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Categorizing Extent of Tumor Cell Death Response
to Cancer Therapy Using Quantitative Ultrasound
Spectroscopy and Maximum Mean Discrepancy
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Abstract—Quantitative ultrasound (QUS) spectroscopic tech-
niques in conjunction with maximum mean discrepancy (MMD)
have been proposed to detect, and to classify noninvasively the
levels of cell death in response to cancer therapy administration
in tumor models. Evaluation of xenograft tumor responses to
cancer treatments were carried out using conventional-frequency
ultrasound at different times after chemotherapy exposure. Ul-
trasound data were analyzed using spectroscopic techniques and
multi-parametric QUS spectral maps were generated. MMD was
applied as a distance criterion, measuring alterations in each
tumor in response to chemotherapy, and the extent of cell death
was classified into less/more than 20% and 40% categories. Statis-
tically significant differences were observed between “pre-” and
“post-treatment” groups at different times after chemotherapy
exposure, suggesting a high capability of proposed framework for
detecting tumor response noninvasively. Promising results were
also obtained for categorizing the extent of cell death response in
each tumor using the proposed framework, with gold standard
histological quantification of cell death as ground truth. The best
classification results were obtained using MMD when applied on
histograms of QUS parametric maps. In this case, classification
accuracies of 84.7% and 88.2% were achieved for categorizing
extent of tumor cell death into less/more than 20% and 40%,
respectively.

Index Terms—Cancer treatment, classification methods, kernel
methods, nonparametric methods, personalized medicine, quanti-
tative ultrasound.
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I. INTRODUCTION

P ERSONALIZED cancer therapy has recently attracted
much attention among researchers in various areas of

science and engineering including biomedical engineering,
biophysics, medicine, and biology [1], [2], [3]. Motivated by
high rates of poor responses of patients to standard routine
treatments, personalized cancer therapy aims at altering ther-
apies for refractory patients on an individual basis. Utilizing
faster feedback mechanisms, personalized cancer therapy is
expected to avoid needless and/or harmful continuation of an
ineffective cancer treatment, or even facilitate switching to a
salvage therapy early on during the course of treatment.
The monitoring of cancer therapy effects is broadly per-

formed at two different levels: macroscopic/anatomical or
microscopic/cellular. The former mainly relies on the classical
clinical practice to measure the size of tumor, which has been
established for research, clinical screening, and treatment
planning; see [4] for a comprehensive survey. The latter, i.e.,
monitoring tumor response to treatment at microscopic/cellular
level [5], [6], [7], is a much newer field. The impetus for
research in this area is to shift away from the conventional
paradigm of using tumor size changes as a measure of treatment
effectiveness. These changes in size can take weeks to months
to become apparent, and do not always occur even when the
treatment is effective [5], [8].
Functional imaging modalities, such as single photon

emission computed tomography (SPECT), positron emission
tomography (PET), and magnetic resonance imaging (MRI)
play an important role as they can potentially enable noninva-
sive evaluation of response to cancer therapies at microscopic
level early after the start of treatment (days as opposed to
months in standard clinical practice) [5], [8], [7]. However,
these methods have the disadvantages of being expensive and
requiring injection of exogenous contrast agents frequently to
enhance the contrast from soft tissues. The agents’ cost and
potential for side effects and allergic reactions (most of the
agents are radioactive, albeit at low levels) limits the utility of
the technology. In this context, quantitative ultrasound (QUS)
methods [6], [9] provide a promising framework that can non-
invasively, inexpensively, and quickly be used to assess tumor
response to cancer treatment using standard clinical ultrasound
equipment [10]. Unlike other aforementioned imaging modal-
ities used in monitoring cancer therapy effects, QUS does not
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need injection of any contrast agent. This is mainly because
cancer therapies, such as chemotherapy, radiotherapy, or
photodynamic therapy, generally aim at inducing programmed
cell death, i.e., apoptosis [11], in which many morpholog-
ical changes occur in tumor cells that affect the bioacoustic
properties of tumor. These include nuclear condensation and
fragmentation, cell swelling, and chromatin dissolution, which
have been demonstrated to directly or indirectly affect the
ultrasound backscatter characteristics of tumor [9], [10], [12].
For example, early cell-death (nucleus condensation and frag-
mentation) increases the backscatter intensity. On the other
hand, late cell-death (chromatin dissolution/nucleus degenera-
tion due to apoptosis) has two opposite effects on ultrasound
backscatter intensity. This initially increases the randomness
of fairly regular backscatter distributions of micro-echoes,
which produces a large backscatter signal. However, when a
large fraction of the nuclei (scatterers of ultrasound) become
disintegrated due to DNA cleavage (advanced necrosis), the
amplitude of the backscattered signal has been observed to be
reduced [13], [14], [15]. QUS has the main advantage over
conventional ultrasound imaging as it uses metrics that are
predominantly independent of the instrument settings. Such
quantitative measures are derived via analyzing the radio-fre-
quency (RF) raw data before forming B-mode images, i.e.,
before detecting its envelope and log amplification, and de-
scribe bio-acoustic characteristics of the scanned tissue. QUS
methods often involve the spectrum analysis (spectroscopy) of
the backscatter RF signals over a region of interest, forming
parametric maps.
The applicability of QUS spectroscopy to detect, noninva-

