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Abstract

Purpose: Our goal is to propose a landmark- and contour-matching (LCM) registration method
that uses both landmark information and approximate point correspondences to boost the
similarity between image pairs with sparse landmark information.

Approach: A model for registering two-dimensional (2D) medical images with landmark infor-
mation and contour-approximating landmarks was proposed. The model was also extended to
accommodate the registration of three-dimensional (3D) cardiac images. We validated the LCM
method on 2D hand x-rays and 3D porcine cardiac magnetic resonance images. The following
metrics were used to assess the quality of specific aspects of the registered images: Dice sim-
ilarity coefficient for the overall image overlap, target registration error for pointwise correspon-
dence, and interior angle for local curvature.

Results: Target registrations were reduced from 27.12 to 0.01 mm post-LCM registration.
Implementing the proposed algorithm also led to a 112% average improvement in image sim-
ilarity in terms of Dice coefficients. In addition, interior angle measurements indicate that the
proposed method preserved the local curvature at major reference landmarks and mitigated
the appearance of deformities in the registered images.

Conclusions: The proposed method addressed several issues associated with purely landmark-
based techniques, such as iterative closest point registration and thin plate spline interpolation.
Furthermore, it provided accurate registration results even in the presence of landmark locali-
zation errors.
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1 Introduction

Image registration can generally be classified under two main categories: landmark-based and
intensity-based. Intensity-based registration matches corresponding structures between images
by minimizing a distance measure that quantifies voxel similarity over the entire image domain
without the need for guiding landmarks.1 As such, these methods tend to be more robust but
computationally expensive.

On the other hand, landmark-based registration can be viewed simply as either an interpo-
lation or a data-fitting problem. However, defining landmarks in medical images can be prone to
errors since the selection of landmarks highly depends on the ability of the physician to
mentally integrate information from different images.2–5 In addition, some organs such as the
heart only have few spatially accurate and repeatable anatomical landmarks and, hence, insuf-
ficient information to guide the transformations.6 Consequently, landmark information is
typically used only to match the scaling and orientation as a pre-registration step, after which
intensity information is utilized to further maximize the post-registration image overlap.
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Several approaches combining landmark- and intensity-based registration have already been
proposed. Eriksson and Astrom introduced in Ref. 7 an intensity-based approach that focused on
minimizing the sum of squared differences while restricting the solution space to thin plate spline
(TPS) mappings.8–10 In Ref. 11, the normalized gradient field similarity measure was employed
together with the elastic regularizer. Similar restrictions were imposed on the solution space.

However, even with these hybrid landmark- and intensity-based techniques, minimizing the
amount of misregistration can still be tricky. In our previous work,12 we tried to address several
of the issues associated with processing medical data with sparse landmark information by pro-
posing a method to automatically detect interest points and an intuitive partitioning of the con-
tours in an image. This effectively reduced the need for an expert to manually delineate points of
interest (POIs) and the possibility of introducing landmark localization errors.

In this paper, we present a model for intra-modality registration that builds on one of the most
commonly used landmark-based methods—TPS13–16—by simultaneously using landmark and
approximate contour information. Through a comprehensive assessment of the registration
results, we demonstrate that the landmark- and contour-matching model (LCM) boosts image
similarity and landmark-matching and preserves the local curvature at control points better
than TPS and other landmark-based techniques even in the presence of landmark localization
errors.

2 Background: Thin Plate Spline Registration

TPS are a spline-based class of interpolating functions widely used in medical imaging.
Introduced by Duchon in Ref. 9, TPS interpolates over scattered data while minimizing the
bending energy of a thin metal plate on point constraints.10 The idea of TPS was later used in
point-based registration.

