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Abstract. Cardiac MR imaging using multicontrast late enhancement
(MCLE) acquisition provides a way to identify myocardium infarct scar
and arrhythmia foci in the peri-infarct. In image-guided RF ablations of
ventricular arrhythmia and computational modeling of cardiac function,
construction of a 3D heart model is required but this is hampered by
the challenges in myocardium segmentation and slice misalignment in
MCLE images. Here we developed an approach for cine and MCLE reg-
istration, and MCLE scar-cine myocardium label fusion to build high-
fidelity 3D heart models. MCLE-cine image alignment was initialized
using a block-matching-based rigid registration approach followed by
a deformable registration refinement step. The deformable registration
approach employed a self similarity context descriptor for image simi-
larity measurements, optical flow as a transformation model and convex
optimization to derive the optimal solution. We applied the developed
approach to a preclinical dataset of 10 pigs with myocardium infarction
and evaluated the registration accuracy by comparing cine and MCLE
myocardium masks using Dice-similarity-coefficient (DSC) and average
symmetric surface distance (ASSD). For 10 pigs, we achieved a mean
DSC of 80.4± 7.8% and ASSD of 1.28± 0.47 mm for myocardium with a
mean runtime of 1.5 min for each dataset. These results suggest that the
developed approach provide the registration accuracy and computational
efficiency that may be suitable for clinical applications of cardiac MRI
that involve a cine and MCLE MRI registration component.
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1 Introduction

Ventricular arrhythmia associated with myocardial infarction is a leading cause
of death. Currently, arrhythmogenic foci are identified using surfacic and inva-
sive electrophysiological mapping. Cardiac MRI using contrast-enhanced acquisi-
tions, e.g., late gadolinium enhancement (LGE), provides a way to non-invasively
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identify the arrhythmogenic foci hidden deep in the myocardium. In image-
guided RF ablations of ventricular arrhythmogenic foci and computational mod-
eling of cardiac function, construction of a 3D heart model that depicts the
extent, location and transmurality of myocardial infarct within the myocardium
is urgently required. However, this is challenging because of the difficulties
in myocardium segmentation and slice misalignment in late enhancement MR
images. Cardiac MRI using cine acquisitions provide excellent visualization of
myocardium and cine-myocardium may be employed to facilitate a 3D heart
model construction but this requires cine-LGE MRI registration as a first step.

Limited efforts have been dedicated to cine-LGE MRI registration and most
of these efforts aimed to propagate cine myocardium contours to LGE images for
myocardium infarct scar heterogeneity characterization. For example, Chenoune
et al. [2] initialized 3D cine and LGE MR alignment using image orientation
and position information, and the rough alignments were refined using a rigid
registration approach that employed normalized mutual information metrics and
a Powell’s optimization scheme. Wei et al. [12] registered cine to LGE images
using an enhanced cross correlation-based constrained affine registration algo-
rithm followed by a B-spline free-form deformable registration using pattern
intensity. Tao et al. [11] performed global affine registration using Elastix tool-
box and then locally refined cine-LGE alignments by maximizing the correlation
between cine contour maps and LGE images.

Multicontrast late enhancement (MCLE) MRI represents a new method that
also permits myocardium infarct tissue characterization and has demonstrated
advantages over conventional LGE MRI [3]. Previous studies have shown that
MCLE provides better SNR, higher contrast for improved myocardium infarct
visualization and scar characterization. However, there are still known issues
associated with myocardium segmentation and slice misalignment that hamper
3D MCLE-based heart model construction. In this work, we provided an app-
roach for cine and MCLE cardiac MRI registration and cine myocardium-MCLE
scar label fusion for 3D heart model construction. As shown in Fig. 1, our devel-
oped approach employed a rigid registration step to initialize the cine-MCLE
alignment followed by a deformable registration component to refine the regis-
tration results. The resulting deformation field was used to transform MCLE-scar
and cine-myocardium masks for label fusion and 3D heart model construction.
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Fig. 1. Cine-MCLE registration and cine myocardium-MCLE scar fusion workflow.
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2 Methods

2.1 Cine-MCLE Rigid Registration: A Block Matching Scheme

Rigid or affine registrations are usually performed to initialize the rough align-
ment of images prior to finer deformable registrations. Most of the rigid and affine
registration methods involve finding a global relationship or correspondence of
the features (i.e., image signal intensities, landmarks) between two images and
maximizing the similarity between these features. Block matching represents a
popular technique and has been widely used for rigid (and affine) and non-rigid
image registration. Instead of measuring the global similarity between image
features with respect to the global transformation parameters, block matching
exploits local similarity measurements of image features and generates a local
transformation, from which a global transformation is derived [9].

