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Abstract

Background and Objective

Cardiac MR image-based predictive models integrating statistical atlases of

heart anatomy and fiber orientations can aid in better diagnosis of cardiovas-

cular disease, a major cause of death worldwide. Such atlases have been built

from diffusion tensor (DT) images and can be used in anisotropic models for

personalized computational electro-mechanical simulations when the fiber direc-

tions from DTI are not available. Here, we propose a framework for constructing

a statistical fiber atlas from high resolution ex-vivo DT images of porcine hearts.

Methods

High-resolution diffusion tensor images were acquired to determine the voxel-

wise preferential direction of diffusion. A mean cardiac volume was then gen-

erated through an iterative groupwise scheme. The final set of transformations

from the averaging process were then used to project the original DT fields to
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the same coordinate system as that of the mean and the final registered volumes,

thereby allowing the computation of an average DT field and the associated fiber

architecture.

Results

Multilevel elastic registration was able to effectively match the hearts to the

reference geometries, as demonstrated by the increase in the Jaccard indices

post-registration. This allowed the groupwise framework to converge to a rea-

sonable average geometry after a few iterations. Local orientations of diffusion

were preserved through the Finite Strain reorientation method implemented.

Finally, the leave-one-out cross-validation only resulted to small errors for the

mean FA and fiber length.

Conclusions

We successfully created the first cardiac fiber atlas for porcine hearts. In ad-

dition, we proposed a simple pipeline for building a statistical cardiac atlas

computed from a small database. A morphological average cardiac geometry

was computed via a computationally efficient algorithm without the need for

selecting landmarks. Meanwhile, the associated average fiber architecture was

built from reoriented DT fields that preserved the local fiber directions. Tensor

statistics extracted from a leave-one-out validation of the fiber atlas indicate

that constructing a statistical fiber atlas even from a small database of pig

hearts could accurately describe the fiber architecture of a healthy pig heart.

Keywords: cardiac atlas, MRI, diffusion tensor imaging, elastic registration,

tensor transformation

1. Introduction

The structural remodeling of the myocardial fibers is a main determinant of

cardiac function as electrical propagation within the heart is highly anisotropic
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and occurs fastest in the long axis of the fibers [1, 2, 3]. For instance, discontinu-

ities in the laminar arrangement of cardiac myocytes could trigger a nonuniform

and potentially asymmetric spread of electrical activation in the ventricles and

could ultimately lead to cardiac arrhythmia [4]. Thus, developing more insights

on the connections between fibers and the underlying physiological structure of

the heart could help in the diagnosis and treatment-planning in cardiovascular

diseases (CVD).

Until recently, myocardial fiber directions have only been mapped out through

histological slices [2, 5, 6, 7]. Diffusion tensor MR imaging now provides an al-

ternative and less invasive way to characterize fiber orientations in healthy state,

which can in turn be integrated into predictive image-based heart models [8, 9]

and statistical atlases [10, 11].

Statistical atlases of cardiac anatomy have been built from diffusion tensor

(DT) images of human, canine, and rat hearts [12, 7, 13]. Of particular interest

in this paper is constructing one from pig hearts, which could provide a good

alternative to human and canine hearts as the cardiac anatomies of the three

species are very similar [14].

In [7], they presented a detailed computational framework to build a statis-

tical fiber atlas from 9 ex-vivo canine hearts. Their framework started with a

groupwise registration of the anatomical MR images of the subjects, followed by

a transformation of associated diffusion tensor (DT) fields. They then proceeded

to compute the mean DT fields and measured the variability of eigenvalues and

eigenvectors, which indicate the magnitude and preferential direction of diffu-

sion. They also computed diffusion tensor statistics characterizing cardiac fiber

and laminar sheet orientations. Most importantly, they found good inter-species

stability of fiber orientations between the canine and human atlas.

Lombaert et al. [12] built the first atlas of the human heart from ex-vivo DT-

MRI acquisitions of 10 healthy hearts. Their pipeline involved segmentation of

myocardium and blood mass on each subject, construction of a morphological

atlas through an iterative reference update process coupled with Symmetric

Diffeomorphic Log-Demons on the unweighted images and myocardium masks,
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and deformation of tensor fields to the morphological atlas. They found that the

fiber orientation dispersion across the population concurred with results from

previous studies on mammals. Another atlas of the human heart, this time from

in-vivo acquisitions, was built by Toussaint et al. [10], where they used sparse

2D DTI slices and the Prolate Spheroidal model of the heart to create a 3D

reconstruction of the fiber architecture in the left ventricle.