sively, cell death has been demonstrated recently in vitro, in situ,
and in vivo in both preclinical models and clinical settings using
high- and conventional-frequency ultrasound [6], [8], [10], [12],
[16]. The initial research to utilize ultrasound to detect apoptosis
resulting from cancer treatment in vitro and then in vivowere re-
ported in [17] and [13], which used high-frequency ultrasound
(20–50 MHz). This has recently been extended to conventional
clinical US ranges (1–50 MHz) [10], [12], [16], [18], which en-
ables much broader adoption of the technology in the clinic. It
builds on the earlier theoretical work of [19], the seminal work
behind QUS spectroscopic methods, that utilized spectrum anal-
ysis of the conventional low-frequency (5–15 MHz) RF signal
to characterize tissues at much coarser scales, e.g., to distinguish
between normal and detached retinal tissue.
While previous work in the field of QUS evaluation of cell

death response mainly focused on analyses such as statistical
tests of significance, regression, and discriminant analysis in
order to demonstrate the proof of principle of the proposed QUS
systems [9], [18], [16], [10], a next step towards the design of
a complete computer-aided-prognosis system is to deploy ad-
vanced machine learning algorithms and supervised learning
techniques to reliably classify the level of cell death in an auto-
matic manner. Categorizing the extent of the cell death (low,
mid, high), noninvasively, is important in the application of
monitoring cancer therapy effects. This can be achieved with
the settings applied in this study by classifying the extent of cell
death to less/more than 20% and 40%.

Relatively few studies have attempted to use supervised
learning to detect tumor response to treatment using medical
imaging data. Larkin et al. [20] worked with -weighted
MRI to detect cell death, using the support vector machine
(SVM) classifier [21] and a “Minkowski functional” feature
to classify whether an image represented a treated tumor, or a
nontreated control image. Classification accuracy after a 24-h
period was 75% using 19 subjects in preclinical data. Histolog-
ical analysis was used to confirm significant increases in cell
death after treatment. SVM was also applied with the goal of
differentiating between “pre-” and “post-treatment” images of
preclinical data using QUS in [22]; classification accuracy was
87.3% when assessed 24 h after treatment. Two studies from
a related field, computer-aided pathology detection, may also
suggest appropriate supervised learning methods. Sørensen
et al. [23] used a joint rotation-invariant local binary pattern
(LBP) and intensity histogram in a dissimilarity-based clas-
sification approach to predict emphysema using CT imaging.
The simple k-nearest-neighbor (k-NN) classifier and Euclidean
distance were used, and the classifier’s posterior probabilities
were deployed to compute the correlation to the ground truth.
Feleppa et al. [24] used a multi-layer perceptron classifier to
distinguish between cancerous and noncancerous tissues of
the prostate at a pixel-by-pixel level using QUS mid-band fit
and 0-MHz intercept parametric maps (related to ultrasound
backscatter intensity and effective acoustic scatterer concen-
tration, respectively). They found SVMs to give a very similar
performance.
In this research, steps were taken towards the development

of a computer-aided-prognosis system to assess cancer therapy
effects, noninvasively, using conventional-frequency QUS
spectral parametric maps. Ultrasound data were acquired from
xenograft tumor-bearing mice before and at different times
after chemotherapy exposure. After computation of intensity
histograms of the parametric maps as a feature descriptor, the
distances between “pre-” and “post-treatment” samples were
computed using a recently introduced kernel-basedmetric called
maximummeandiscrepancy(MMD)[25], [26], [27], [28].
MMD is a distance measure, appropriate when there are mul-

tiple data samples available from two populations to be com-
pared. It is a kernel-based measure, implying that its compu-
tation is reliant on inner products taken in a reproducing kernel
Hilbert space (RKHS). By using a kernel function to nonlinearly
transform input vectors into a different, possibly higher-dimen-
sional feature space, and computing the populationmeans in this
new space, enhanced group separability (compared to, e.g., Eu-
clidean distance in the original feature space) is ideally obtained.
The main contributions of this study are as follows.
1) Proposing a complete computer-aided-prognosis system
using MMD and QUS spectroscopy. The system can pro-
vide an early indication of cells undergoing apoptosis (pro-
grammed cell death) within hours after treatment, using the
QUS spectral parametric maps.