In block matching-based rigid registration algorithms, the basic concept is
to divide the images into blocks and to find the block-wise correspondences.
The ith subimage or block Bi

m(x) in the moving image Im(x) is moved within
a search window and the similarity between block Bi

m(x) and the block in the
fixed image If (x) with coincident positions as Bi

m(x) is measured, i.e., using
sum of absolute differences, cross correlation or mutual information. The block
B̂i

f (x) that best matches Bi
m(x) is determined under the matching criterion,

resulting in a correspondence between the centre of Bi
m(x) and the centre of

B̂i
f (x). Depending on applications, the computational efficiency of the block-to-

block similarity measurements may be improved in a few ways, i.e., subsampling
the search window and features in the block for similarity measurements. To
facilitate robust estimation of the global transformation matrix T , outlier cor-
respondences (bad block match) were removed and the remainder were used for
a least trimmed squared regression. The correspondences with low regression
errors (top 50%) were used to re-estimate the global transformation T and this
process was iterated until convergence.

2.2 Cine-MCLE Deformable Registration Using Dual Optimization

From the perspective of energy minimization, deformable registration aims to
estimate plausible deformation filed φ(x) to align two images or to maximize the
similarity between a fixed image If (x) and a moving image Im(x), x ∈ Ω. In
cardiac cine and MCLE images, we noticed that the two images are not directly
comparable because of different contrast mechanisms [4]. Here we employed the
self similarity context (SSC) [7] instead of the original image signal intensities
for robust similarity measurements of cine and MCLE images. For ∀x ∈ Ω,
SSC(x) defines an eight-element vector each measuring the exponent of the
negative absolute differences of image signal intensities between x and its eight-
neighbour. Therefore, the similarity between If (x) and Im(x) can be measured
by computing the sum of absolute differences between SSCf (x) and SSCm(x)
under the deformation field φ(x). In addition, the desired “plausible” deforma-
tion field was constrained by regularizing the smoothness of φ(x) using total
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variation, i.e.,
∫

Ω
|∇φ(x)| dx. To this end, the deformable registration problem

can be formulated by minimizing the energy function E(φ) (subject to some
given deformation Φ(x) if there is) as follows:

E(φ) =
∫

Ω

∣
∣
∣SSCf (x) − SSCm(x + Φ + φ)

∣
∣
∣dx + α

3∑

d=1

∫

Ω

|∇(Φd + φd)| dx, (1)

where the first term measures the similarity between If (x) and Im(x) using the
respective SSC under the deformation field φ(x) (with given Φ(x) if there is),
and the second term evaluates the smoothness of the deformation field.

Direct minimization of E(φ) (1) is challenging because of the nonlinearity and
nonsmoothness of the energy function. Here we employed optical flow technique
[8] to decompose the nonlinear similarity measurement term following the fact
that f(x + t) ≈ f(x) + ∇f(x) · t, where t is the small displacement field between
f(x) and f(x + t), and can be obtained by estimating a series of incremental
deformation field t′(x), i.e., t(x) =

∑
i t′i(x) [6]. In addition, the nonsmooth

absolute function terms can be smoothed by introducing additional function, i.e.,
|g(x)| = max|h(x)|≤1 h(x) ·g(x). Furthermore, the total variation function can be
formulated as

∫ |∇q(x)| dx = max|p(x)|≤1

∫
divp(x)q(x)dx (see [5,6] for detailed

analyses). Therefore, we can equivalently rewrite the complicated minimization
problem Eq. (1) as follows:

max
|p|≤1,|q|≤α

min
φ

E(φ; p, q) :=
∫

Ω

(p · S0 +
3∑

d=1

Φd · div qd)dx

+
3∑

d=1

∫

Ω

φd · (div qd − p · ∂dS)dx, (2)

where S0 = SSCf (x)−SSCm(x+Φ) and S = SSCm(x+Φ). Clearly, minimiza-
tion of Eq. (2) over free variable φd(x) requires vanishing of (div qd −p ·∂dS), i.e.,
(div qd −p ·∂dS) = 0, d ∈ {1, 2, 3}. Alternatively, the deformation field φd(x) just
acted as the multiplier function of the respective constraints (div qd−p·∂dS) = 0,
d ∈ {1, 2, 3}, on top of the maximization component. Therefore, we developed
an augmented Lagrangian algorithm based on convex optimization theories [1]
to derive the optimal φd(x) as follows:

max
|p|≤1,|q|≤α

min
φ

E(φ; p, q) − c

2

3∑

d=1

‖div qd − p · ∂dS‖2, (3)

where c > 0 is a scale.
Clearly, the dual relationship between Eqs. (2) and (1) indicates that opti-

mization of the convex problem Eq. (2) solves the original registration problem
Eq. (1) equivalently but demonstrated greater simplicity in numerics than the
original non-linear non-convex formulation (1). In addition, the point-wise itera-
tive implementation of the registration algorithm Eq. (3) (see [6] for the details)
leads to high performance parallel implementation on a GPU for speed-up.
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3 Experiments and Results

