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Triaging Diagnostically Relevant Regions from
Pathology Whole Slides of Breast Cancer:
A Texture Based Approach

Mohammad Peikari*, Mehrdad J. Gangeh, Judit Zubovits, Gina Clarke, and Anne L. Martel

Abstract—Purpose: Pathologists often look at whole slide images
(WSIs) at low magnification to find potentially important regions
and then zoom in to higher magnification to perform more sophis-
ticated analysis of the tissue structures. Many automated methods
of WSI analysis attempt to preprocess the down-sampled image
in order to select salient regions which are then further analyzed
by a more computationally intensive step at full magnification. Al-
though it can greatly reduce processing times, this process may
lead to small potentially important regions being overlooked at
low magnification. We propose a texture analysis technique to ease
the processing of H&E stained WSIs by triaging clinically impor-
tant regions. Method: Image patches randomly selected from the
whole tissue area were divided into smaller tiles and Gaussian-like
texture filters were applied to them. Texture filter responses from
each tile were combined together and statistical measures were
derived from their histograms of responses. Bag of visual words
pipeline was then employed to combine extracted features from
tiles to form one histogram of words per every image patch. A sup-
port vector machine classifier was trained using the calculated his-
tograms of words to be able to distinguish between clinically rele-
vant and irrelevant patches. Result: Experimental analysis on 5151
image patches from 10 patient cases (65 tissue slides) indicated that
our proposed texture technique out-performed two previously pro-
posed colour and intensity based methods with an area under the
ROC curve of 0.87. Conclusion: Texture features can be employed
to triage clinically important areas within large WSIs.

Index Terms—Bag of visual words, breast cancer, fast k-means,
image analysis, machine learning, pathology, texture.

I. INTRODUCTION

HANKS to the advances in digital imaging techniques,
whole slide scanners are being employed to digitize whole
slide (pathology) images (W SIs) at microscopic resolution. Dig-
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itizing pathology images offers many advantages; it enables
them to be archived and viewed electronically and that also
means that they can be analyzed by computer algorithms. In
order to perform the histological assessment of hematoxylin and
eosin (H&E) stained WSIs, pathologists start with their visual
inspection of tissue at low magnifications to identify regions
where tissue structures have changed compared to normal tis-
sues. Regions with unusual hyperplastic nuclei, and/or calcifica-
tions are usually an indication for more sophisticated analysis of
the area. Therefore, pathologists zoom into those regions of in-
terest to observe the tissue at higher magnified views. However,
if some features are not visible at lower magnification then the
pathologist has to scan through the entire image at high magnifi-
cation which may be very time consuming. Therefore, automat-
ically triaging WSIs to find areas with clinically important infor-
mation could ensure that all relevant regions are further exam-
ined by pathologists and irrelevant regions are simply neglected.
Furthermore, such automated procedure could also be useful in
number of other applications. For instance, automatic region ex-
traction techniques when sampling suitable areas of high tissue
activity for gene expression analysis [1], [2], choosing impor-
tant relevant regions within tissue sections to be punched when
doing tissue microarray (TMA) analysis [3], or appropriate re-
gion selection for automated grading work flows [4], [5] could
benefit from this technique.

The objective of this work is to present an automated
method to facilitate and accelerate the analysis of breast digital
pathology images by automatically detecting diagnostically
important patches of data and discarding the rest. This is done
by finding appropriate representations of images, based on
their texture variations in different tissue components and
employing a suitable machine learning technique to understand
the differences between the extracted visual patterns.

A. Related Works

Mining of visual patterns from medical images may have sev-
eral potential advantages both for research and clinical practice
as mentioned in [5]-[7]. Automatically processing pathology
images by computer algorithms may be required to increase the
throughput and accuracy of data analysis. In addition, these high
throughput computations could improve the analysis related to
gene profiling [1] and protein expression [8] studies.