2) Providing one of the first studies to apply machine learning
techniques such as kernel-based methods and supervised
learning on QUS imaging.
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3) IntroducingMMD as a kernel-based dissimilarity measure,
which is a metric, to represent the levels of cell death as a
measure of distance between “pre-” and “post-treatment”
images of a subject.

4) While MMD has been also used previously in medical
imaging, such as in diffusion-weighted MRI [29], it was
used as a biomarker feature selection method, i.e., statis-
tical test, using two empirical probability distribution func-
tion (PDF) vectors as features. MMD has been also applied
previously, in applications other than medical imaging, as
a two-sample statistical test, cost function, or a feature se-
lection method. However, to the best of our knowledge,
this is the first time that MMD is proposed as a feature in a
dissimilarity-based, supervised pattern recognition frame-
work for classification. The k-NN classifier has been used
in this dissimilarity framework directly on the MMD as
features.

Using the intensity histograms of the parametric maps as
a feature descriptor, we compared the proposed MMD-based
method with three alternate feature representations that use
either the norm or the difference of magnitude distance.
These feature representations are found in the QUS literature
for detecting treatment response, and consist of a texton texture
representation (“Texton”) [22], the same intensity histogram
used in the proposed MMD approach (“IntHist”), and a rep-
resentation of each parametric map with its mean intensity
(“MeanInt”) [9], [16], [30].
We note that fairly little comparative analysis appears to have

been reported on the possible feature representations/transfor-
mations, similarity measures, and supervised classifiers that
are essential components of computer-aided-prognosis systems
using QUS technology, which is on the road to commercializa-
tion and clinical use. This work aims to take a step forward in
this direction.

II. METHODS

A. Data Collection and Preparation

In this study, experiments were carried out using 17 severe
combined immunodeficiency disease (SCID) mice. One hind
leg of each animal was injected with human breast cancer
cells (MDA-MB-231), where they were permitted to grow
to 7–9 mm sized xenograft tumors. All animals were anaes-
thetized before imaging using 100 mg/kg ketamine, 5 mg/kg
xylazine, and 1 mg/kg acepromazine (CDMV, St. Hyacinthe,
QC, Canada) and grouped into five categories. One set of
animals remained untreated (control) while all other animals
were given chemotherapy treatment using paclitaxel-doxoru-
bicin ( and , respectively) by way of
intravenous tail vein injection. Each group was evaluated at a
different time, i.e., 0, 4, 12, 24, and 48 h, after chemotherapy
exposure (labeled as CONT, 4H, 12H, 24H, and 48H, respec-
tively).
Ultrasound data were acquired from the whole tumor area in

each animal before treatment (“pre-treatment” imaging), and
at its group-specified time after exposure (“post-treatment”
imaging).

Ultrasound RF data were collected using a Sonix RP ultra-
sound system (Ultrasonix, Vancouver, BC, Canada), applying
an L14–5/38 linear transducer with a center frequency of

, focal depth of 1.5 cm, and sampling rate of 40 MHz.
The system was used to collect 3-D data with a scan plane
separation of mm with 10–16 scan frames per tumor
depending on tumor size.

B. Histological Analysis (Ground Truth)

Animals were killed immediately after “post-treatment”
imaging in order to obtain a histological ground truth for
the extent of cell death, which is required for assessing the
effectiveness of the proposed method. Analysis was performed
on excised tumor samples fixed for 24–48 h in 5% formalin.
Hematoxylin and eosin (H&E) staining was carried out on
three representative fixed thick tumor sections. More-
over, in situ end nick labeling (ISEL) immunohistochemistry
was performed for cell death. Stained slices were imaged
using a Leica DC100 microscope with magnification and
a Leica DC100 camera connected to a 2 GHz PC equipped
with Leica IM1000 software (Leica GmbH, Wetzlar, Ger-
many). Representative microscopic images of ISEL-stained
tumors obtained at different times after exposure are shown in
Fig. 1. Cell death areas were quantified macroscopically from
immunohistochemistry-stained tumor sections using Image-J
(NIH, Bethesda, MD, USA) to detect ISEL positive areas, and
subsequently averaged over the three representative sections of
tumor. Apoptotic cells were also counted manually at higher
magnifications ( ) by identifying typical apoptotic bodies.
This ground truth value is referred to as the “histological
cell-death fraction” in presented results.

