
Publisher Mobility in Distributed Publish/Subscribe Systems

Vinod Muthusamy†, Milenko Petrovic†, Dapeng Gao†, Hans-Arno Jacobsen†‡

Middleware Systems Research Group
†Department of Electrical and Computer Engineering

‡Department of Computer Science
University of Toronto

{vinod,petrovi,gilbert,jacobsen}@eecg.toronto.edu

Abstract

The decoupling of producers and consumers in the pub-
lish/subscribe paradigm lends itself well to the support of
mobile users who roam about the environment with in-
termittent network connectivity. This paper presents the
first quantitative evaluation of publisher mobility in a dis-
tributed publish/subscribe system. Our results indicate that
publisher mobility breaks a fundamental assumption of pub-
lish/subscribe systems and has a significant performance
impact. We formalize publisher mobility algorithms for a
distributed publish/subscribe system, and develop and eval-
uate optimizations to the mobile publisher algorithms.

1 Introduction

User-friendly tools such as blogs and wikis make it increas-
ingly easier for non-computer oriented users to publish in-
formation on the Internet, and the number of information
publishers has grown considerably. With advances to and
increasing pervasiveness of portable wireless devices with
Internet access, we foresee the publishing trend on the In-
ternet to intensify in the portable computing space.

The publish/subscribe (pub/sub) paradigm has been
studied in the context of selective information dissemina-
tion on the Internet [6, 8, 16]. Pub/Sub systems have a
number of desirable characteristics for mobile information
dissemination applications. They can efficiently filter and
disseminate large amounts of data to a large number of
users [8]. Also, they decouple communication, both in time
and space, allowing publishers and subscribers to commu-
nicate without having to be connected simultaneously or
having to know about each other. Therefore, the publish/
subscribe paradigm naturally supports mobile publishers.

Most existing research assumes that both publishers and
subscribers are not mobile [1, 2, 8]. While some research

has studied subscriber mobility [4, 5, 7], we are not aware of
any that examines publisher mobility. We will see that this
is important because publisher mobility breaks a fundamen-
tal assumption of pub/sub systems, namely that the num-
ber of advertisement messages is much less than other mes-
sages. The most important contributions in this paper are
the formalization of publisher mobility algorithms for dis-
tributed pub/sub systems, and the development and exper-
imental evaluatation of optimizations that reduce the costs
associated with mobile publishers.

This work is part of the ToPSS (Toronto Pub-
lish/Subscribe System) research projects [4, 10, 11, 13, 14];
especially the Mobile-ToPSS effort investigating support
for mobility in publish/subscribe systems.

Section 2 provides an overview of the pub/sub paradigm.
Section 3 describes the algorithm to support mobile pub-
lishers, and develops a number of optimizations to this al-
gorithm. Section 4 presents an experimental evaluation of
the mobility algorithm and proposed optimizations. Sec-
tion 5 discusses related work and puts our work in perspec-
tive. Finally, Section 6 concludes the paper and discusses
directions for future work.

2 Background

The pub/sub paradigm is effective at supporting informa-
tion dissemination applications [1, 2, 7, 8]. Information pro-
ducers (publishers) send information with publication mes-
sages, while information consumers (subscribers) express
their interest in publications using subscription messages.
The central component of a pub/sub system, thebroker,
records all subscriptions, and matches publications against
all subscriptions. On a match, the broker notifies the corre-
sponding subscribers. It is important to note that messages
from the publishers (publications) do not contain any ad-
dress; instead, they are routed through the system based on
their content (for a content-based system). The broker ar-

chitecture can be centralized or distributed.

Publish/subscribe systems can be based on the notion
of topics (or subjects), types, or content. In topic-based
pub/sub, clients can subscribe to several topics and re-
ceive notifications about all publications within these top-
ics. Type-basedpub/sub systems are similar to topic-based,
but use publication types instead of topics for matching.
Content-basedpub/sub systems improve expressiveness by
allowing subscriptions to contain complex queries on the
publication content. The subject space model [9] improves
the expressiveness of subscriptions by persisting both sub-
scriptions and publications.