Earlier studies have tried to distinguish between different
tissue components from immunohistochemical and H&E
stained images by looking at small rectangular image segments
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for representative intensity, colour, and context information
[9]-[12]. Some studies have aimed to classify tissue com-
ponents from TMA images where only selected and specific
parts of the specimen are captured [3], [13]. Some others have
proposed pixel-wise labeling approaches that are more suitable
for small sized datasets and may slow down the systems that
are dealing with large sized data such as WSIs [11], [13]. In
addition, colour and intensity variation could occur due to
different H&E colour staining protocols being used, tissue
thickness and/or scanning devices [14]. The problem of colour
and/or intensity variation in pathology images may hamper the
performance of computer aided detection techniques which is
still under investigation to find reliable solutions [15], [16].
We will be considering post-surgical whole-mount images for
detecting relevant regions and therefore the aforementioned
pixel-wise labeling approaches may not be efficient due to
their large size (> 107 pixels in many cases). In contrast to
pixel-wise labeling methods, a patch-based analysis technique
is a more desired approach to speed up the processing time for
WSIs. In [17], our preliminary results on a limited dataset and a
slightly different feature set showed that a patch-based texture
model of pathology slides could out-perform a recently pro-
posed patch-based colour model technique in [10]. In addition,
proposing a technique that reduces the dependency on colour
and/or intensity is beneficial. Finally, generating a training
dataset from all over the tissue area that includes the overall
heterogeneity of the tissue structures is crucial.

There are different types of numerical features employed in
conjunction with appropriate machine-learning techniques in
the literature. The most widely used include one or a combina-
tion of: colour, texture, shape, and scale invariant local features.
Colour features are based on the raw values or histogram
of pixel intensities in different channels of various colour
models providing powerful information for object recognition
[18], [19]. Texture features are usually based on pixel grey
level co-occurrence or run-length matrices [20], [21]; wavelet
[22], Fourier, or discrete-cosine transforms; and/or convolving
first or second order derivatives of Gaussian-like filters with
varying sizes, scales and directions to highlight the variation
in intensity levels between neighboring pixels/edges of the
image structures [23]. Different texture classification tasks are
present in the literature that use various filter banks including:
Leung-Malik [23], [24], Schimid [23], [24], and maximum
response (MR) [19], [23], [25], [26]. Shape features are based
on the morphologic, geometric, and/or topological variation
between different pre-segmented binary object contours [7],
[20], [27], [28]. The scale invariant feature transform (SIFT)
is a method of extracting features based on finding the local
maximas (points of interest) by comparing a series of difference
of Gaussian (DoG) images and generating a d-dimensional
pixel gradient histogram of a window around the points of
interest [29]. The SIFT descriptors are shown to be a robust
key point descriptor in various image retrieval and matching
applications since they are invariant to image transformations,
illumination changes and noise. For a more detailed review of
the state-of-the-art techniques in analysis of pathology images
please refer to [14], [30].
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II. METHODOLOGY