C. Quantitative Ultrasound Analysis

Standard techniques of spectral estimation [31] were used to
derive an estimate of the frequency spectrum. To remove the
effects of ultrasound beam diffraction and system transfer func-
tion [32], the sample (tissue) power spectrum was normalized
with the average power spectrum from an agar-embedded glass
bead phantom model [33], [34], scanned with the same settings
used for the tissue scans.
1) Primary Features: The analysis of the ultrasound data

was performed across 10 to 16 scan planes typically with a size
of 3.8 3.0 cm. Standardized regions of interest (ROIs) were
extracted for further analysis from tumor centers, which were
consistently positioned at the transducer focal depth and within
the transducer’s depth of field. Applying a sliding window
approach on a pixel by pixel basis, the Fourier transform of
the RF data was calculated for each scan line, which was
windowed using a Hamming function, with a time-bandwidth
product of approximately seven, and subsequently averaged
to obtain a power spectrum estimate for the sliding window.
Each window’s power spectrum was consequently normalized
using a power spectrum obtained from the reference phantom
following the same scan setting.
Linear regression analysis was performed on the calculated

normalized power spectrum [35], [36], within a band-
width from the transducer’s center frequency (4.5–9.0 MHz),
yielding three parameters, which we shall refer to as primary
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Fig. 1. Representative B-mode Images (first row), the low-magnification microscopic images of ISEL-stained tumors (second row), as well as “pre-treatment”
(third row) and “post-treatment” (fourth row) QUS parametric maps of the mid-band fit parameter for each group assessed at a different time after chemotherapy
exposure. Rectangles on the B-mode scans indicate where the ROIs are taken from. The color bar represents a scale encompassing approximately 35 dBr and the
scale bar represents mm.

features: 1) the intercept of the fit line to the calibrated y-axis,
termed the 0-MHz intercept (or intercept in short); 2) the slope of
the fit line, termed the spectral slope (SS), and 3) the mid-band
fit (MBF), the normalized power (in dBr) at the center frequency
. These quantitative parameters can be related to acoustic con-

centration, effective scatterer size, and ultrasound backscatter
power, respectively [35], [36]. The parameters were extracted
at each position of the sliding window, thus forming three para-
metric maps. Typical “pre-” and “post-treatment” MBF para-
metric maps are shown in Fig. 1 over different exposure time
intervals.
Previous studies applied different sets of QUS parameters

for tissue characterization [24], [37], [38], [39] and therapy
response monitoring [9], [18], [22], [30], [40]. In this study,
0-MHz intercept, SS, and MBF were extracted. However, since
SS did not show statistically significant changes between pre-
and post-treatment ROIs, it was not reported here.
2) Feature Transformations: Several feature transformations

have been introduced that attempt to reduce the region of in-
terest (ROI) dimensionality or to represent it in a more dis-
criminative fashion. Probability density estimates, used as fea-
tures, can be effective data descriptors for a large, multidimen-
sional object, such as an image. Due to the very high intrinsic
dimensionality and unconstrained input environments of these
domains, we believe it is inappropriate to assume a distribution
on the data. Alternatively, nonparametric density estimates of
the features can be used to represent the data. No assumptions

are made about an underlying distribution of the data (whether
it be Gaussian, Poisson, etc.). Nonparametric models support
multimodal data, without the complexities of estimating mix-
ture models at the cost of being frequently higher-dimensional
than a parametric model.
Traditionally, the mean of the parametric maps are frequently

used in the literature to represent them [9], [30]. While this
may perform well in some applications, it ignores the rich
information contained in parametric maps. Recently, several
researchers have proposed treating parametric maps as images,
and have applied texture analysis on them. For example, a
texton-based approach was applied by Gangeh et al. to dis-
tinguish between “pre-” and “post-treatment” images [22].
Texton-based approach learns a dictionary of texture atoms
(textons) and subsequently represent each ROI by a histogram
of these textons [41], [42], [43], [44].
In this study, each ROI was represented with the intensity his-

tograms (as a nonparametric density estimator) of the two cor-
responding parametric maps. A comparison of each histogram-
based parameter with its mean of the parametric map as well as
with the texton-based approach is reported in the results section.

D. Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) is a kernel-based
modern approach that addresses the problem of comparing the
data samples from two probability distributions. The motivation
of using MMD in this study is two fold. 1) It is assumed that the
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parametric maps taken from “pre-” and “post-treatment” come
from two distributions and the distance between these two
distributions can be computed using MMD. If the distance is
far, it indicates that the treatment has been effective and the data
samples are indeed from two different distributions. However,
if they are close, it means that the parametric maps from “pre-”
and “post-treatment” are not very much different, thus, the
treatment has been ineffective [10]. 2) By using a kernel-based
approach such as MMD instead of simple measures like the
norm, we benefit from mapping data to a high (possibly

infinite) dimensional feature space where computing sample
means in this space takes into account high order statistics (up
to infinity), hence, better discrimination can be achieved.
The concept of MMD [25] is based on Müller’s definition of

an integral probability metric [45]. This metric was designed
as a measure to compare the dissimilarity of probability mea-
sures1 , and depends on finding a function from amongst
the space of functions that can maximize the distance

(1)