Let R and T be the reference and template images defined on an image domain Ω and sup-
pose that frjgKj¼1

and ftjgKj¼1
are K landmark pairs from R and T , respectively. The transfor-

mation that minimizes the bending energy of a TPS while simultaneously satisfying the
landmark constraints minimizes following optimization problem:

EQ-TARGET;temp:intralink-;e001;116;379min
θ

STPS½θ� ≔ min
θ

Z
Ω
h∇2θðxÞ;∇2θðxÞidx subject to

XK
j¼1

ðθðtjÞ − rjÞ2 ¼ 0: (1)

It has been shown that the unique solution of Eq. (1) can be represented by a linear combination
of radial basis functions and an affine part.8–10,17 That is, for a d-dimensional registration prob-
lem, θ is of the form

EQ-TARGET;temp:intralink-;e002;116;294θiðxÞ ¼
XK
j¼1

cijρðkx − tjkÞ þ
Xd
j¼0

wi
j for i ¼ 1; : : : ; d; (2)

where fcijg; fwi
kg ⊂ R. In the presence of localization errors, it is possible to relax the interpo-

lation condition in Eq. (1) by replacing the interpolation by approximation as follows:

EQ-TARGET;temp:intralink-;e003;116;218min
θ

XK
j¼1

ðθðtjÞ − rjÞ2 þ β

Z
Ω
h∇2θðxÞ;∇2θðxÞidx: (3)

The parameter β ≥ 0 in the objective function above controls the smoothness of the minimizer
and the mismatch of the data points. Note that setting β ¼ 0 yields the interpolation problem
in Eq. (1).

3 Proposed Landmark and Contour-Matching Model

Let R and T be the reference and template images with exact (major) landmarks frjgKj¼1
and

ftjgKj¼1
, respectively. Given that fr�jgLj¼1

and ft�jg
L

j¼1
are ordered sets of sampling points that
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trace the contours of a region of interest present in R and T , we aim to solve the optimization
problem

EQ-TARGET;temp:intralink-;e004;116;711θ� ¼ arg min
θ

XK
j¼1

kθðtjÞ − rjk2
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{DLM½θ�

þ α
XL
j¼1

1

2
½1 − ðv½θðt�jÞ� · v½r�j�Þ

2�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{C½θ�

; (4)

in which θ is a TPS transformation [Eq. (2)]. In the LCM model [Eq. (4)],

a. the first term DLM denotes the sum of squared landmark distances,
b. the second term C denotes the contour matching term, where
c. v½θðt�jÞ� · v½r�j� signifies the cosine of the angle between corresponding normalized (unit)

secant vectors v½θðt�jÞ� and v½r�j� formed by connecting consecutive contour-approximating
points in the transformed template and reference images, and

d. every component of the contour-matching term is bounded. In particular, for
j ∈ f1; : : : ; Lg,

EQ-TARGET;temp:intralink-;sec3;116;5320 ≤ Cj½θ� ¼
1

2
½1 − ðv½θðt�jÞ� · v½r�j�Þ

2� ≤ 1

2
:

Minimizing the contour-matching term C is equivalent to maximizing the similarity in the
orientation of corresponding unit vectors without any constraints on scaling. Thus, solving the
registration problem in Eq. (4) relaxes the interpolation conditions and balances the overlap of
the exact landmarks and the overall similarity between the orientation of the image contours.

An example of the setup required in the proposed LCM model is shown in Fig. 1. An exten-
sion of the model is discussed in Sec. 4.3 to accommodate three-dimensional (3D) images.

4 Methods

4.1 Data

Hand x-rays from Refs. 17 to 19 were used to validate the proposed LCM registration method for
two-dimensional (2D) images.

Eight explanted healthy porcine hearts were used for the 3D experiments. The hearts were
placed in a Plexiglass phantom filled with Fluorinert to avoid susceptibility artifacts at air–tissue
interface and scanned on a 1.5T GE Signa Excite using a high-resolution head coil, as described
in a previous study.20 Specifically, here, we obtained the heart anatomy from T2-weighted im-
ages (3D FSEMR pulse sequence, TR ¼ 700 ms, TE ¼ 35 ms, NEX ¼ 1, ETL ¼ 2, FOV ¼ 10

to 12 cm) which were reconstructed and interpolated at 0.5 × 0.5 × 1.6 mm3 spatial resolution.

Fig. 1 LCM model requisites. (a) Image, (b) major landmarks, (c) exact landmarks (in pink),
contour-approximating points (dark gray), and vectors (light gray). Here, the number of exact
landmarks is K ¼ 11 and the number of contour-approximating points is L ¼ 33.
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4.2 Landmark Detection

Prior to registration, the landmark detection method proposed in our previous work12 was used to
generate a discretization of the contours present in the hand images and in the sampling short-
axis slices of the cardiac volumes.