Two main optimizations were introduced in the literature
in order to increase the performance of these forwarding
algorithms: subscription covering and advertisements [6].

Subscription Covering: Given two subscriptionss1 and
s2, s1 coverss2 if and only if all the publications that match
s2 also matchs1. When a brokerB receives a subscription
s, it will send it to its neighbours if and only if it has not
previously sent them another subscriptions′, that coverss.

Advertisements: Advertisements are used by publishers
to announce the set of publications they are going to pub-
lish. Advertisements look like subscriptions but are used to
build the routing path from the publishers to the interested
subscribers. An advertisementa determines a publication
e if and only if all attribute-value pairs match some predi-
cates in the advertisement. An advertisementa intersects a
subscriptions if and only if the intersection of the set of the
publications determined by the advertisementa and the set
of the publications that matchs is a non-empty set.

Upon receiving a subscription, a broker forwards it only
to neighbours that previously sent advertisements that in-
tersect the subscription. Thus, subscriptions are forwarded
only to brokers with potentially interesting publishers.

Distributed Pub/Sub: In a distributed broker architec-
ture, a network of brokers collaborate to route information
based on its content [6, 7, 2]. In one popular distributed
pub/sub algorithm [6], advertisements from publishers are
flooded throughout the network, and build a distributed ad-
vertisement tree. Subscriptions flow in the reverse path of
intersecting advertisement trees, and result in a distributed
multicast tree. Finally publications from a publisher follow
the reverse path of matching subscriptions (i.e. the multi-
cast tree) and are delivered to interested subscribers.

A fundamental assumption of pub/sub systems is that the
number of advertisements is much less than the number of
subscriptions which is much less than the number of publi-
cations. This justifies the flooding of advertisements. How-
ever, we will show that this assumption is not valid when
publishers are mobile.

t1

At Old Broker

t3

Disconnected At New Broker

t5t4

Publish

new events

Connect

(movein)

Disconnect

(moveout)

t2

Figure 1. Publisher mobility timeline

Algorithm receive(Advertisementa)
(∗ Store and foward an advertisement.∗)
1. (∗ Store in table∗)
2. inAds← inAds∪ (a, a.sender)
3.
4. (∗ Forward ad to neighbours∗)
5. for each neighbourn wheren 6= a.sender

6. do if ∃(ad, n, true) ∈ outAds wheread.covers(a)
7. then outAds←outAds∪ (a, n, false)
8. else outAds←outAds∪ (a, n, true)
9. send(a, n)
10.
11. (∗ Send matching subscriptions back towards ad∗)
12. for each(s, n) ∈ inSubs wheres.intersects(a) andn 6= a.sender

13. do if ∃(sub, n, true) ∈ outSubs wheresub.covers(s)
14. then outSubs←outSubs∪ (s, a.sender, false)
15. else outSubs←outSubs∪ (s, a.sender, true)
16. send(s, a.sender)

Figure 2. Advertisement handler

3 Publisher Mobility Algorithms

Client mobility is based on “movein” and “moveout” opera-
tions [7] that offer clients the ability to disconnect from and
reconnect to the system. To support disconnected operation
of subscribers, brokers must store publications for the sub-
scriber, and replay them to the subscriber when it reconnects
to the network. However, there are no special algorithms to
handle publisher mobility. Unlike disconnected operation
with subscribers, there is no information that the publisher
would have missed while disconnected. It is perhaps for
this reason that no new algorithms have been proposed for
handling publisher mobility. We will show in Section 4 why
this is a problem.

Below we describe the standard publisher mobility algo-
rithm as well as some optimizations that we propose.