A. Image Dataset and Data Collection

We have used whole-mount H&E stained digital pathology
slides (65 WSIs) from breast lumpectomy surgical specimens
of 10 patients. The slides were prepared and scanned in the
Biomarker Imaging Research Laboratory at Sunnybrook Re-
search Institute (SRI) using the method described in [31]. Eight
patient datasets were scanned at 5X (50 WSIs, 2 pm/pixel)
magnification scale and two of them at 10X (15 WSIs, 1
pm /pixel) by a TissueScope scanner (Huron Technologies
International Inc., Waterloo, Canada). The following steps
were followed to generate a ground-truth training dataset.
Adaptive thresholding and morphological opening were used
as preprocessing steps on down-sampled images of the slides to
remove clearly irrelevant regions, such as large areas of fat and
paraffin (Fig. 1). Patches of 512 x 512 pixels (corresponding to
an approximate area of 1 mm? for 5X and 0.25 mm? for 10X
images) were collected from each slide by overlaying a grid of
uniformly spaced boxes on tissue regions (Fig. 1). The locations
of overlaid boxes were randomized by their starting point on
the tissue area. The horizontal and vertical distances between
pairs of grid boxes were 1000 and 500 pixels respectively.
This ROI selection approach is more time efficient compared
to the manual marking of different regions within the slides
which may take longer. It also reduces the number of patches
the pathologist needs to review and avoids selection bias. A
graphical user interface (GUI) was developed in collaboration
with a pathologist to capture the biological information within
every ROI. The interface allowed the expert pathologist to
scroll through the images randomized by their case identifica-
tion number stored in the database and evaluate the presence
of diagnostically important information within every 512 X
512 pixel patch. For each patch, the pathologist checked off
tick boxes corresponding to each tissue type or feature present;
the list was extensive and, in addition to diagnostically rele-
vant features such as cancers, atypias, microcalcifications and
lymphocytic vascular invasion, the presence of other irrelevant
features such as fat, stroma, normal ducts and lobules was
also noted. The collaborating pathologist reviewed 5151 image
patches (corresponding to 10 patient cases) using the GUI.
Fig. 2 shows a subset of this ground-truth set.

B. Proposed Methods

Our proposed automated identification aims to distinguish be-
tween different relevant or irrelevant tissue regions based on
analyzing the structures each of their components present in
pathology slides. The goal is to achieve a high sensitivity of
at least 95% while maintaining the highest possible specificity.
To eliminate the possibility of overlooking small potentially im-
portant regions at low magnification, in our automated method,
we chose to examine the tissue structures by subdividing the
slides into small square patches at highest possible magnifica-
tion. We concentrate on texture analysis in order to develop a
method with minimal dependence on colour and/or intensity in-
formation. Our proposed method proceeds with the following
multi-step process: 1) image patches are converted to smaller
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Fig. 1. Adaptive thresholding to remove clearly irrelevant structures before patch selection for data collection process (left), 512 x 512 pixel uniformly spaced
box patches (in green) on tissue images (middle), and an example of a 512 X 512 pixel image patch from the WSI (right).

Irrelevant

Fig. 2. A subset of ROIs used as ground-truth in this study with their labels. The problem of colour and intensity variation is visible in some of the patches
presented in this demonstration. It is clear that the clinically relevant information may have covered different portions of the patches in the dataset.

tiles and texture features are extracted from them forming fea-
ture vectors, 2) bag of visual words (BoW) method is employed
to regroup the features extracted from each tile and represent
individual patches with one histogram of words, and 3) image
patches are assigned with the correct class labels using a sup-
port vector machine (SVM) classifier. Details of each step are
explained in the subsequent subsections.

1) Texture Feature Extraction: We concentrate on texture
features in order to minimize colour and intensity dependen-
cies in the analysis of pathology images. The diagnostically rel-
evant regions usually contain higher variability, in their texture
due to aggregation of nuclei and/or lymphocytes. To capture this
variability we propose the following two texture feature calcu-
lation techniques and compare them with other state-of-the-art
methods:

Raw pixel representation: In order to isolate the fine tex-
tures in pathology images, patches are divided into smaller
non-overlapping tiles and converted to grey scale. The raw
values of the grey level pixels of every 2D tile are normal-
ized (to have mean p =0, and standard deviation § = 1),
vectorized, and used to generate a multidimensional feature
vector.

Filter bank representation: Image patches are divided into
smaller non-overlapping tiles and are converted from RGB to
Lab colourspace. The hue and saturation channels are discarded
and the luminance is normalized (to have mean p¢ = 0, and stan-
dard deviation § = 1) and considered for texture analysis. This
produces a tile image with high contrast between the nuclei and
the background tissue, see Fig. 3. Texture features are directly
calculated from each tile and normalized.
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Fig. 3. Patches of three different tissue types (in RGB) corresponding to (a) fat, (b) stroma, and (c) epithelial cells -top- along with their normalized luminance
channel images (after converting them from RGB to Lab) -middle-, and maximal filter responses after convolving Gaussian-like filters at all directions of one scale
((o4,ay) = (1,3)) -bottom-, and plot showing their histogram of filter response magnitudes.