We defined the POIs as points along the edges in an image where high curvature occurs.
Since the curvature measures how sharply a curve bends,21 the task of locating the POIs was
simplified by instead finding where the minimum interior angle occurs [see Fig. 2(a)].

In hand x-ray images, the POIs were the fingertips and the cusps in between adjacent fingers.
Meanwhile, the POI within an axial cardiac slice would depend on the presence (or absence) of a
cross-section of the right ventricle (RV). If a cross-section of the RV was visible like in basal and
mid-cavity slices, then the POIs were given by the RV insertion points. On the other hand, in
apical slices where only the LV and epicardial contours were present, curvature was maximal at
the ends of the major axis of the endocardial LV ellipse [see Figs. 2(b) and 2(c)].

Finally, a discretization of each arc connecting adjacent POIs was obtained by partitioning
the ordered set of connected pixels into shorter arcs of equal length. For more details, we refer the
reader to Ref. 12.

4.3 Registration

For the 2D experiments, no initial registration was used. Owing to the larger deformations
involved in inter-subject 3D cardiac registration, an affine pre-registration using the three repeat-
able landmarks was performed prior to LCM to correct the scaling and orientation of the tem-
plate image.

The constrained minimization problem in Eq. (4) was solved using Newton’s method to
obtain the optimal transformation parameters. At every iteration, the distances between the trans-
formed major template landmarks and their target locations were calculated. In addition, the
vectors connecting adjacent contour-approximating landmarks were normalized, and the cosine
of the interior angles formed by corresponding unit vector pairs in the reference and transformed
template were calculated to measure the overall similarity between the orientation of the contours
present in the two images.

The exact Hessian of both the LCM terms in Eq. (4) were used in the implementation of
Newton’s method.

4.4 Validation

Iterative closest point (ICP)22–25 and TPS registration were performed to provide benchmarks for
the LCM technique.

Fig. 2 Interest point detection using interior angles. (a) The points of high curvature (POIs) along
the contour of the hand have narrower interior angles. (b), (c) Interior angles in endocardial seg-
ments. When a cross-section of the RV is present, the interest points are taken to be the RV cusps.
In slices where only the elliptical contours of the epicardium and LV endocardium are present, the
POIs are defined to be the ends of the major axis of the LV ellipse (vertices in red and green).
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4.4.1 2D LCM registration

In experiment 1a, we observed the effect of blindly performing TPS registration by using only 11
POIs as exact landmarks. Then, in experiment 1b, we observed whether using the same number
of major landmarks as in experiment 1a but adding extra contour information to be used
only in the contour-matching term C lessens the occurrence of unnatural bending and improves
the image overlap away from the exact landmarks.

In the second set of experiments, a landmark localization error was introduced to the major
template landmarks to determine the accuracy of the registration methods in the presence of a
landmark localization error.

Dice coefficients, target registration errors (TRE), and interior angles of the registered
images resulting from the application of ICP and TPS were then compared against those of
LCM-registered images. The use of these three measures of accuracy aims to provide a
comprehensive assessment of the quality of the registered images.

The Dice coefficient describes the amount of overlap between the co-registered images,
whereas TRE provides a more localized measure of how well the optimal transformation obtained
from each method aligns the control points. In the 2D case, TRE was computed as the distance
between the location of the transformed landmark with localization error from its correct location.

A robust image registration method not only provides good image overlaps but also preserves
the shape (curvature) of the reference image. Recall that the central idea behind the landmark
detection method discussed in Sec. 4.2 used interior angles to characterize the curvature at a point:
a small interior angle signified a point of high curvature. For this reason, we calculated the differ-
ence in the interior angle measurement at each transformed template point where a localization
error was introduced and its corresponding interior angle on the reference image. A smaller differ-
ence implied that the registration method closely captured the target local curvature.

4.4.2 3D Analog of LCM registration for cardiac volumes

The proposed model was modified to accommodate the registration of the same set of 3D cardiac
images used in Refs. 12 and 26.

Surface-approximating landmarks were detected prior to LCM registration. In every sam-
pling slice, points along the free wall of the RV, the interventricular septum, and the left ven-
tricular myocardium were chosen based on their location with respect to points of maximum
curvature within the short-axis slice as discussed in Sec. 4.2 [see also Figs. 2(b) and 2(c)].