If and , i.e., and have distributions and
, respectively, (1) can be written as

(2)

where is the expectation function. If it is assumed that is a
unit ball in RKHS , it can be proved that
, if and only if [28], a nice property which is very useful
in our application. Hence, from now on, the definition of MMD
is restricted on the class of functions as the unit ball in RKHS
.
Since is an RKHS, according to the Riesz rep-

resentation theorem [46], there is a feature mapping
such that and

, where is
the inner product operator and is a positive definite
kernel function. Based on this, (2) can be written as [26], [28]

(3)

By working with the squared version of the MMD and
knowing that , we are able to identify an
elegant method of computing it using kernels

(4)

where and .
In practice, (4) is computed empirically using finite number of

data samples taken from the distributions and . To this end,
if and are and data samples
drawn independently and identically distributed (i.i.d) from

1A probability measure has unit area.

and , respectively, the empirical can be computed
using

(5)

As can be seen from (4) and (5), the data ismapped from the orig-
inal feature space to theRKHSusing a kernel , a positive
definite functionwhichcanperformnonlinear transformationson
the data, thereby potentially enhancing the accuracy of linear dis-
criminants in this alternate feature space. EmpiricalMMDcanbe
computed efficiently for data samples in
time2, and therefore compared to other dissimilaritymeasures for
distributions such as Parzen estimation or divergences, MMD is
farmore suited to real-time image analysis.
While MMD was originally proposed in the literature as a

technique for statistical hypothesis test [25], [26], [28], it is pro-
posed here as a feature to represent the distance between “pre-”
and “post-treatment” data samples of each subject in a dissim-
ilarity space. This enables using computed MMD values in a
supervised learning approach, e.g., by submitting them as fea-
tures to a classifier. Moreover, this provides the possibility for
combining them with other features (if needed) to enhance dis-
crimination power of the designed classification system. It is
expected that considering MMD as a dissimilarity measure to
be useful in exploiting intra-group variance information avail-
able frommultiple samples/instances taken of each of the “pre-”
or “post-treatment” populations. This view on MMD values has
been already proved to be useful in scene change point detec-
tion in an unsupervised learning paradigm [47].

E. Proposed Computer-Aided-Prognosis System

After the parametric maps have been prepared for each ROI,
the 0-MHz intercept and MBF values for each parametric map
are separately gathered into normalized (to unit area) histograms
of intensity values. These uniformly spaced histograms have
bins, and constitute a rotation- and scale-invariant nonpara-

metric density estimate of the feature.
The MMD distance between “pre-” and “post-treatment”

samples of each subject (animal) is then computed using the
empirical formulation given in (5). The first term in (5) com-
putes the similarities among all “pre-treatment” ROIs of
each subject whereas the last term computes the same for all
“post-treatment” ROIs of the same subject. The middle term,
on the other hand, computes the pairwise similarities
between the ROIs in the “pre-treatment” and the ROIs
in the “post-treatment” of the same subject. The histogram
intersection kernel (HIK) has been selected as the kernel in
these computations with the formulation

(6)

2An alternative approach has been proposed in [28] with a computational cost
of , which is useful in case of existing large data samples but it is not
the case in this study.
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where and are two intensity histograms with bins and
and values in each bin, respectively. HIK is a parameter-

free kernel, which has been used to good effect in many image
analysis applications [48].
The last stage is to train a classifier such as a -NN using the

MMD values as features, and the ground truth values as labels in
a dissimilarity-based classification scheme [49]. This approach,
of treating distances or dissimilarities directly as features, re-
quires a symmetric dissimilarity measure, ideally obeying the
triangle inequality, such as MMD. The -NN classifier has been
used as it is one of the simplest possible classifiers commonly
used in dissimilarity space [50]. In this way, attention can be
focused on the relative performance differences between MMD
and alternatives.

III. EXPERIMENTAL SETUP AND RESULTS

To set the parameters of the system, a grid search was per-
formed on histograms of sizes 2–200 bins, and the histogram
size yielding lowest -NN classification error were selected.
This was nine bins for MBF, and 10 bins for the QUS 0-MHz
intercept feature. The value of in the -NN classifier was op-
timized with respect to the leave-one-out error on the training
set.
Two main performance evaluation criteria were selected:

the two-sample t-test and the ability to predict cell death. The
naming scheme used throughout the figures, charts and text is
QUS Feature]-[Representation]-[Distance Measure]-[Kernel]

e.g., Intercept-IntHist-MMD-HIK.
The slope primary feature performed poorly across all feature

representations and evaluation metrics tested, and so its results
have been omitted. Development took place on a contemporary
Windows Core i5–2520M machine with 4 GB of RAM, using
MATLAB (R2011a, MathWorks, Natick, MA, USA).