We chose to employ the root filter set (RFS) bank [32] due
to its ability to form rotationally and scale invariant texture
features [33]. This filter set has been shown to perform rel-
atively better than similar sets in characterizing random tex-
tures of materials [26], [34]. Our initial triaging experiments
agree with those presented in the literature. The RSF bank used
in this study consists of 38 filters of size s = 4 Xx 4 pixels:
2 anisotropic edge and bar filters in 6 directions and 3 scales
((02,04) = [(1,3),(2,6),(4,12)]), and 2 rotationally sym-
metric Gaussian and Laplacian of Gaussian both with ¢ = 10
pixels. The filters in the bank are convolved with all of the small
image tiles (taken from large patches) making 38 filtered images
per image tile, each highlighting textures at different scales and
directions.

Since the epithelial and lymphocytic components are rel-
atively small and circular, their texture responses around the
edges compared to their surrounding pixels are high in all
scales and directions of the filters in the bank. This is shown
as a uniformly distributed histogram of filter responses in
Fig. 3(c). In contrast, fat cells and stroma have more skewed
filter response representations (Fig. 3(a), (b)). Six statistical
measures were calculated from every scale of the maximum
over the six directions of anisotropic filters. The statistical fea-
tures were mean, mode, median, standard deviation, kurtosis,
and skewness. This compresses the information relating to tex-
ture variability contained in the 38 filtered images into just 48
statistical measures, that is [6(directions) + 2(rotations)] x 6
(statistical features).

2) Visual Content Representation Using Bag of Visual Words:
In order to combine the features extracted from every tile of an
image patch, we employed the bag of visual words approach.
This technique allows for modeling complex image contents
without explicitly considering the object models, pattern loca-
tions, and their relationships [35]. This method has been pre-
viously used to learn discriminative models of biomedical and
scenery images and has shown to be robust [23], [24], [35]. De-
tails of this algorithm are shown in Fig. 4. First, image patches
are converted into tiles of a specific size depending on the extent
of preferred isolation of visual patterns (explained before). Vi-
sual features corresponding to textures are retrieved from each
tile. For any image tile, visual features are converted into a nu-

merical vector as explained in Section II-B-1. Therefore, the
number of feature vectors retrieved from every patch is equal
to the number of tiles dividing it.

In this study, feature vectors (extracted from tiles) cor-
responding to each class (irrelevant/relevant) is separately
clustered using a k-means algorithm [34]. Cluster centroids
from each class are then combined to generate a feature dictio-
nary of words to which every feature vector can be mapped.
Therefore, for each patch, feature vectors from all tiles are
mapped to the dictionary elements and a histogram is formed
showing the frequency of dictionary elements within a partic-
ular patch. We can distinguish among image patches by training
a classification algorithm to understand their differences by
comparing their histograms of words.

We have implemented a faster version of k-means clustering
method since the speed of its standard implementation drops
for large number of samples and/or high dimensioned feature
spaces. This implementation of k-means is similar to the one
proposed in [36] and works by randomly partitioning points
from all over the feature space into ‘n’ exclusive groups and
applying standard k-means in parallel on each group. The dis-
tances between cluster centres from all groups are used to iden-
tify associated cluster centroids and the mean of corresponding
centroids are set as new cluster centers of the points in the whole
feature space (words in the dictionary). Our implementation of
this technique performs at least 10 times faster than the stan-
dard k-means. This fast k-means was also employed in the BoW
pipeline of the second feature calculation technique (II-B-1-2).
This is important to note that the fast k-means clustering method
is performed during the training stage only when the dictionary
of words is to be learned.