Standard Algorithm: Figure 1 illustrates a timeline of a
mobile publisher. During periodt1, the publisher is con-
nected to Broker 1, and the publisher rooted advertisement
and multicast trees have been built. At the end of period
t1, the publisher disconnects from Broker 1 and reconnects
after periodt3 to Broker 2. Periodt2 is used by thePRE-
FETCHING optimization below. Periodt4 is required to
complete the reconnection phase, which involves rebuild-

Algorithm receive(Subscriptions)
(∗ Store and foward a subscription.∗)
1. (∗ Store in table∗)
2. inSubs← inSubs∪ (s, s.sender)
3.
4. (∗ Forward toward reverse path of advertisements∗)
5. for each(a, n) ∈ inAds wherea.intersects(s) anda.sender 6=

s.sender

6. do if ∃(sub, n, true) ∈ outSubs wheresub.covers(s)
7. then outSubs←outSubs∪ (s, a.sender, false)
8. else outSubs←outSubs∪ (s, a.sender, true)
9. send(s, a.sender)

Figure 3. Subscription handler

ing advertisement and multicast trees.
The objective of a publisher mobility algorithm is to re-

configure the advertisement and multicast trees to account
for publisher mobility. When the publisher disconnects
from it, Broker 1 will send an unadvertisement message to
initiate the teardown of the publisher rooted advertisement
tree, which will induce the teardown of corresponding mul-
ticast trees. This tree teardown occurs during periodt2 after
which there is no state associated with the publisher in the
system. At the end of periodt3 the publisher connects to
Broker 2. During periodt4 the advertisement and multicast
trees are rebuilt. It is this mobility induced tree teardown
and reconstruction that makes the assumption of few ad-
vertisements invalid in this context. Publications sent dur-
ing periodt4 may not be delivered to interested subscribers
since the multicast tree has not been rebuilt yet.

Note that in this algorithm, there is no way to know when
periodt4 is complete; Broker 2 does not know for certain
when all subscriptions that match the newly sent advertise-
ments have been received and the multicast tree has been re-
built. This is a fundamental problem arising from the decou-
pling of publishers and subscribers in the pub/sub model.
Since the length of periodt4 is unknown, we would like to
minimize this period so as to minimize the probability that
a publication sent soon after reconnection is not delivered
to an interested subscriber.

Each broker has aninAds table to store(ad, nodeid)
pairs, wheread is an advertisement received at a bro-
ker from neighbornodeid. The outAds table stores
(ad, nodeid, sent) tuples, wheread is an advertisement for-
warded by the broker to neighbornodeid, andsent is true
if ad actually was sent tonodeid. There are also corre-
spondinginSubs andoutSubs tables for subscriptions.
TheinAds (inSubs) table is used as a routing table for
the forwarding of subscriptions (publications). Figures 2
and 3 show pseudo-code for handling advertisements, and
subscriptions, respectively. Handling unadvertisementsand
unsubscriptions follows in a similar manner. Notice that
(un)advertisement propagation can induce (un)subscription
propagation. That is, the (de)construction of the advertise-
ment tree induces the (de)construction of the multicast tree.

Pefetching Algorithm: ThePREFETCHINGalgorithm ex-
ploits knowledge of future mobility patterns. It is similarto
theSTANDARD algorithm except that the advertisement and
multicast trees are rebuilt during periodt2 instead of period
t4. Therefore, the length of periodt4 is now zero, and any
publications sent immediately after reconnection are deliv-
ered to interested subscribers.

This algorithm has the advantage of hiding tree rebuild-
ing time from the publisher since it occurs while the pub-
lisher is disconnected. Also, since the old tree (at Broker
1) is torn down concurrently with the building of the new
tree (at Broker 2), it may occur that the new tree grafts onto
the old tree before it is torn down, obviating the need to tear
down the old tree completely. TheDELAYED algorithm be-
low tries to force this case, which only occurs by chance in
thePREFETCHINGalgorithm.

Proxy Algorithm: The assumption here is that publishers
tend to move within a restricted area. For example, a taxi
driver may service only certain regions of a city. (The taxi
may be publishing location updates to a dispatcher or po-
tential customers.) ThePROXY algorithm assigns a set of
brokers to act as proxies for the publisher. These proxies
always maintain a tree for the publisher. This way, there
is no teardown or rebuilding of the tree when the publisher
disconnects from or connects to one of its proxies.

