary sizes and dimensions of
15.27% and 16.17%, respectively reveals higher performance
of MV2 compared to MV1 in average. If we also take into ac-
count the computation time, that is learning time for MV2 is
faster than MV1, MV2 seems to be the more favorable of the
two.
As a final remark, it is worth to mention that MV2 learns the

dictionary and coefficients in the two views independently, and
only fuses the features in the space of leaned dictionaries at the
final stage. This is expected to be useful when the two views
are independent or not very much correlated. If this is not the
case, learning the dictionary in a fused space of two views might
be beneficial, as the dictionary learned can share the common
properties of both views. This can be especially useful for small
dictionary sizes.

V. CONCLUSION

In this paper, a multiview supervised dictionary learning
was proposed for multiview representation analysis of speech
emotion recognition. Two different multiview methods were
proposed: fusing the feature sets in the original space, and
learning one dictionary and corresponding coefficients in
this fused space (MV1), or learning one dictionary and the
corresponding coefficients in each view, and then fusing the
representations in the learned dictionary spaces (MV2). It is
shown that both methods benefit from the complementary
information in multiple views. However, MV2 learns in the
space of each view independently from others, whereas MV1
learns in the space of all views simultaneously.
The relative performance of the two proposedmultiview SDL

approaches was demonstrated in speech emotion recognition
(SER). In average, it was shown that MV2 outperforms the
MV1 method. However, both proposed multiview approaches
could capture the complementary information in both views to
improve the performance over single views. In terms of com-
putational cost, the learning time for the MV2 is shorter than
the same for MV1 in SER application. But their average re-
call time is almost the same. The MV2 also provides one ad-
ditional parameter to tune, which is the relative dictionary sizes
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in multiple views. This additional parameter gives higher flexi-
bility to this approach as it can be tuned over the training set to
achieve higher performance. To avoid spending too much time
on tuning this parameter, the relative size of the dictionaries
in multiple views can be selected based on the relative perfor-
mance of their corresponding single views, and assigning more
dictionary atoms to those views with higher performance in the
single view.

APPENDIX A
CONNECTION BETWEEN TWO PROPOSED MULTIVIEW METHODS

The approach provided in Method 2 can be considered as a
special case of Method 1. To better realize how these two ap-
proaches are related, in Method 1 can be considered to be of
the special form as follows

(13)

Considering this form of , it is easy to show:
1) The constraint given in (4) is equivalent to two constraints
given in (7) and (8):

(14)

where is a identity matrix and . From
the last equality in (14), it is easy to conclude the con-
straints given in (7) and (8), i.e., and

, where the dimensionality of the iden-
tity matrices is explicitly shown in the subscripts to prevent
confusion. Consequently, this means that the dictionaries
learned by the two methods are the same for the special
form of given in (13).

2) The coefficients obtained from Method 1 will also be

equivalent to the coefficients computed

using Method 2. This can be shown by using the formu-
lation given in (2), the special form of given in (13),

and by recalling that as follows7,8:

(15)

The bottom line of (15) is effectively consisting of two
formulations, i.e., for
view and for view
. This shows that for the special form of given in (13),

7 is used instead of in (2) as the dictionary elements are the columns of
.
8Here, -norm is used over a matrix, and it is meant that -norms over each

column of the matrix are summed such as what is used in (2).

the coefficients computed using Method 1 are the same as
those computed using Method 2.

In summary, it can be concluded that by adding an additional
constraint on as provided in (13), Methods 1 and 2 yield the
same results, i.e., the same dictionary and coefficients. This spe-
cial form, effectively, decouples the computation of the dictio-
nary and coefficients over two views.
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