A. Alternative Solutions Tested

We compare our proposed approach with three alternative
systems published in the recent literature on detecting tumor re-
sponse changes using QUS.
Gangeh et al. [22] proposed treating the parametric images

of QUS primary features (e.g., Fig. 1) as textures that can be
analyzed using the bag-of-textons approach, which is one of the
state-of-the-art texture representation methods. Working with
each parametric map in turn, this approach was implemented by
extracting 500 randomly chosen patches of size from each
image, and computing the dictionary to form the bag of textons
(“Texton”) by using -means clustering separately over the set
of each subject’s “pre-” and “post-treatment” images. The per-
subject codebooks3 were then concatenated together. Thus, if
there are subjects and atoms per set, the final dictionary
is of size . The value of in -means and patch size
of 5 5 was selected, based on a classification-error-minimizing
grid search of values between 5 and 25 and patch sizes from
3 3 to 12 12. The bag-of-textons histogram descriptor was
then formed for each ROI using the final codebook.
The second comparison used the same feature representa-

tion as ourMMD approach, intensity histograms (“IntHist”), but

3Dictionary, bag of textons, and codebook are used interchangeably in the
literature to refer to the same concept.

Fig. 2. Cell death, MMD (arbitrary units), and distance (relative dB, dBr)
versus different assessment times after exposure (the MMD and distances are
shown for MBF parametric map). The error bars show the standard error of
the mean (SEM).

computed the distance using the Euclidean distance (equivalent
to norm) instead of MMD.
The third and final comparison was made by representing

each ROI using the mean value (“MeanInt”), a scalar value,
and of its parametric feature map,

and computing the overall means
and separately for each animal.
The distance was computed as for each
subject. This approach was implicitly used in the majority of
QUS works that compute 2-D feature plots of primary features,
e.g., [30], or report the average “pre-” and “post-treatment”
differences of a primary feature, e.g., [9], [16].
Fig. 2 compared the average cell death, Midband-IntHist-

MMD-HIK distances, and Midband-MeanInt- distances
by exposure time group. Due to the different vertical scales,
it is difficult to compare MMD and directly. In order to
quantitatively compare the histograms in Fig. 2, we again turn
to a natural measure, the histogram intersection kernel (6).
The MMD and distances are normalized to have the same
value as the cell-death fraction at 24H group. Comparisons
against the ground truth histogram yielded a similarity score
of 1.433 with Midband-IntHist-MMD-HIK, and 1.303 for
Midband-MeanInt- (higher scores indicate higher similarity),
a 10% higher similarity value for MMD.

B. Statistically Significant Differences From Control Group

In order to compare the statistical significance of the different
computed distances, Welch’s unpaired two-sample t-test [51]
was performed using a significance level of . The
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TABLE I
TEST OF SATISTICAL SGNIFICANCE (UPAIRED, TWO-SAMPLE T-TEST). -VALUES SHOWN FOR EACH EXPOSURE GROUP VERSUS. THE CONTROL GROUP.

DENOTES ; DENOTES ; DENOTES

first group consisted of all of the control subjects’ distances,
while the second group contained a treatment group’s distances.
Results are reported in Table I for the different feature-distance
combinations, and are roughly arranged in order of ascending
values.
Almost all of the feature-distance combinations has a
(the standard threshold of significance) after 24 h of treat-

ment, and when using the MBF. The results are
most interesting for the (Intercept/Midband)-MeanInt- com-
binations which stand almost alone in reporting significant dif-
ferences for the 4H and 12H groups (the exception is Midband-
Texton-MMD-HIK for the 12H group). As a t-test between con-
trol group and noncontrol group ground truth cell-death frac-
tions, (Table I) indicates that the 4H and 12H groups do not
possess statistically significant differences, this suggests that the
mean intensity feature and distance are overly sensitive and
are reporting a false positive, in contrast to MMD.
As a practical matter, it is unlikely that a clinician would

change treatment protocols after such a short period, when it is
known that the peak response is typically seen 24 h after treat-
ment administration (Fig. 2) [30], [40]. In [9], monitoring pho-
todynamic therapy effects were investigated in preclinical data
after intervals as short as 1 h. Although they did not report the
values per exposure group, they showed that the maximum

changes in MBF occurred 12 h after treatment while the max-
imum cell death appeared to happen 24 h after treatment.
Statistical power tests were performed in order to evaluate the

reliability of performed statistical tests of significance, consid-
ering the use of t-test with relatively small sample size in each
group [52], [53]. Obtained results indicated that there were no
principle objection for using the t-test in this study since the ob-
tained statistical power was above 80% for the cases where a
statistical significance was reported for the proposed method.