Delayed Algorithm: The DELAYED algorithm exploits
the fact that the old tree (rooted at Broker 1) and the new
tree (rooted at Broker 2) have significant overlap. The tear-
down of the old tree at Broker 1 is delayed for some time
after moveout, to allow the publisher to reconnect to another
broker, and graft the new publication tree to the old one. Af-
ter the delay, the old broker tears down only the extraneous
portions of the combined tree.

3.1 Discussion

It should be noted that these optimizations make minimal
assumptions about the underlying system. They can be used
with any type of distributed pub/sub system. Moreover,
the optimizations can be combined. For example,PRE-
FETCHING can be combined withDELAYED to potentially
achieve even better performance.

It is instructive to notice that theSTANDARD algorithm
does not distinguish between a moving publisher and a pub-
lisher that leaves and enters the system. Therefore it dis-
cards all state (advertisement and multicast trees) associated
with a publisher on moveout, and must completely rebuild
it on movein. Our optimizations address this issue.

Since publisher mobility causes expensive reconstruc-
tion of advertisement and multicast trees, it may be tempt-
ing to eliminate advertisement flooding and flood subscrip-
tions instead. However, subscribers typically outnumber
publishers, so the savings in publisher mobility induced tree

rebuilding cost do not justify subscription flooding. Fur-
thermore, subscriber mobility will now cause multicast tree
reconstruction; this reconstruction is much more expensive
than when advertisements are used, since the multicast trees
now span the whole network rather than being a minimal
tree from the subscriber to interesting publishers.

4 Evaluation

Below we describe our experimental setup and metrics, and
then discuss the experiments in detail.

4.1 Methodology

We performed all our experiments using the ns2 network
simulator [3], extended with theSTANDARD mobility algo-
rithm and the three optimizations presented in Section 3.

The experiments simulate a city-wide pub/sub scenario,
with a network of 85 brokers organized in a tree of height 4
and degree 4. While our algorithms work in general graph
topologies, we feel a tree topology is common in metropoli-
tan area networks. Conceptually, the 64 leaf brokers in this
topology are distributed across a city, and publishers and
subscribers connect to one of these 64 brokers. Each broker
services a 0.5km range, so the 64 brokers service a 32km
wide city. The brokers are communicating with each other
over a 256kbps link with 10ms latency. The clients have a
128kbps link to the brokers.

Each publisher is assigned a random unique publica-
tion and an advertisement that is identical to its publica-
tion. (Unique advertisements are justifiable in content-
based pub/sub because advertisements can be very expres-
sive and customized for each publisher.) Each subscriber
randomly subscribes to one of the publications assigned to
a publisher. Unless otherwise stated, there are 50 publishers
and 500 subscribers in the system.

The publishers randomly move at speeds of 5km/h
(walking), 50km/h (city driving) or 100km/h (highway driv-
ing). Publishers connect and disconnect to adjacent brokers
as they move, and the disconnection time when moving be-
tween brokers is 3 seconds. We keep the subscribers sta-
tionary in order to isolate the effects of publisher mobility.
All clients connect to a random leaf broker during a warm-
up phase, during which no measurements are made. Sub-
scribers subscribe immediately after connecting to a broker
and never unsubscribe. Publishers start publishing 200ms
after connecting, and publish a total of 20 publications over
a 4 second period. These publications are used to probe the
system to determine when tree rebuilding is complete.

For thePROXY algorithm, the five closest brokers to the
broker to which a publisher first connects are assigned as
its proxies. For theDELAYED algorithm, the previous bro-
ker tears down the tree 10s after the publisher disconnects.

PREFETCHINGassumes perfect mobility prediction.

4.2 Metrics

The cost of supporting mobile publishers is measured in
terms of the effects on the network and the clients. The
network effect is measured as message load introduced by
tree rebuilding. Publications are not counted as part of tree
rebuilding cost, only (un)advertisements, (un)subscriptions,
and any other control messages. Each hop a message travels
is counted. The effect on the user is measured as the aver-
age time from the publication of an event to its delivery at a
subscriber. Note that a publication att1 that is delivered to
two subscribers att2 andt3 is counted as two delivery times
of t2 − t1 andt3 − t1.