Note that connecting adjacent landmarks resulted to the formation of approximate myo-
cardial contours that resembled the latitude and longitude of the Earth’s lower hemisphere
[Fig. 3(a)]. This meant that each approximate landmark could be associated with two vectors:
one parallel to the short axis of the heart (vHor), and the other extending from the approximate
landmark to its corresponding point in the next sampling slice (vVert). Thus, given L surface-
approximating landmarks, we defined the 3D analog of the contour-matching term C of the pro-
posed LCM model [Eq. (4)] specifically for our cardiac dataset as

Fig. 3 Landmark and surface-matching (LCM) model requisites. (a) Details of the required setup
for 3D LCM registration: heart with longitudinal and latitudinal vectors at each surface point.
(b), (c) Actual LCM setup for two hearts in the dataset with latitudinal and longitudinal segments
connecting adjacent surface points with the repeatable landmarks P1, P2, and ALV.
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EQ-TARGET;temp:intralink-;e005;116;735C½θ� ¼
XL
j¼1

1

2
½1 − ðvHor½θðt

�
jÞ� · vHor½r�j�Þ

2� þ 1

2
½1 − ðvVert½θðt

�
jÞ� · vVert½r�j�Þ

2�: (5)

Aside from calculating the improvement of image overlap in terms of Dice coefficients, we
computed the average TRE with respect to the three repeatable cardiac landmarks, namely the
left ventricular apex ALV, and the two right ventriculo-septal junctions P1 and P2 [Figs. 3(b)–
3(c)]. Similar to the 2D experiments, we compared the quality of LCM- versus ICP- and TPS-
registered images.

5 Results

5.1 2D LCM Registration

The results of the first set of experiments are displayed in Fig. 4(a). Imposing only a few hard
constraints in TPS registration produced images where the fingers were slightly bent. K ¼ 11

exact landmarks were used in experiment 1.
Next, 55 contour-approximating landmarks were used as exact landmarks in the TPS

interpolation problem to determine whether an increase in the number of exact landmark cor-
respondences results to an improvement in the registration accuracy. While the Dice similarity
coefficient did increase, irregularities were present in the transformed images. Notice that the

Fig. 4 Experiment 1. Comparison of TPS and LCM registration accuracy when no errors
are present in the landmark data. (a) Results of experiment 1a, (b) results of experiment 1b.
(c) LCM registration results. Pre-registration Dice = 0.64. (First column) Reference image with
exact and contour-approximating landmarks, (second column) registered image, (third column)
post-registration subtraction image jR − T ½θ�j, (fourth column) optimal transformation. Bending,
ridges along the finger contours, and bone deformities are present in the TPS-registered images
in (a) and (b). Notably, the LCM-registered image in (c) does not suffer from such deformities.
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metacarpophalangeal joints of the middle and ring fingers were distorted by the registration
transformation [Fig. 4(b)].

In contrast, LCM registration led to an improved Dice similarity coefficient compared to
experiment 1a and a more visually accurate transformed template [Fig. 4(c)]. More specifically,
there were no apparent deformities such as bent fingers and distorted bones in the LCM-
registered images.

Exemplary results from experiment 2 are provided in Fig. 5. Each column in said figure
corresponds to a set of experiments where a localization error was introduced to one of the 11
of the major landmarks. Displayed in the third and fifth rows are ICP registration results with
different numbers of landmarks, while the fourth and sixth rows are the TPS results for the same

Fig. 5 ICP versus TPS versus LCM comparisons for experiment 2, where a localization error was
introduced to t1; : : : ; t4. (a) Template image; (b) and (d) ICP-registered images, and (c) and (e)
TPS-registered images with K ¼ 11 and K ¼ 55 exact landmarks, respectively; (f) LCM-registered
images with α ¼ 1 × 104,K ¼ 11 exact and L ¼ 54 contour-approximating landmarks. Direct appli-
cation of ICP and TPS interpolation led to misregistrations. LCM mitigates the effect of the LM
error.
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landmark sets—this time treated as hard constraints. The last row shows LCM-registered images
for each experiment.

ICP failed to sufficiently align the images. The optimal ICP transformation was significantly
impacted by the introduction of a localization error to one of the major landmarks. Of the three
methods, it yielded the lowest image overlaps and the largest TREs. This is not surprising due
to the fact that ICP only provides rigid transformations, which are not suitable when the control
points move locally.

