
Efficient and Scalable Filtering of

Graph-based Metadata

Haifeng Liu

Department of Computer Science

University of Toronto

Milenko Petrovic

Department of Computer Engineering

University of Toronto

Hans-Arno Jacobsen

Department of Computer Engineering

Department of Computer Science

University of Toronto

Abstract

RDF Site Summaries constitute an application of RDF on the Web that has con-
siderably grown in popularity. However, the way RSS systems operate today limits
their scalability. Current RSS feed arregators follow a pull-based architecture model,
which is not going to scale with the increasing number of RSS feeds becoming avail-
able on the Web. In this paper we introduce G-ToPSS, a scalable publish/subscribe
system for selective information dissemination. G-ToPSS only sends newly updated
information to the interested user and follows a push-based architecture model.
G-ToPSS is particularly well suited for applications that deal with large-volume
content distribution from diverse sources. G-ToPSS allows use of an ontology as a
way to provide additional information about the data disseminated. We have imple-
mented and experimentally evaluated G-ToPSS and we provide results demonstrat-
ing its scalability compared to alternative approaches. In addition, we describe an
application of G-ToPSS and RSS to a Web-based content management system that
provides an expressive, efficient, and convenient update notification dissemination
system.

Key words: publish/subscribe, content-based routing, RDF, information
dissemination, graph matching

Preprint submitted to Elsevier Science 15 September 2005

1 Introduction

The amount of information on the Internet is continuously increasing. It is
becoming increasingly easier for non-computer oriented users to publish infor-
mation on the Internet because of myriads of user-friendly tools that now exist.
For example, it is very easy for a user to keep an “online” diary (e.g., blogs)
using a variety of tools. Collaboration tools such as a wiki, allow users to
quickly publish information from within a web browser, without requiring ac-
cess or knowledge of any additional applications. Finally, applications for web
page authoring are becoming ever so easier to use. As a result of the advances
in web page authoring tools, the number of information publishers has grown
considerably.

RDF Site Summary (RSS) is a metadata language developed by the W3C
for describing content changes. 1 RSS is so versatile that any kind of con-
tent changes can be described (e.g., web site modifications, wiki updates, and
source code versioning histories). A RSS feed is a stream of RSS metadata
that tracks changes for a particular content over time.

Typically, users apply a tool, which can read RSS feeds, to periodically check
a number of RSS feeds by pulling RSS files from a web site. When RSS feeds
indicate that the content has been updated, the user is informed. The user is
expected to explicitly specify which RSS feeds to monitor.

A RSS feed aggregator is a service that monitors large numbers of feeds. It
allows users to subscribe to the content that they are interested in without
explicitly specifying which RSS feeds the content is coming from. This is par-
ticularly convenient for the user, since the number of RSS feeds that can carry
information of interest to the user can be very large. In addition, a user does
not have the resources to monitor large number of feeds and hence the user
can easily miss information of interest.

RSS feed aggregators use pull-based architectures, where the aggregator pulls
RSS feeds from a web site that hosts the feed. As the number of feeds on the
web proliferates (e.g., due to ease of publishing information on the web), this
architecture is not going to scale. It not only consumes unnecessary resources,
but also becomes difficult to ensure timely delivery of updates.

Figure 1 illustrates the scalability problem. Multiple RSS aggregators (i.e., per-
sonal (desktop) aggregators, online news aggregators, and server side aggrega-

Email addresses: hfliu@cs.toronto.edu (Haifeng Liu),
petrovi@eecg.toronto.edu (Milenko Petrovic), jacobsen@eecg.toronto.edu
(Hans-Arno Jacobsen).
1 http://web.resource.org/rss/1.0/spec

2

popular RSS feed

RSS aggregators

new content
continuously poll
for new content

Fig. 1. Current RSS dissemination architecture

subscribe to
new content

new content
notification about

RSS aggregators

popular RSS feed

G−ToPSS Broker

publications about new content

Fig. 2. G-ToPSS RSS dissemination architecture

tors) poll numerous RSS feed sites, each. Anecdotal evidence suggests that the
way RSS dissemination is currently done can severely affect the performance
of web sites hosting popular RSS feeds. 2

In this paper, we describe G-ToPSS 3 , a graph-based publish/subscribe ar-
chitecture for dissemination of RDF data. This paper extends our previous
work [22] with a presentation of a detailed application case study initially
described in [21]. The G-ToPSS system provides fast filtering of RDF meta-
data such as RSS publications, as well as timely delivery of publications to
interested subscribers in a scalable manner. Figure 3 shows the architecture of
G-ToPSS. The new information system architecture significantly reduces the
number of unnecessary polls of RSS feed sites. New content are only sent back
to the interested aggregator, not all (see Figure 2).