We measure the tree rebuilding speed indirectly. Recall
that it is difficult to determine when a tree has been rebuilt.
Instead, we exploit the fact that when the tree is rebuilt, all
publications will be delivered to all interested subscribers.
We count the delivery of probe publications sent after re-
connection. The faster the tree is rebuilt, the sooner events
get delivered to all interested subscribers.

The state at the brokers is measured in terms of the num-
ber of entries in its advertisement and subscription tables.

4.3 Experiments

Publisher Scalability: In this experiment we evaluate the
scalability of the algorithms with an increasing number of
publishers (50, 100, 150, 200, 250), and hence an increase
in aggregate mobility.

Figure 4 shows the tree building message cost for the
four algorithms. The cost of tree rebuilding grows approxi-
mately linearly for the algorithms. However, there is a sub-
stantial difference in the cost of the algorithms. TheSTAN-
DARD and PREFETCHINGalgorithms have more than ten
times the message cost as thePROXY andDELAYED algo-
rithms. STANDARD performs poorly because every move-
out (movein) causes the whole advertisement and multicast
trees for the moving publisher to be torn down (rebuilt). The
same is true forPREFETCHINGbut with an additional cost
of having the old broker inform the new broker to start re-
building the tree. ThereforePREFETCHINGis not building
the new tree fast enough to graft onto the old tree that is
being torn down. On the other hand,PROXY andDELAYED

both graft onto existing trees. The reasonDELAYED per-
forms better thanPROXY is because inDELAYED the old
tree is rooted at a nearby broker (recall that the publishers
move along adjacent brokers), so the distance an advertise-
ment must travel to graft onto an existing tree is short. In
PROXY, the distance to the old tree depends on the position
of the publisher relative to its fixed proxies.

All the algorithms require the brokers to maintain about
the same state, withPROXY needing slightly more state.

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250

M
es

sa
ge

s
(x

10
00

)

Publishers

standard
prefetch

proxy
delayed

Figure 4. Tree rebuilding

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
el

iv
er

y
ra

tio
 (

%
)

Publication time after movein (s)

standard
prefetch

proxy
delayed

Figure 5. Probe delivery (250 publishers)

This state increases approximately linearly with increasing
publishers. Due to the nature of our topology and workload,
brokers closer to the root need to maintain more state. This
may not be the case with different workloads or topologies.

We now look at the subscriber perceived cost. The sub-
scriber is concerned with timely delivery of publications it
is interested in. Figure 5 shows the delivery ratio of each
probe publication. Theith probe is theith publication sent
after connecting to a broker. Recall that probes are sent ev-
ery 200ms. We expect that probes shortly after reconnection
will not be delivered to all subscribers since the multicast
tree is still being rebuilt. We see that theSTANDARD algo-
rithm takes nearly 4 seconds to rebuild the multicast tree.
At the other extreme,PREFETCHINGtakes almost no time
to rebuild the tree. This is becausePREFETCHINGinitiates
tree rebuilding when the publisher disconnects from the pre-
vious broker. TheDELAYED algorithm also rebuilds the tree
relatively quickly.

A limitation of using probes to determine tree rebuilding
time is that the probes are loading the network while tree
reconstruction is taking place, and slow down tree recon-
struction. We plan to address this in future work.

In Figure 6, we see a cumulative distribution function of

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Delivery latency (s)

standard
prefetch

proxy
delayed

Figure 6. Delivery time (250 publishers)

the delay between a publication and its delivery to an in-
terested subscriber, in the case of 250 publishers. The me-
dian publication is delivered in about 0.3 seconds. There
is not much difference among the algorithms. The differ-
ences are due to congestion caused by tree rebuilding traf-
fic. Hence, theSTANDARD algorithm, which has a high tree
building cost (as seen in Figure 4) has the worst delivery
latency. Note, whilePREFETCHINGhas a higher rebuilding
cost thanSTANDARD, its cost occurs while the publisher is
disconnected; tree rebuilding is essentially complete when
the publisher reconnects (3s after disconnection in this ex-
periment) and hencePREFETCHINGhas the lowest delivery
latency.