3.1 Animal Preparation and MRI Acquisition

Myocardial infarction was generated in 10 pigs (weighing 20–25 kg) by occluding
either the left anterior descending artery (LAD) or the left circumflex (LCX)
artery. We inflated a balloon catheter in the LAD or LCX for ∼90 min followed
by reperfusion to create heterogeneous infarcts as previous described [10]. The
animal study was approved by our institution and the animals were allowed to
heal for ∼5 weeks prior to MR imaging.

MRI was performed at 1.5 T with a GE Signa Excite Scanner. Animals were
sedated and the respiration was controlled using a mechanical ventilator. For cine
MRI, 2D short-axis slices were acquired using a conventional segmented steady
state pulse sequence (SSFP, bandwidth = 125 KHz, number of phases = 20,
views per segment = 16, TR/TE/flip angle = 3.7 ms/1.6 ms/45◦, field of view =
23 × 23 cm2, image matrix = 256 × 256, NEX = 1, number of slices = 9–18, slice
thickness = 5 mm). MCLE images were obtained ∼15 min after a bolus injection
of 0.2 mmol/kg Gd-DPTA (Gd-DPTA Magnevist; Berlex Inc., Wayne, NJ, USA).
2D short-axis images were acquired using an inversion recovery-prepared b-SSFP
sequence at different inversion times ranging from 175 to 250 ms (bandwidth =
125 KHz, number of phases = 20, views per segment = 16, TR/TE/flip angle =
5.5 ms/1.9 ms/45◦, field of view = 25.6 × 25.6 cm2, image matrix = 256 × 256,
slice thickness = 5 mm).

3.2 Algorithm Implementation

MCLE scar heterogeneity was segmented slice-by-slice using a fuzzy-logic cluster-
ing approach [3]. For each dataset, one out of the 6–8 images at diastolic phases
with minimal cardiac motion was extracted for each slice and the extracted
phases for all the slices were stacked into a 3D MCLE image Im(x). Similarly,
1 out of the 20 phases of each cine slice that matches the shape of the heart
in MCLE was selected and all the selected phases were stacked into a 3D cine
image If (x). Prior to algorithm registration, 3D cine and MCLE images were
interpolated to isotropic voxel size of respective in-plane voxel width (∼0.9 mm
for cine and ∼1 mm for MCLE). Both the rigid and deformable registrations
were implemented in a coarse-to-fine manner (3 levels, scaling factors = {4, 2,
1}), whereby large displacements field was estimated in lower levels and smaller
displacements field in higher levels. The coarse-to-fine implementation provides
both registration accuracy and computational efficiency. For the deformable reg-
istration, the given (initial) deformation field Φ(x) in Eq. (1) at the lowest level
(scaling factor = 4) was set to 0 while for the other levels Φ(x) was initialized
using the final deformation from the preceding levels. The MCLE scar (infarct
core ∪ gray zone) were deformed and fused with cine myocardium masks.
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3.3 Validation

Cine and MCLE image registration accuracy was evaluated by comparing cine
and MCLE myocardium masks. In particular, a single observer manually seg-
mented the myocardium in cine slice-by-slice using ITK-SNAP and the seg-
mentation results were approved by an experienced observer with more than
10 years’ experience in cardiac MRI segmentation. MCLE images were seg-
mented slice-by-slice using a fuzzy-logic clustering approach [3]. For each slice,
6–8 images at diastolic phases with minimal cardiac motion were used for expo-
nential fitting to derive a T1∗ and steady-state (SS) signal intensity value for
each pixel. The generated T1∗-SS maps were classified into: infarct core (IC),
gray zone (GZ), healthy myocardium (HM) and blood (B). MCLE myocardium
masks were obtained by combining the IC, GZ and HM sub-regions. The
derived deformation field was used to warp the MCLE myocardium masks.
Cine-MCLE registration accuracy was quantified using Dice similarity coef-
ficient (DSC) and average symmetric surface distance (ASSD) of cine and
MCLE manual myocardium masks. Let Rc and Rm be the cine and deformed
MCLE myocardium mask, respectively. DSC is calculated as: 2(Rc∩Rm)

Rc+Rm
· 100%.

ASSD is given as: 1
2{ 1

|∂Rc|
∑

p∈∂Rc
d(p, ∂Rm)+ 1

|∂Rm|
∑

p∈∂Rm
d(p, ∂Rc)}, where

∑
p∈∂Rc

d(p, ∂Rm) represents the summation of the minimal distance d from the
points p in surface ∂Rc to surface ∂Rm and |∂Rc| the total number of points in
surface ∂Rc. In addition, we reported the runtime to evaluate the computational
efficiency of our approach.