In [13], rat and dog myocardial atlases (also obtained through Log Demons)

were used to estimate the Generalized Helicoid Model [15, 16] and to charac-

terize the properties of the local arrangement of myofibers via three biologically

meaningful curvature parameters. They concluded that the turning of fibers

within a transmural penetration from epicardium to endocardium is an impor-

tant descriptor of fiber bundle variability.

Nowadays, most translational cardiovascular experiments and associated

simulation-based predictive modeling are carried out using porcine models of

normal and diseased hearts [17, 18, 9]. Porcine heart models mimic very well

normal human heart anatomy, physiology and pathology, which motivates us to

develop a high resolution DTI-based porcine fiber atlas that could be beneficial

for various preclinical studies (i.e., from disease assessment to electro-mechanical

simulations).

In this paper, we present a simple pipeline employing anatomical and fiber

information from DTI to map out fiber directions in healthy pig hearts. To ac-

complish this, we build both a morphological and a fiber atlas through a combi-

nation of groupwise registration and diffusion tensor transformation techniques

that are both computationally efficient and effective in keeping the diffusion

information from each subject. The groupwise framework is coupled with a

pairwise registration algorithm that uses only intensity information to match

the subjects to the reference volumes, thereby eliminating the need for land-

marks and speeding up the computation of a representative cardiac volume. It

also provides the displacement fields necessary to fuse information from different

diffusion tensor fields and allows for analysis of diffusion properties within the

population.
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2. Methods

A diagram of our workflow is shown in Figure 1. High-resolution diffusion

tensor images were acquired to determine the voxel-wise preferential direction

of diffusion. A mean cardiac volume was then generated through an iterative

groupwise scheme. The final set of transformations from the averaging process

were then used to project the original DT fields to the same coordinate sys-

tem as that of the mean and the final registered volumes, thereby allowing the

computation of an average DT field and the associated fiber architecture.

Figure 1: Key steps to building a statistical cardiac fiber atlas. DT-MR

images were acquired, and then an groupwise registration was performed to normalize

the anatomical structures of the 8 subjects. The transformations registering the sub-

jects to the mean geometry were used to reorient the tensors associated to each heart,

thereby allowing the computation of the average DT field.

2.1. Data

Diffusion-weighted images (DWI) are generated by exciting water molecules

using different magnetic field gradients, which allow the estimation of a diffusion

tensor that characterizes the type, magnitude, and direction of diffusion at every

voxel [19, 20]. It is a symmetric positive definite matrix

D =


dxx dxy dxz

dxy dyy dyz

dxz dyz dzz

 (1)

whose entries along the main diagonal are diffusion coefficients measured along

the principal (x-, y-, and z-) axes. Meanwhile, the off-diagonal entries describe

the Brownian motion between each pair of principal directions.

At least six DWIs and an unweighted baseline image are generated to cal-

culate the entries of a diffusion tensor. For each DWI, the MR signal S is
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influenced by the proton density P , repetition and echo times TR and TE, sig-

nal decay times after excitation T1 and T2, the diffusion-weighting factor b, and

the diffusion coefficient d. It is given by

S = P
(

1− e−TR/T1

)
e−TE/T2e−bd. (2)

In Equation (2), the diffusion coefficient d represents the Brownian motion of

water molecules. It is obtained by comparing a weighted signal S1 against

an unweighted signal S0 while keeping all the parameters fixed, except for the

diffusion-weighting factors b0 = 0 and b1 > 0 of the two experiments, i.e.,

d = − ln

(
S1

S0

)
/ (b1 − b0) .

The value of d is calculated for each gradient direction applied to the MR image

and subsequently expressed as linear combination of the dij ’s in Equation (1).

This results to a system of equations whose solution gives the entries of the

diffusion tensor.

In our experiments, all high resolution DT MR images were acquired on

a 1.5T GE Signa Excite scanner in explanted healthy pig hearts (N = 8) at

sub-millimetric resolution by using the MR parameters TE = 35 ms, TR = 700

ms, echo train length = 2, b-value = 0 for the unweighted MR images and b

= 500-600 s/mm2 for the seven diffusion gradients, respectively [21]. Notably,

the total MR imaging time was approximately 10 hours per heart, which is not

feasible for in-vivo patient studies.

2.2. Pairwise Elastic Registration

Mathematically, the task of finding the optimal transformation y from a

subject T : Ω ⊂ Rn → R to a reference R : Ω ⊂ Rn → R is given by the

following minimization problem:

min
y
J [y] = D [T [y] ,R] + S [y] , (3)

where y : Ω→ Rn and T [y] is a transformed version of the subject.
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The above function consists of two parts. The distance measure D and

the regularization term S. The former quantifies the similarity between the

transformed version of the subject and the reference, while the latter serves to

add constraints to the solution space.