RSS is just one application that can benefit from this architecture. Another
application that is increasingly becoming important is content management
in the enterprise. PDF is the de facto standard for representing documents in
electronic form while preserving their original formatting. RDF metadata can

2 InfoWorld RSS growing pains, July 16, 2004, RSS Traffic Burdens Publisher’s
Servers, July 19, 2004
3 G-ToPSS is a part of the Toronto Publish/Subscribe System (ToPSS) research
effort, which comprises a large number of publish/subscribe research projects,
such as M-ToPSS (mobility-aware) [3,26,23,19], S-ToPSS (semantic matching) [20],
A-ToPSS (approximate matching) [18], L-ToPSS (location-based matching) [26],
PADRES (federated p/s) [13,16,17] and others.

3

RSS browser G−ToPSS Broker RSS feed
publications

publication of interests

subscriptions

(GQL)

(update RSS feed)

Fig. 3. RDF Site Summary Dissemination System based on G-ToPSS

be embedded in PDF documents, which aids in document management. G-
ToPSS provides an architecture that could be applied to content-based routing
to disseminate relevant documents throughout a wide area enterprise network.

In addition, [11] describes a number of uses cases for RDF data access, many
of which can directly benefit from the described architecture. Some exam-
ples include “finding unknown media objects”, “avoiding traffic jams” and
“exploring the neighborhood.”

G-ToPSS employs the publish/subscribe, data-centric communication model.
There are three main entities in this model: publishers, subscribers and bro-
kers. Publishers send all data to a broker (or a network of brokers). Subscribers
register their interest with the broker in receiving relevant data. The role of
a broker is to mediate communication between the publishers and the sub-
scribers by matching the published data with the interests of the subscribers.
This way the subscribers do not need to know who is publishing the data, as
long as the data meets their specific interest, and the publishers do not need
to know who are the ultimate receivers of their publications. This provides
decoupling of senders and receivers of data both in space and time, which
makes the publish/subscribe paradigm particularly well suited for structuring
of large and dynamic distributed systems such as RSS feed dissemination, for
example.

The contributions of this paper are three-fold. First, we present an original
publish/subscribe system model, referred to as G-ToPSS, for large-volume
graph-based content filtering. The G-ToPSS system supports the use of an
ontology to specify taxonomy information about the data disseminated. Sec-
ond, we develop a novel algorithm for filtering of graph-structured data and
experimentally demonstrate the scalability of the approach. Finally, we present
an application of G-ToPSS for the dissemination of content changes to users
of a Web-based content management system.

The paper is organized as following. In Section 2 we briefly summarize related
work. The G-ToPSS publish/subscribe model supporting graph matching is
developed in Section 3. Section 4 describes the graph matching algorithms and
data structures. Section 5 presents the experimental evaluation. In Section 6

4

we describe an application of G-ToPSS to a content management system.
Section 7 concludes the paper and discusses possible directions for future work.

2 Related Work

The use of the publish/subscribe communication model for selective informa-
tion dissemination has been studied extensively. Existing publish/subscribe
systems [12,1,9,5] use attribute-value pairs to represent publications, while
conjunctions of predicates with standard relational operators are used to rep-
resent subscriptions. Systems such as those described in [2,10] process XML
publications and XPath subscriptions. XPath expressions represent path pat-
terns over a document tree. XTrie [6] propose an index structure that sup-
ports filtering of XML documents based on many XPath expressions. The ap-
proach is extensible supporting patters including constraint predicates. Gupta
et al. [14] show how to process XML stream over XPath queries including pred-
icates. These approaches do not support the filtering of graph-structured data,
which is the main motivation of our work.

Previously, we have built a prototype publish/subscribe system S-ToPSS [20]
that extends the traditional attribute-value-pair-based systems with capabili-
ties to process syntactically different, but semantically-equivalent information,
thus achieving another level of decoupling, which we termed representational
decoupling. S-ToPSS uses an ontology to be able to deal with syntactically dis-
parate subscriptions and publications. The ontology which can include syn-
onyms, a taxonomy and transformation rules was specified using S-ToPSS
specific methods. On the other hand, G-ToPSS publication and subscription
data models are based on directed graphs in general and RDF in particular.
Use of RDF makes it possible for G-ToPSS to use ontologies built on top of
RDF using languages such as RDFS and OWL. To illustrate this, in this pa-
per, we extend the G-ToPSS subscription language with type constraints for
subjects and objects, where the type information is represented in a RDFS
taxonomy.