3.4 Results

Figure 2 illustrates representative cine-MCLE image registration results. As
shown in Table 1, we achieved a mean DSC of 80.4±7.8% (range: 62.3%–86.7%)
and ASSD of 1.28 ± 0.47 mm (range: 0.82 mm–2.25 mm) by comparing the cine
and deformed MCLE myocardium masks in 10 pigs. Figure 3 shows example
fused MCLE scar (IC in green and GZ in yellow) and cine myocardium (HM in
blue).

All image analysis was performed in 3D space on a Linux Desktop (Ubuntu
14.04, 16G RAM, Inter(R) i7-3770, 3.4 GHz) with a NVIDIA graphics processing
unit (GeForce GTX TITAN BLACK). Given pre-segmented MCLE scar geome-
try, the developed fully automated registration approach required ∼45 s for the
rigid registration, ∼50 s for the deformable registration refinement, resulting in
an overall runtime of ∼1.5 min for each pig.

Table 1. Cine and MCLE registration accuracy measurements. (n = 10)

Pig ID 1 2 3 4 5 6 7 8 9 10 All

DSC (%) 86.7 86.6 76.2 84.8 84.0 84.5 83.5 62.3 72.4 82.6 80.4± 7.8

ASSD (mm) 0.82 0.84 1.85 1.27 0.93 1.00 1.26 2.25 1.53 1.05 1.28± 0.47
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CineMCLE Overlay CineMCLE Overlay

Fig. 2. Representative MCLE and cine MRI registration results. First and Fourth
columns: MCLE images and myocardium segmentation (purple contours); Second and
Fifth columns: cine images, cine (green) and deformed MCLE (purple) myocardium
contours; Third and Sixth columns: cine (green) and registered MCLE (purple) image
overlay (green or purple shows the differences and gray represents match of the two
images.) Basal to apex slices are shown from upper left to lower right. (Color figure
online)
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Fig. 3. A representative heart model built from cine-MCLE MRI registration and
MCLE scar-cine myocardium fusion. Short axis, long axis and 3D view of the heart
models are shown from left to right. (Blue: Cine myocardium, Green: MCLE infarct
core, Yellow: MCLE gray zone.) (Color figure online)

4 Discussion and Conclusions

Cine and MCLE MRI registration provides a way to combine the information
from the two imaging methods and holds great promise for improved cardio-
vascular disease care. In this preclinical study, we developed an approach for
automated cine and MCLE image registration and MCLE scar-cine myocardium
label fusion. For a group of 10 pigs, we demonstrated cine and MCLE MRI regis-
tration accuracy of 80.4±7.8% for DSC, 1.28±0.47 mm for ASSD by comparing
manual myocardium masks from the two images. The resulting MCLE-scar and
cine-myocardium mask fusion provides a way to build high fidelity 3D heart
models for image-guided RF ablation therapies and computational modeling of
cardiac electro-mechanical function.

Lastly, we acknowledge a number of limitations of this study. MCLE images
provide visualization of myocardium but the image quality is generally poor
for myocardium segmentation. In parallel, we observed non-smooth MCLE
myocardium surfaces due to the displacement between consecutive slices while
the myocardium in cine images are smoother. Therefore, we proposed to uti-
lize the smooth myocardium surfaces provided by cine images through MCLE-
cine registration. We note that in most cases the myocardium surfaces in cine
images are smooth but in some situations the cine myocardium masks present
discontinuities. In these situations, the non-smooth myocardium masks may be
improved by re-aligning the cine slices prior to MCLE-cine registration, i.e.,
using the block-matching-based rigid registration approach [9]. Regarding the
deformable registration method, our approach required point-wise similarity
measurements while other metrics, including global mutual information/cross
correlation, also demonstrate promising performance and are widely used in
various registration tasks. Unfortunately, these global similarity metrics are
not directly amenable to our registration framework further investigations, i.e.,
relaxing these global measure to point-wise measure are required. Currently, both
the cine and MCLE images were acquired in a segment-by-segment and slice-
by-slice manner under ECG-gating. However, it is still challenging to ensure the
alignment within and between slices due to imperfectness of ECG gating, leading
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to jagged myocardium contours along the long-axis direction. Recent develop-
ments in fast MR image acquisition methods including compressed sensing and
parallel imaging and the combination provide a way for rapid volumetric image
acquisition. We think these techniques may mitigate the within and between
slice misalignment issue and we are planning to implement fast cine and MCLE
volumetric image acquisitions in the future.
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