The distance measure used in our experiments was the Sum of Squared

Differences (SSD) given by

D [T [y] ,R] =
1

2

∫
Ω

(T [y](x)−R(x))
2
dx. (4)

The regularization term S[y] enforces the functional to lead to a unique min-

imizer. In our experiments, we used the elastic potential of the transformation

y for our regularization term. It is given by

S[y] =
1

2

∫
Ω

µ 〈∇y,∇y〉+ (λ+ µ)(∇ · y)2dx,

where λ and µ are the Lamé constants [22]. The elastic regularizer is the elastic

potential measuring the energy introduced by deforming an elastic material [23].

2.3. Groupwise Registration

Groupwise registration was used to normalize the cardiac measurements and

obtain an average cardiac volume. Every iteration in the groupwise algorithm

was initialized by the collection of pairwise transformations registering each

heart to the current reference geometry.

The reference geometries were updated as

Rn+1
mean(x) =

1

N

N∑
i=1

Ti
(
yni ◦ [ynmean]

−1
(x)
)
, (5)

where

• x denotes the original grid,

• N refers to the number of heart volumes Ti in the dataset,

• yni registers the ith heart to the nth reference, and
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• the mean of the transformations registering the hearts to the current ref-

erence is denoted by

ynmean =
1

N

N∑
i=1

yni .

2.4. Tensor Reorientation and Average Diffusion Tensor Field

The registration step modified the original frames of reference of the subjects

and projected them onto the same coordinate system. Naturally, the diffusion

tensors linked to these registered subjects had to be reoriented according to

these modifications to allow for subject-to-subject comparisons and, more im-

portantly, the computation of an average DT field.

Using the Finite Strain method, each diffusion tensor Di was transformed

using the rotation component of the associated local deformation gradient A =

RU obtained via polar decomposition. The transformed tensor D′i is given by

D′i = R ·Di ·RT .

Diffusion tensors are positive-definite matrices. Therefore, they do not form

a vector space and standard linear statistical techniques do not apply [24]. Log-

Euclidean metrics have been demonstrated to circumvent the absence of vector

space structure and incompatibility of the classical Euclidean framework on

tensors while preserving their positive-definiteness [25].

The mean Dlog of the reoriented tensors D′i for every voxel X is given by

Dlog(X) = exp

(
1

N

N∑
i=1

log (D′i (X))

)
. (6)

3. Experiments and Results

Multilevel elastic registration was performed to align the hearts to the cur-

rent reference volume. At every level, the optimization problem was solved via

Gauss-Newton (GN) method coupled with an Armijo line search.

Shown in Figure 2 are some results obtained after implementing the pairwise

registration method discussed in the previous section. In addition, we also cal-

culated the Jaccard similarity coefficients to quantify the similarity between two
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cardiac volumes. Given a subject T and a reference R, the Jaccard similarity

coefficient pre- and post-registration are defined as

J [T ,R] =
|T ∩ R|
|T ∪ R|

and J [T [y] ,R] =
|T [y] ∩R|
|T [y] ∪R|

,

respectively. The computed similarity indices are shown in Figure 1.

Meanwhile, groupwise registration was implemented to generate a sequence

of updates to the reference volume. In our experiments, an arbitrarily chosen

heart in the dataset served as the initial reference, and the reference volumes

converged to the average geometry shown in Figure 3(a). The algorithm was

terminated when the average change in intensity values for the iteration was

below 5% of the initial value. This error evolution of the groupwise algorithm

is shown in Figure 5(b).

All the transformations aligning the hearts to the final reference were then

used to reorient the tensors and project them onto a common frame of refer-

ence. Illustrated in Figure 4 are the original and transformed tensors of one of

the subjects. The following color-coding indicates the orientation of the ten-

sors: red=left-right, green=anterior-posterior, and blue=superior-inferior. The

average DT field was computed using Equation (6) following the tensor trans-

formations, and the associated average fiber architecture was visualized using

MedInria [26].