3) Classification of Diagnostically Relevant Regions: An
SVM with a radial basis function (RBF) kernel was used to
model the feature space and find the best separating margin be-
tween the two classes. The RBF kernel has been shown to be
a powerful kernel in modeling feature spaces that have non-
linear relationship between class labels and attributes. Further-
more, the RBF kernel has shown to behave like linear and sig-
moid kernels at certain parameters [37], [38]. We employed the
RBF-SVM implemented in libsvm library [39] and the opti-
mized parameters were found using a confusion matrix calcu-
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Fig. 4. Bag of visual words content representation pipeline: image patches are split into smaller image tiles. Visual features are extracted from every image tile
and mapped onto a multidimensional feature space (shown as 2D for simplicity). Centroids of the clustered feature space (coloured stars) are taken as the visual
word dictionary elements. A histogram of words is generated using the feature dictionary for every image patch.

lated after cross-validating on training images. In order to cor-
rect for the imbalanced training set, the SVM's weight value
of the class with more cases (irrelevant) was set to the ratio of
number of cases in relevant and irrelevant classes.

III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Design

To assess the performance of our proposed approach, 2
phases of validation were designed. In the first phase, the
training dataset with 5X image patches (n = 2302, 307 rele-
vant and 1995 irrelevant patches) was divided into 8 distinct
groups each consisting of the image patches corresponding to
individual patients. An 8-fold subject-wise cross-validation
scheme was then used to train and evaluate the classification
performances of each group at different tile and dictionary
sizes. The dictionary of words were regenerated in every fold
of this cross-validation scheme. In each fold, the optimum
SVM-RBF parameters were chosen through cross-validating
image patches of seven patients in the training set over a range
of possible SVM trade-off parameter (C) and the kernel width
() values. We defined the optimum parameter set by first
identifying all sets that produced a sensitivity of above 95%;
from these we then selected the set with maximum specificity.

In the second phase, the median of the 8 optimized SVM pa-
rameters corresponding to each fold in the first phase was calcu-
lated and used to train an overall SVM model from the training
dataset used in phase 1. The overall trained model in this phase
was subsequently used to test the classification performance on
image patches of two unseen patient cases not used in the first
phase (n = 2849 patches from 15 slides). Image patches used

in this phase were all captured at 10X (pixel size = 1 ym) mag-
nification and so were down-sampled to match our previously
trained models based on image patches magnified at 5X.

In order to illustrate the performance of the model in a more
realistic setting, that is in triaging a whole slide image, the
trained model was applied to a whole-mount image scanned at
5X. This image was taken from an unseen new patient dataset
that was not included in either phase 1 or 2. The results of
the triaging were then compared to the annotations provided
by a trained pathologist. The operating point of the optimized
models for each combination of SVM kernel parameters was
chosen to be the one that had the highest possible specificity
for a target sensitivity of at least 95%.

B. Comparison With State-of-the-Art Methods

To compare the performance of the proposed automated
methods, we compare it with the following two other
state-of-the-art methods: 1) The colour based method proposed
in [10]; briefly, the RGB colour information in image patches
are unmixed into two channels corresponding to hematoxylin
(purple/blue) and eosin (pink/red) stain colours using the
method explained in [40]. A 22 dimensional feature descriptor
corresponding to 11 uniformly distributed percentiles of the
cumulative histogram generated from each of hematoxylin and
eosin channels were generated for each image patch and nor-
malized. An RBF-SVM classifier was trained to classify the test
image patches into diagnostically relevant or irrelevant regions.
2) A variation of the intensity based method introduced in [12];
briefly, for every image patch, the raw intensity values of each
red, green, and blue colour channels are considered to form 3
image intensity histograms which were concatenated to form
one 300 dimensional descriptor which was then normalized.
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Fig. 5. Effect of dictionary size on the area under the curve of classification using BoW and filter response method on 32 x 32 tile size. Dictionary size of s = 100
words was found to have the best performance while being faster compared to s = 600 words on cross-validated 8-patient data (n = 2302 patches). Error bars
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TABLE 1
RESULTS COMPARING THE CROSS-VALIDATED PERFORMANCES OF THE FOUR METHODS. THE DICTIONARY SIZE FOR METHODS WITH BOW WAS
SET TO A CONSTANT VALUE OF 100 (k = 50). NUMBER OF IMAGE PATCHES n = 2302. ASTERISK (%) SHOWS STATISTICALLY SIGNIFICANT
DIFFERENCES BETWEEN THE PERFORMANCE OF BOW AND FILTER BANK REPRESENTATION WITH A TILE SIZE OF 32 x 32 WITH OTHER
STATE-OF-THE-ART METHODS USING TWO-TAILED PAIRED WILCOXON SIGNED-RANK TEST