The TREs associated with different configurations for experiment 2 (e.g., registration method
used, location of major landmark error, number of contour-approximating points used, etc.) can
be found in Table 1. Observe that while increasing the number of exact landmark-matching
conditions for TPS sometimes led to smaller TREs, it did not necessarily guarantee a visually
accurate transformed template as demonstrated in row 6 of Fig. 5.

When analyzing the results of experiment 2 (with one landmark localization error), it is
important to note that TPS registration, at its core, is just an interpolation technique. Therefore,
blindly applying the technique would naturally result to misregistrations.

One way to quantify the amount of misregistration at every major landmark is by measuring
the interior angle at the transformed major landmark and comparing it against the interior angle
at its corresponding reference landmark (Fig. 6). A small difference in the angle measurements
implies that the local radius of curvature at the reference landmark was induced by the registra-
tion method.

The average post-registration differences in interior angle measurement from the three

methods were j∠R − ∠ICPj ¼ 16.9211 deg, j∠R − ∠TPSj ¼ 23.6723 deg, and j∠R − ∠LCMj ¼

Table 1 TREs resulting from experiment 2, where a localization error was introduced to one of
the major LMs ft ig11i¼1.

Experiment 2 TREs

Major landmark with error

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 Mean TRE

ICP ðK ¼ 11; L ¼ 0Þ 14.85 13.21 25.51 6.81 19.43 0.98 15.88 8.55 11.62 39.32 12.44 15.33

TPS ðK ¼ 11; L ¼ 0Þ 13.39 11.21 8.51 11.56 9.27 7.15 5.85 6.07 5.87 10.03 13.64 9.32

ICP ðK ¼ 55; L ¼ 0Þ 21.30 5.35 21.95 7.81 16.66 6.73 16.61 8.76 15.36 28.63 14.52 14.88

TPS ðK ¼ 55; L ¼ 0Þ 4.18 3.97 5.12 5.59 7.13 2.80 3.84 4.70 2.01 3.72 3.98 4.28

LCM ðK ¼ 11; L ¼ 54Þ 4.51 4.66 1.55 3.29 5.19 4.20 4.67 4.10 5.52 8.90 5.51 3.38

Fig. 6 Interior angle (in yellow) as a measure of the local curvature. (a) Reference, (b) ICP-
registered, (c) TPS-registered, and (d) LCM-registered images. A small difference in interior
angles with respect to the reference indicates that the local radius of curvature at the major
landmark was preserved by the registration method despite the presence of errors. The average
post-registration differences in interior angle measurement were j∠R − ∠ICPj ¼ 16.9211 deg,
j∠R − ∠TPSj ¼ 23.6723 deg, and j∠R − ∠LCMj ¼ 16.5685 deg.
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16.5685 deg. These results indicated that our method preserved the local curvature at the major
landmarks and mitigated the appearance of deformities in the transformed template better than the
benchmarks did.

In summary, the proposed LCM method outperformed the ICP and TPS methods. It resulted
in better post-registration Dice (PRD) image similarities, lower average TREs, and transformed
images without abnormalities even in the presence of a landmark error.

5.2 3D Analog of LCM Registration for Cardiac Volumes

We now present the results of the modified version of the LCM registration method specifically
designed for 3D cardiac registration.

Exemplary results are shown in Figs. 7–8, along with cross-sections of the template, regis-
tered templates, and their corresponding difference images with respect to the reference image.

Fig. 7 3D registration. (a)–(e) 3D view of the reference, template, ICP-, TPS-, and LCM-registered
images, (f) short-axis slices of the template and pre-registration difference images, (g) short-axis
slices of the ICP-transformed template and difference images with respect to the reference,
(h) short-axis slices of the TPS-transformed template and difference images with respect to the
reference, and (i) short-axis slices of the LCM-transformed template and difference images with
respect to the reference, α ¼ 0.1.
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Once again, rigid ICP transformations failed to properly register cardiac images from different
subjects [Figs. 7(g) and 8(g)]. TPS-registered images manifested deformities similar to those
observed in the 2D hands experiments. Such deformities were more noticeable when viewing
short-axis slices of the registered images, whose edges exhibited ridges even when the original
template edges were smooth [Figs. 7(h) and 8(h)]. In contrast, the registered images obtained
through LCM registration [Figs. 7(i) and 8(i)] were free from such deformities and instead had
smoother edges.