Finally, we performed a leave-one-out validation. The same pipeline was

implemented after excluding an arbitrarily chosen heart in the dataset. The

average DT field and fiber architecture obtained from 7 hearts is shown in Figure

5(a). In Figure 5(b), we plotted the convergence of the groupwise algorithm for

both experiments by measuring the mean change in signal intensities between

successive reference cardiac volumes. We also tracked the change in the mean

fractional anisotropy (FA) and fiber lengths in the mean geometries. Fractional

anisotropy is a scalar FA (0 ≤ FA ≤ 1) that quantifies the degree or type of

diffusion. It can be computed from the eigenvalues of the diffusion tensor D as
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follows:

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

,

where λ1, λ2, and λ3 are the eigenvalues arranged in order of decreasing magni-

tude. Diffusion is isotropic if λ1 ≈ λ2 ≈ λ3 and FA is close to zero. On the other

hand, diffusion is anisotropic if there is a dominant eigenvalue λ1 >> λ2 > λ3,

resulting to an FA-value that is closer to 1. The mean FA for the atlas con-

structed from 8 and 7 hearts, respectively, was 0.192861 and 0.191071. The

mean fiber lengths from the two experiments were 88.208 mm and 90.6473 mm.

More details can be found in Figure 5(c).

Pairwise and groupwise registration were implemented in MATLAB on a

machine running on Intel(R) Core(TM) i5-8250U CPU @ 1.80GHz with 16GB

of RAM. All tensors were reoriented and averaged using a workstation with

Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz and 16GB of RAM.

4. Discussion

Multilevel elastic registration was able to effectively match the hearts to the

reference geometries. As demonstrated by the Jaccard indices in Figure 2(b),

all the hearts generally started with relatively low similarities to the reference

geometries. The pairwise method we employed bumped the Jaccard indices up

to as much as 97.68%, which corresponds to a 208.60% increase in similarity.

The groupwise framework converged to a reasonable average geometry after

just eight iterations. The average change in intensity values between consecutive

reference geometries dropped from approximately 0.040 to 0.001, where the

range of intensities in the anatomical MR images was [0, 1].

Next, we observe the action of the Finite Strain method on the tensors.

An important aspect of tensor reorientation is that it should preserve the local

orientation of diffusion. As illustrated in Figure 4, the counterclockwise rotation

of tensors from the left ventricle (LV) to the endocardium on the septum and

from the epicardium to the endocardium on the LV free wall was retained after

reorienting the tensors using Finite Strain. This implies that the method is
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(a) Raw and registered versions of the hearts in the dataset

(b) Jaccard similarity coefficients

Figure 2: Pairwise 3D to 3D registration. (a) First Row: Center slices (short

axis) of the unregistered hearts, Second Row: Registered/Transformed versions of the

hearts, (b) Jaccard indices quantifying the similarity between the subjects and the

final reference volume before and after registration.

suited for registration of DT-MR images [7]. It follows that the computed

final average DT field and its corresponding fiber architecture picked up the

directional information on diffusion from all the subjects.

We remark that the leave-one-out cross-validation only resulted to small

errors of 0.93% and 2.77% for the mean FA and fiber length. This implies that

constructing a statistical fiber atlas even from a small database of pig hearts

could accurately describe the fiber architecture of a healthy pig heart.
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(a) (b)

Figure 3: Groupwise registration and average geometry. (a) The dataset and

the implementation diagram for one iteration of the groupwise registration scheme

and (b) superior and anterior views of the average geometry obtained from 8 porcine

hearts.

5. Conclusions

We successfully created the first cardiac fiber atlas for porcine hearts. In

addition, we proposed a simple pipeline for building a statistical cardiac atlas.

An average cardiac geometry was computed from a small database via a compu-

tationally efficient algorithm without the need for selecting landmarks. We also

reoriented the diffusion tensors of each heart while preserving their local fiber di-

rections and subsequently obtained the average diffusion tensor field and cardiac

fiber architecture. Future work will focus on obtaining more tensor statistics to

better understand the underlying fiber and laminar sheet structure, perform-

ing intra- and inter-species comparisons to check for correspondence of fiber

and laminar sheet orientations, and using the fiber atlas for electro-mechanical

simulations to predict cardiac function.
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(a) (b)

(c)

(d)

Figure 4: Preservation of tensor orientations, and tensor and fiber atlas.

(a) The original and (b) transformed DT field of one of the subjects. Zoomed in

sections show the tensors viewed transmurally from an area in the septum and the LV

free wall. Observe that the geometric features and the counter-clockwise rotation of

the diffusion tensor fields were preserved. (c) the average DT field and the associated

(d) average fiber architecture obtained from the 8 porcine hearts.
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Figure 5: Leave-One-Out validation. (a) Average DT field and fiber architecture

computed from 7 hearts, (b) error evolution of the groupwise scheme for the two

experiments given by average change in intensity between two consecutive reference

cardiac volumes, and (c) a stacked bar chart and table of values showing the mean

FA, statistics on fiber lengths (in mm), and error bars from the constructed atlases.
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