It is interesting to note that whilePREFETCHINGgives
the best performance to subscribers (in terms of delivery
rate and latency), it imposes the highest cost on the network.

Subscriber Scalability: We ran simulations with 500,
2500, and 5000 subscribers (all with 50 publishers) to mea-
sure performance as the number of participants in a multi-
cast tree increases. Our results show that there is little im-
pact in the delivery ratio and minimal increase in the tree re-
building cost as the number of subscribers increases. This is
because the second phase of the tree rebuilding (propagat-
ing subscriptions) can support additional subscribers with
decreasing incremental cost due to the multicast nature of
the subscription tree.

Publisher Mobility Speed: This experiment varies the
speed of the publishers from 25km/h to 100km/h in 25km/h
increments. Our results indicate that faster mobility leads
to larger tree rebuilding cost, withSTANDARD and PRE-
FETCHING suffering from the steepest increases. However,
an interesting phenomenon occurs where theSTANDARD al-
gorithm’s delivery ratio (Figure 7)increaseswith speed.
Similarly, the delivery latency (Figure 8) decreases with
faster mobility for all the algorithms. We are not sure why
this is occurring, and plan to investigate this in the future.

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 20 30 40 50 60 70 80 90 100

D
el

iv
er

y
ra

tio
 (

%
)

Speed (km/h)

standard
prefetch

proxy
delayed

Figure 7. Delivery ratio (speed)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 20 30 40 50 60 70 80 90 100

D
el

iv
er

y
la

te
nc

y
(s

)

Speed (km/h)

standard
prefetch

proxy
delayed

Figure 8. Delivery time (speed)

Proxy Locality: In this experiment we test how sensitive
thePROXY algorithm is to choosing a good set of proxy bro-
kers. Initially, publishers only move back and forth among
their five adjacent proxy brokers. This may be the case of a
policeman patrolling a few city blocks repeatedly. (The po-
liceman may be publishing status reports, calls for backup,
or accident report information.) Then we vary how much
the publisher may overshoot this proxy set. An overshoot
of δ means that the publisher may moveδ brokers past its
proxy set. As expected, our results show that tree rebuild-
ing cost increases withδ. Incidentally, this cost stabilizes at
δ = 5. This is because our relatively small topology means
that the length of the path that an advertisement takes to
graft onto an existing static tree maintained by a proxy bro-
ker is limited. In general, we saw thatPROXY is not very
sensitive toδ. The message load, delivery time, delivery
latency, and tree building time hardly change.

Publication Locality: In this experiment we vary the de-
gree of similarity of publications in the system. We achieve
x% locality by havingx% of the publishers publish the
same publication and the remaining publish different and
unique publications. Our results indicate that with enough
similarly between publications (90%), theSTANDARD al-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
es

sa
ge

s
(1

00
0s

)

Publication locality (%)

standard
prefetch

proxy
delayed

Figure 9. Tree rebuilding (locality)

 0.28

 0.30

 0.32

 0.34

 0.36

 0.38

 0.40

 0.42

 0.44

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
el

iv
er

y
la

te
nc

y
(s

)

Publication locality (%)

standard
prefetch

proxy
delayed

Figure 10. Delivery time (locality)

gorithm’s performance approaches that ofDELAYED and
PROXY. Figures 9 and 10 show this is the case for the tree
rebuilding cost and delivery time, respectively.

5 Related Work

To the best of our knowledge we are the first to evaluate the
cost of mobile publishers in pub/sub middleware.

SIENA [5], JEDI [7], ELVIN [15], and M-ToPSS [4] add
extensions to support mobile subscribers. The problem with
mobile subscribers is the efficient storage and replay of pub-
lications missed by a disconnected subscriber. In this pa-
per, however, we examine algorithms for supporting mobile
publishers.

Mobile IP [12] uses the concept of a home agent to
handle mobile clients. Each IP client has a home agent
that mediates communication between the roaming client
and other nodes. While this approach eliminates tree re-
construction by maintaining a tree at the home agent, M-
ToPSS [4] shows that such an approach causes excessive
traffic, because the gains of a multicast tree are lost to the
unicast traffic from the mobile client to the home agent.