C. Predicting Cell Death Over a Threshold

Next, a supervised binary classifier was trained, using the dis-
tance value between “pre-” and “post-treatment” populations as
the sole feature, and cell-death fractions as ground truth. The
target is to predict whether or not a subject will have cell death
greater than a threshold . Ten-fold cross-validation at subject
level was performed with the -nearest neighbors ( -NN) clas-
sifier to successively test the instances. The -NN is the most

common choice in dissimilarity representation [49], which is
able to represent complex, multimodal classification surfaces.
Classification was performed using two cell death thresholds,

20% and 40%. Based on the distribution of cell deaths in the
population, noticeable gaps around the 20% and 40% levels
have been observed, and therefore it was hypothesized that
these levels were less susceptible to misclassifications caused
by noise in the feature values. The classification accuracy,
area under curve (AUC) of the receiver-operator curve (ROC),
and Type I (1—Sensitivity) and Type II (1—Specificity) error
rates are summarized in Tables II and III for the 20% and 40%
thresholds, respectively. Entries are sorted in order of ascending
test error. Class priors were set to their observed frequencies,
and class-weighted classification error results are reported.
Generally, the MBF feature proved more discriminative in

terms of classification error compared to the 0-MHz intercept.
MMD with the histogram of MBF values had the lowest error
at both threshold levels.

D. Discussion

The results of this paper demonstrated the viability of the pro-
posed computer-aided-prognosis system using QUS methods at
clinically relevant conventional frequencies in conjunction with
advanced machine learning techniques in supervised learning
paradigm. The proposed system can progressively monitor and
categorize the level of cell death with high accuracy and nonin-
vasively on xenograft tumor models in vivo.
Overall, the Midband-IntHist-MMD-HIK combination had

the strongest performance amongst the different feature-dis-
tance combinations on the evaluated metrics and thresholds.
Fig. 3 visually compares the MMD versus the Euclidean dis-
tances in dissimilarity space. With MMD, we can observe that
low cell death subjects are clustered more tightly into a corner
compared to norm, and the inter-class distance is increased.
This reduces the likelihood of -NN errors as well as the errors
of classifiers employing linear discriminant functions. Similar
scatter plots are obtained if each primary feature, i.e., MBF
or intercept, is plotted separately that explains why a -NN
classifier performs better using MMD as dissimilarity measure
compared with norm. Combinations of features in early
feature fusion configurations, as well as late classifier-level
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TABLE II
CLASSIFICATION ERROR PERCENTAGES AND , PEDICTING WHETHER CELL DEATH IS LESS/MORE THAN . THE PARAMETER IN -NN CLASSIFIER
WAS OPTIMIZED BY LEAVE-ONE-SUBJECT-OUT ON THE TRAINING SET. TEN-FOLD CROSS-VALIDATION AT SUBJECT LEVEL WAS USED; RESULTS SHOWN ARE

AVERAGED OVER TEN RUNS. AREA UNDER (THE RECEIVER-OPERATOR) CURVE (AUC) AND TYPE I/II ERROR ARE PROVIDED

TABLE III
CLASSIFICATION ERROR PERCENTAGES AND , PREDICTING WHETHER CELL DEATH IS LESS/MORE THAN . THE PARAMETER IN -NN CLASSIFIER

WAS OPTIMIZED BY LEAVE-ONE-SUBJECT-OUT ON THE TRAINING SET. TEN-FOLD CROSS-VALIDATION AT SUBJECT LEVEL WAS USED; RESULTS SHOWN ARE
AVERAGED OVER TEN RUNS. AREA UNDER (THE RECEIVER-OPERATOR) CURVE (AUC) AND TYPE I/II ERROR ARE PROVIDED

fusion (using Intercept-IntHist-MMD-HIK together with Mid-
band-IntHist-MMD-HIK, for example), slightly improves
classification error over using individual features especially
at the threshold , which can be explained using the
graphs shown in Fig. 3. As can be seen from the right scatter
plots in Fig. 3, especially top right graph, the two classes can
be well separated in the space of two primary features using
MMD as the dissimilarity measure.
Obtained results implied that changes in the spectral slope

parametric maps in response to treatment were less promi-
nent, compared to the MBF and 0-MHz intercept, and were
not shown to be statistically significant. In addition to small
scattering structures (ensemble of few cells/nuclei undergoing
apoptosis), larger scattering structures, such as patches of
response and developed gland-like features in MDA human
breast tumors, could also affect the spectral slope in an opposite
manner. As a working hypothesis, nonsignificant change of
slope suggest that both small and large scattering structures
potentially play a role at these frequencies [10]. Specifically,
such different sized scattering structures can possibly cancel
out their effects on slope (one increasing, the other decreasing
slope), resulting in nonsignificant overall slope alterations.
Intensity histograms outperformed the texton-based approach

in the study here. One explanation is to note that the texton-
based approach is a dictionary learning approach, which means
that the signals/data are represented using a few textons from
a usually overcomplete set of learned dictionary elements. The