OPS [25] is another ontology-based publish/subscribe system whose publica-
tion and subscription model is also based on RDF. OPS uses a very general
subgraph isomorphism algorithm for matching over overlapping graphs. How-
ever, this approach, as we show in this paper, unnecessarily increases the
matching complexity because it assumes that any node of the publication
graph can map to any node of the subscription graph. In this paper, we com-
pare the performance of G-ToPSS to OPS and show that G-ToPSS always
outperforms OPS.

A RDF document can be represented as directed labelled graph. Every node

5

in the graph has a unique name, and no two edges between any two nodes
can have the same label. Given this assumption, in this paper, we show how
to store such graphs in a way that exploits commonalities between them and
how to use this data structure to efficiently filter publications.

Racer [15] is a publish/subscribe system based on a description logics infer-
ence engine. Since OWL is based on description logics, Racer can be used
for RDF/OWL filtering. Racer does not scale as well as G-ToPSS. Its match-
ing times are in the order of 10s of seconds even for very simple subscrip-
tions [15], however, it offers more powerful inference capabilities not available
in G-ToPSS. Chirita at el. and Cai et al. [7,4] design a publish/subscribe
system supporting metadata and propose a query language based on RDF.
Both approaches are based on peer-to-peer network abstractions and express
queries in a triple pattern, rather than a graph-based language as central
to G-ToPSS. No support for including ontology information in the filtering
process is provided in either approach. Furthermore, G-ToPSS demonstrates
greater scalability with a demonstrated throughput of millions of queries per
second as compared to the throughput of 250 queries per second reported by
RDFPeers [4].

CREAM [8] is an event-based middleware platform for distributed heteroge-
neous event-based applications. Its event dissemination service is based on the
publish/subscribe model. Similar to other publish/subscribe systems, the sub-
scription and publication model in CREAM, is based on attribute-value pairs.
Like S-ToPSS, attributes and values can be associated with semantic infor-
mation from an ontology. Unlike G-ToPSS, which is based on RDF, ontology
and data are represented in a CREAM-specific data model. In addition, we
are not aware of any quantitative evaluations of CREAM’s scalability such as
the one for G-ToPSS presented in this paper.

3 G-ToPSS Model

In this section, we describe the four components of the G-ToPSS data model:
publications, subscriptions, matching semantics and ontology support. Pub-
lications are RDF documents. Subscriptions are queries for filtering of RDF
documents following certain patterns. Our subscription language model is sim-
ilar to RQL (RDF Query Language), but the difference is that RQL is a typed
language featuring variables on labels for nodes (classes) and edges (proper-
ties). However, our G-ToPSS model only supports variables on node labels
and opts to include ontology information in a separate taxonomy. We refer to
our subscription language as GQL.

6

3.1 Publication Data Model

A G-ToPSS publication is a RDF document, which is represented as a directed
labelled graph. By the specification of RDF semantics by Pat Hayes, an RDF
graph is a set of triples (subject, property, object). Each triple is represented by
a node-edge-node link (as shown in Figure 4). subject and property are URI
references, while object is either an URI reference or a literal. A publication is
a directed graph where the vertices represent subjects and objects and edges
between them represent properties.

Subject property Object

Fig. 4. RDF triple graph

Figure 5(c) illustrates a publication about one of Prof. Jacobsen’s papers pub-
lished in the 2001 SIGMOD conference.

3.2 Subscription Language Model

A G-ToPSS subscription is a directed graph pattern specifying the structure of
the publication graph with optional constraints on vertices. A subscription is
represented by a set of 5-tuples (subject, property, object, constraintSet (sub-
ject), constraintSet (object)). Constraint sets can be empty.

Similar to the publication data model, each 5-tuple can be represented as a
link starting from the subject node and ending at the object node with the
property as its label. From the publication data model, we know that each
node is labelled with a specific value. However, in a subscription, we also allow
subject and object to be either a constrained or unconstrained variable. An
unconstrained variable matches any specific value of the publication; while the
constraint variable matches only values satisfying the constraint. A constraint
is represented as a predicate of the form (?x, op, v) where ?x is the variable,
op is an operator and v is a value.

There are two types of operators: Boolean, for literal value filtering and is-a,
for RDFS taxonomy filtering. Boolean constrains are one of =, ≤ and ≥ with
traditional relational operator semantics. is-a operators are also one of =, ≤
and ≥ but with alternative semantics. ≤ is “descendantOf” which means that
variable ?x is an instance of a descendant of class v. ≥ is “ancesterOf” which
means that ?x is an instance of an ancestor of class v. = means that ?x is the
direct instance of class v (i.e., a child of v).

7

For example, Figure 5(a) illustrates a subscription that specifies interest in a
web page which is about the G-ToPSS project supervised by Arno and pub-
lished after the year 2003. This type of constraint is for literal value filtering.