6 Conclusions and Future Work

The number of mobile information producers will increase
in the future. However, there has been no evaluation of mo-
bile publishers in pub/sub systems. This is important be-
cause mobility breaks a fundamental pub/sub assumption,
namely that the advertisement load on the system is very
low.

Our evaluation supports this intuition: the currentSTAN-
DARD mobility algorithm causes excessive state reconstruc-
tion traffic. TheDELAYED andPROXY algorithms perform
well in terms of network load and user perceived perfor-
mance. UsuallyDELAYED is preferable because, while it
performs only slightly better thanPROXY, it does not re-
quire the additional task of assigning proxies to a publisher.
Interestingly,PREFETCHINGhas the highest load on the net-
work but delivers the best performance to the user. We can-
not recommend theSTANDARD algorithm in any case.

For future work, we would like to vary more parame-
ters and develop more optimizations. Furthermore, we plan
to develop a less intrusive technique to determine tree re-
building time, and try to understand why increasing mobil-
ity speed improves performance in some cases. In addition,
we hope to study the impact when both publishers and sub-
scribers are mobile.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley,
and T. D. Chandra. Matching events in a content-based sub-
scription system. InSymposium on Principles of Distributed
Computing, pages 53–61. ACM Press, 1999.

[2] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao,
R. E. Strom, and D. C. Sturman. An efficient multicast pro-
tocol for content-based publish-subscribe systems. InIn-
ternational Conference on Distributed Computing Systems,
1999.

[3] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, P.H.
A. Helmy, S. Mc-Canne, K. Varadhan, Y. Xu, and H. Yu.
Advances in network simulation.IEEE Computer, 33:59–
67, May 2000.

[4] I. Burcea, H.-A. Jacobsen, E. de Lara, V. Muthusamy, and
M. Petrovic. Disconnected operation in publish/subscribe
middleware. InIEEE Mobile Data Management, pages 39–
50, 2004.

[5] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and
evaluation of a support service for mobile, wireless pub-
lish/subscribe applications.IEEE Transactions on Software
Engineering, 29(12):1059–1071, Dec. 2003.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service.ACM
Transactions on Computer Systems, 19(3):332–383, Aug.
2001.

[7] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-
based infrastructure and its application to the development

of the OPSS WFMS.IEEE Transactions on Software Engi-
neering, 27(9), 2001.

[8] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation for
very fast publish/subscribe systems. volume 30, pages 115–
126. ACM Press, 2001.

[9] H. K. Y. Leung. Subject space: A state-persistent model for
publish/subscribe systems. InProceedings of the 2002 con-
ference of the Centre for Advanced Studies on Collaborative
research, page 7. IBM Press, 2002.

[10] G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to
routing, covering and merging in publish/subscribe systems
based on modified binary decision diagrams.International
Conference on Distributed Computing Systems (ICDCS’05).

[11] H. Liu and H.-A. Jacobsen. Modeling uncertainties in Pub-
lish/Subscribe System. InIn Proceedings of ICDE, 2004.

[12] C. E. Perkins and D. B. Johnson. Mobility support in IPv6.
In MOBICOM, 1996.

[13] M. Petrovic, I. Burcea, and H.-A. Jacobsen. S-ToPSS - a
semantic publish/subscribe system. InVery Large Databases
(VLDB’03), Berlin, Germany, September 2003.

[14] M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS - fast fil-
tering of graph-based metadata. Inthe 14th International
World Wide Web Conference (WWW2005, Chiba, Japan,
May 2005.

[15] P. Sutton, R. Arkins, and B. Segall. Supporting discon-
nectedness - transparent information delivery for mobile and
invisible computing. InCCGrid 2001 IEEE International
Symposium on Cluster Computing and the Grid, 2001.

[16] Talarian Inc. Publish-subscribe middleware helps di-
rect traffic of Olympic proportions. http://messageq.
ebizq.net/communicationsmiddleware/talarian2.html.