Method Tile Size AUC 95% CI Sensitivity (%)  Specificity (%)
Colour [10] - 0.76  [0.70, 0.82]* 95 34
Intensity [12] - 0.75 [0.65, 0.82]* 95 15
256 0.63 [0.55, 0.71]* 95 11
128 0.66 [0.58, 0.74]* 95 14
BoW & raw-pixel rep. 64 0.69  [0.60, 0.78]* 95 20
32 0.73 [0.66, 0.80]* 95 25
16 0.74  [0.66, 0.81]* 95 27
256 0.72  [0.66, 0.79]* 95 38
128 0.79  [0.70, 0.88]* 95 45
BoW & filter bank rep. 64 0.82 [0.76, 0.89]* 95 48
32 0.87 [0.81, 0.92]% 95 56
16 0.85 [0.79, 0.91] 95 52

*p < 0.05 when compared with %
AUC= Area Under the ROC Curve
CI= Confidence Interval

An RBF-SVM classifier was trained to classify the test image
patches into diagnostically relevant or irrelevant regions.

C. Results

In initial cross-validated experiments on the training set
using the two proposed methods, classification performance
was better for tile size = 32 x 32 pixels compared to other
sizes. To investigate the effect of dictionary size on the clas-
sification performance, we chose this tile size to be constant
and systematically changed the dictionary size. The number of
words selected for the dictionary size was between 6 to 1000.
We found that the performance of BoW and filter bank repre-
sentation method improved dramatically up to a dictionary size
of 30 and continued improving smoothly until the dictionary
size reached 100 words (Fig. 5). The performance slightly drops
after dictionary size of 100 but improves back until it reaches a
size of 600. Differences in classification performance between

dictionary sizes of 100 and 600 was insignificant but the time
required to learn them was significant. Therefore, s = 100 was
chosen to be the optimum dictionary size.

On the other hand, to investigate the effect of tile size for
all methods, the dictionary size was set to a constant value
of 100 and tile sizes were varied from 16 X 16 to 256 X
256. Table I summarizes the classification performance over
8-patient dataset for variable tile sizes and dictionary size of
100. In order to do a fair comparison between performances
of the three compared methods, the operating point of all clas-
sification models was set to be at 95% sensitivity. Signifi-
cant differences were found among cross-validated AUCs of
all compared methods in Table I using paired non-parametric
Friedman's test and between AUCs of individual experiments
and that of the best performance (tile size = 32 x 32 pixels)
using a two-tailed paired Wilcoxon signed-rank test with a sta-
tistical power of above 84% (using the G*Power statistical
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TABLE II
RESULTS COMPARING THE PERFORMANCES OF THE FOUR METHODS ON A TOTALLY UNSEEN TEST SET OF 2 PATIENTS
USING BEST PERFORMING CLASSIFICATION MODELS IN TABLE I. NUMBER OF IMAGE PATCHES n = 2849

Method Tile Size  Accuracy (%) Sensitivity (%)  Specificity (%)
Colour [10] - 24 92 14
Intensity [12] - 91 10
BoW & raw-pixel rep. 16 99 9
BoW & filter bank rep. 32 65 94 62

Fig. 6. Result of running our final detection model on an unseen whole-mount tissue slide which shows that most of the irrelevant tissue structure is discarded.
(a) detection results (red boxes) matches that of a previous manually annotated clinically important region (yellow contour) by a trained pathologist. (b) correctly

discarded region corresponding to normal ductal structure.