Fig. 3. Scatter plots of the xenograft tumors with various levels of histolog-
ical cell death presented over the different distance feature planes of MBF and
0-MHZ intercept. distance is on left, MMD on right.

learned dictionary can only be representative when there are suf-
ficiently large data samples to train the dictionary. When there



1398 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 6, JUNE 2014

are limited number of training samples, which is the case in
this study, learned dictionary may not be sufficiently represen-
tative of the data and using some predefined basis (dictionary
atoms) may lead to a better representation of the underlying dis-
tribution and consequently yield better performance in the de-
signed system. This was particularly confirmed in another study
on the classification of lung parenchyma in computed tomog-
raphy (CT) images where, for example, local binary patterns
(LBPs) as predefined operators outperformed texton-based ap-
proach in small sample sizes [54]. Based on this explanation,
intensity histogram, which does not need any learning step for a
dictionary to represent the underlying data distributions, is ex-
pected to outperform a data-drivenmethod like texton-based ap-
proach.Whenmore data samples are available for the estimation
of the dictionary, the texton-based approach may surpass other
approaches in performance.
In this paper, the histogram intersection kernel (HIK) was

used for the computation of dissimilarities using MMD. The
main advantage of HIK compared with other kernels is that it
is parameter free and thus, no tuning has to be performed. How-
ever, other kernels such as the radial basis function (RBF) kernel
can also be used. The RBF kernel has the main advantage of
mapping the data to an infinite dimensional feature space, where
the computation of the MMD can take into account the statistics
of the data samples up to infinity order [27]. Although the RBF
kernel has good analytical properties [55] and is default kernel
for generic data [56], it usually performs poorly on histogram
descriptors [57] used frequently in image analysis and computer
vision. One critical issue in using the RBF kernel is the proper
tuning of its parameter that has a great impact on the perfor-
mance of the systems designed using MMD as feature. This is
especially a critical issue when there is a limited number of data
samples as the tuning of the RBF kernel may lead to overfitting
and hence, degrade the generalization of the designed system.
The HIK, can prevent overfitting in this situation. The HIK has
also been recommended as the kernel of choice in other works
[48], [58] especially on histogram descriptors.
In this study, using the MMD distance as a feature, statisti-

cally significant differences were detected using the unpaired
t-test between treated animals and untreated controls within 24
h after treatment administration. Moreover, it was demonstrated
that using the proposed method, cell death can be categorized
noninvasively to less/more than 20% and 40% with high accu-
racy, i.e., 84.7% and 88.2%, respectively. At these two thresh-
olds, a sensitivity of 85.8% and 80% was achieved, respectively
while the specificity was 82% and 91.7%. This demonstrates the
capability of the proposed approach in categorizing cell death
to low, mid, and high levels, which is important in monitoring
cancer therapy effects.
The results of this study are in line with recent findings in-

dicating the effectiveness of QUS at conventional frequency
in monitoring tumor responses to cancer therapy in preclin-
ical models [10], [16] and clinical settings [12]. Also, the tech-
nique proposed in this paper can be considered as a comple-
mentary approach to other imaging modalities used in moni-
toring cancer therapy effects such as positron emission tomog-
raphy and magnetic resonance imaging [5], [7], [59] with the

main advantages of being cheaper and alleviating the require-
ment for using an external contrast agent. Furthermore, the pro-
posed computer-aided-prognosis system, which was tested on
preclinical data, can be easily adopted to clinical settings [12],
[60] in a step forward towards personalized medicine.

IV. CONCLUSION

A computer-aided-prognosis systemwas presented for nonin-
vasive tumor response assessment using QUS parametric maps,
containing several aspects novel to analysis of QUS data: a dis-
similarity-based classification scheme employing theMMDdis-
tance measure as features, and the use of intensity histograms of
primary features. Three alternative, commonly used feature rep-
resentation and distance schemes were implemented for com-
parison purposes. While all showed statistically significant dif-
ferences between “pre-” and “post-treatment” groups, signif-
icant improvements in classification accuracy were observed
using MMD and intensity histograms, for both the MBF and
0-MHz intercept features. The system has a classification ac-
curacy of 84.7% and 88.2% when predicting cell death at the
thresholds of and , respectively.
The techniques utilized in this work can be applied to other

treatments and pathologies, not just for tumor response, but for
the broader problem of pathology detection or treatment re-
sponse monitoring using medical imaging. The work here may
contribute to one possible path forward for a fast, noninvasive
and inexpensive computed aided diagnosis system, which can
fuse together other metadata and predictors about the patient,
such as age, gender, and family history to assist clinicians. The
MMD can be used in an additional context in such a setting, that
is, to identify the additional features and metadata that will be
statistically discriminative between populations.
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