TREs were calculated and summarized in Table 2 to measure the performance of the 3D
LCMmodel when coupled with the proposed setup. The average pre-registration TRE decreased
from 27.12 to 0.01 mm after LCM registration. The maximum post-LCM TRE across all pos-
sible reference-template pairings was 0.0977 mm. We report a 112%-average improvement in
Dice similarity coefficients after implementing the proposed method.

Fig. 8 3D registration. (a)–(e) 3D view of the reference, template, ICP-, TPS-, and LCM-registered
images, (f) short-axis slices of the template and pre-registration difference images, (g) short-axis
slices of the ICP-transformed template and difference images with respect to the reference,
(h) short-axis slices of the TPS-transformed template and difference images with respect to the
reference, and (i) short-axis slices of the LCM-transformed template and difference images with
respect to the reference, α ¼ 0.1.
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6 Conclusions and Future Work

We proposed a new registration model that used contour-approximating landmarks to supple-
ment missing edge information in between defined landmarks. We demonstrated that the model
was able to circumvent drawbacks associated with the straightforward application of the ICP and
TPS registration techniques.

The LCM method was shown to increase the PRD similarity between the reference and reg-
istered template by improving the image overlap away from major landmarks. Consequently, this
reduced the appearance of the unnatural bending in image regions bordered by the data inter-
polation points (major landmark locations).

We then showed that naively increasing the number of interpolation conditions did not
always guarantee a clinically accurate registration result. Doing so resulted in an ill-conditioned
problem,27 made the ICP and TPS techniques computationally more expensive, and caused vis-
ual deformities in the transformed template. Meanwhile, solving the LCM registration problem
given a small number of exact landmarks and supplementary approximate contour information
provided accurate results.

The cardiac interest point and surface-approximating method proposed in Ref. 12, together
with a 3D extension of the 2D LCM model, provided a complete framework for cardiac image
registration that reduced the need to manually delineate anatomical landmarks and supplied a
dense collection of reference-template point clouds to facilitate image alignment.

Interior angle measurements were also employed to assess the performance of the registration
methods in terms of preserving the local curvature at landmarks with localization errors. We
found that TPS failed this last test, while the proposed method induced interior angles that were
closest to those in the reference image. This meant that it further mitigated the appearance of
deformities in the registered images and captured the desired local curvature.

Overall, the LCM model increases the flexibility of the TPS approach especially when only
a few repeatable landmarks can be defined, when defining too many landmarks leads to high
oscillations in the registration transformations, or when the identification of exact landmarks is
susceptible to human error.

We remark that our methods are currently limited to high-contrast medical images that can be
easily segmented through intensity thresholding. Future work includes the improvement of the
segmentation and classification steps (as in Refs. 28–30) to allow the proposed pipeline to
accommodate the co-registration of ex-vivo and in-vivo cardiovascular MR images. For instance,
such steps would be useful for computational applications employing predictive simulations that
would require the registration of our previously developed high-resolution ex-vivo DTI-based
cardiac fiber atlas26 to in-vivoMRI-based 3D heart models. In line with this, we also aim to make
landmark detection and segmentation in 3D cardiac images more robust by including an LV
chamber ellipsoid-fitting as a preprocessing step. This would allow the extension of the interest

Table 2 Comparison of PRD similarity and TREs. TREs are expressed in terms of the voxel
locations of the three repeatable landmarks shown in Fig. 3. Mean improvement refers to the
percentage change (in PRD/TRE) across all possible reference-template image pairings. For
PRD, a higher mean improvement is better. It means that image overlap increased after registra-
tion. On the other hand, a smaller post-registration TRE implies a better alignment of the repeat-
able landmarks.

Post-3D cardiac registration Dice and TRE

PRD (higher is better) Average post-reg. TRE (lower is better)

Mean SD Mean improvement Mean SD Mean improvement

ICP 0.54 0.22 0.22 23.46 13.29 −0.10

TPS 0.91 0.04 1.37 0 0 −1.0

LCM 0.83 0.08 1.12 0.01 0.01 −0.87
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point detection method to accommodate cardiac volumes that were imaged with a significant
tilt relative to the z-axis.
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