software [41]). We found that the tile size had the largest ef-
fect on the classification performances. As the tile size re-
duced down to 32 x 32 the performance improved. The clas-
sification performance of a model trained on 8 patient cases
and tested on an unseen set of 2 patients data (explained in
previous section) is shown in Table II. Results of this anal-
ysis indicated that the model generated using our proposed
approach is still more reliable in classifying unseen test sets
compared to other methods. Finally, this model was also ap-
plied to an unseen whole-mount tissue slide which had been
annotated manually by a trained pathologist; our model was
able to detect all contours identified as invasive or non-inva-
sive cancer while correctly discarded about 81% of the image
area (Fig. 6). This means that after applying our triaging tech-
nique only about 19% of the image area had to be manually
inspected for the image slide presented in Fig. 6.

IV. DISCUSSION AND CONCLUSION

The goal of this study was to automatically detect clinically
relevant regions from large post-surgical WSIs of breast cancer

and discard the irrelevant ones. From the four compared colour,
intensity, and texture approaches (two methods), our proposed
texture filter representation features were able to better distin-
guish between the two image classes with a mean F1-score value
of 0.44 (on the cross-validated 8-patient data). Our training set
was generated by randomly selecting patches from the whole
tissue area. This way the selection bias was reduced and the pos-
sibility that the overall tissue heterogeneity is considered in our
feature set and classification model was increased.

We found that the tile size has the largest impact on the classi-
fication performance of a BoW technique. This maybe because
as the tile size reduced, there was a higher chance of having one
tissue component (epithelial, stroma, or fatty structures) isolated
in any given tile. In addition, we found that the effect of dictio-
nary size on classification performance was secondary to that
of the tile size. The reason for performance decreasing after the
dictionary reached 100 words may be that by further dividing
the feature space, large clusters of feature points are simply di-
vided into further smaller and adjacent groups, increasing the di-
mensionality of feature space without improving performance.
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The combination of raw pixel representation and BoW did
not perform as well as the other methods in Table I. This could
be because in the implementation of this technique, raw pixel
representations were directly considered as features for every
tile without deriving statistical measures from them. This could
generate unrepresentative feature vectors in the presence of ir-
relevant information for each training patch which may push the
relevant training points towards the irrelevant side of the feature
space.

In order to further improve the quality of the model generated
by our proposed technique, texture features could be derived
from overlapping tiles. This may provide more training data and
hence will provide more points for the dictionary learning stage
which is essential for the histogram of words generation. How-
ever, the drawback of such a policy would be an undesired in-
crease in the run time of the dictionary learning process.

We believe that the same proposed automated triaging tech-
nique presented in this paper could be helpful in a number of
other applications where the goal is to find areas of high tissue
activity (with densely populated epithelial cells) in a timely
manner. These applications may include automated region of
interest detection for TMA analysis and cancer grading work
flows. The patch-wise processing of WSIs may improve the
speed of classification for large datasets compared to pixel-wise
labeling methods since one label is assigned to a patch of 512
X 512 pixels at once. Our patch-wise labeling method was able
to process a WSI (17,000 x 23,000 pixels, Fig. 6) with close to
900 patches on the tissue part (after removing the background by
thresholding) in 27 minutes (on a 64-bit Intel (R) Xeon (R) CPU
E3-1241 v3 at 3.50 GHz machine) which makes it suitable for
preprocessing applications only. Implementing this technique
using parallel or CUDA programming may further speed up the
run-time.

For future directions of this research, it is important to classify
pathology whole-mount images into regions corresponding to
different invasive/pre-invasive structures such as UDH, ADH,
DCIS, and/or IDC. In order to achieve this goal, whole-mount
slides could first be triaged (using the proposed technique) into
clinically relevant/irrelevant regions discarding as much irrel-
evant regions as possible, and considering relevant regions for
further processing only.
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