The subscription in Figure 5(b) is looking for a web page about a new project
after 2004. There are two variables; the one constraining the year is a literal
value filter; the other is a semantic constraint which uses the class taxonomy.
Only an instance about HomePage which is a descendant of the “Academia”
class is going to match (refer to Figure 6).

Home Page
#325

G−ToPSS

Arno
Jacobsen

?x
?x > 2003

project

supervisor

year

?x>2003 constraint

property
subject or object

?x variable

(a) Subscription S1

?y > 2004

G−ToPSS

Arno
Jacobsen

?z <= Academia

?z

project

year

supervisor

?y

(b) Subscription S2

Home Page
#325

University

of Toronto

Canada

G−ToPSS

Arno
Jacobsen

MSRG

2005

title

project

year

supervisor

author

published by

Middleware

Research
System

Group Home

(c) Publication

*2

G−ToPSS

Arno
JacobsenHome Page

#325

project

year

supervisor
project

*1

Academia)
S2: (?z <=

S1:(?x > 2003)

S2:(?y > 2004)

(d) GM contains S1 and S2

Fig. 5. Example subscriptions, publication and GM

3.3 Matching Semantics

We denote GP as the publication graph and GS as the subscription graph
pattern. The matching problem is then defined as verifying whether GS is
embedded in GP (or isomorphic to one or more subgraphs of GP). Graph
pattern GS is embedded in GP if every node in GS maps to a node in GP such
that all constraints of GS are satisfied.

Formally speaking, for each 5-tuple (subject, property, object, constraintSet
(subject), constraintSet (object)) in subscription graph GS, there is at least
one triple (subject, property, object) in publication GP such that the subject

8

and object nodes are matched and linked by the same property edge. The
nodes that match are either the same (i.e., their labels are lexicographically
equal) or the node in GS is a variable for which the value of the node in GP

satisfies all constraints associated with the variable.

For example, the subscription in Figure 5(a) is matched by the publication
in Figure 5(c) since the publication contains the same links (Home Page
]325, project, G-ToPSS), (G-ToPSS, supervisor, Arno Jacobsen), and (2005
> 2003), thus (G-ToPSS, year,?x(?x > 2003)) is satisfied.

3.4 Ontology Support

An RDFS class taxonomy with is-a relationship is the semantic information
about a subject or an object that is available in the G-ToPSS ontology. An
RDF schema supports constrain is-a relationship on properties (i.e., repre-
sented by the edge between subject and object). However, to simplify the
system design, we only support the taxonomy information about subject and
object nodes in our G-ToPSS model. As explained in the following section,
structure matching and constraint matching are separate stages in the match-
ing algorithm. It is straight forward to extend the current model to support
other RDF schema semantics (e.g., subPropertyOf, Datatype, etc.).

G-ToPSS allows the designer to use multiple inheritance in the taxonomy,
with the restriction that the taxonomy must be acyclic. The taxonomy lists
all instances of a class. Alternatively, this information can be specified in the
RDF graph using a type property, but for simplicity we have opted to include
this information in the taxonomy. Note that an instance can also have multiple
parents.

Academia

UniversityResearch
Lab

UofTMITIBM

Home Page
#325

Middleware Group

Development
Pub/Sub System

Aspect Oriented
Software Oriented

Fig. 6. Example taxonomy

In Figure 6, we show an example of a class taxonomy about an academic web-
pages system. Class “Academia” includes two subclasses: “Research Lab” and

9

“University”. Class “Middleware Group” includes “Pub/Sub System Devel-
opment” and “Aspect Oriented Software Development” two subclasses. The
document instance “Home page]325” belongs to both “UofT” and “Pub/Sub
System Development”.

As a side note, existing publish/subscribe systems are classified as either
content-based or hierarchical (topic) based. Thus, a class taxonomy is a way
to seamlessly integrate both models. When filtering, a subscription is matched
if and only if both the content and the hierarchical constraints are satisfied.

4 Algorithm and Data Structure

To exploit overlap between subscriptions we integrate all subscriptions into a
single graph. We denote the graph containing all subscriptions as GM . Given
all subscriptions, GM , a publication, GP , the publish/subscribe graph match-
ing problem is to identify all the subgraphs GSi

(representing a subscription
Si) in GM which are matched by GP . In other words, the goal is to deter-
mine all graph patterns, GSi

that are subscriptions, in GM that match some
subgraph of GP .

This matching problem is different from subgraph isomorphism [24]. The sub-
graph isomorphism problem is defined as follows: given graphs G1 and G2,
identify all subgraphs of G2 which are isomorphic to G1. This differs from the
problem we are trying to solve, which is to identify all subgraphs of G2 that
are isomorphic to some subgraph of G1.

4.1 Data Structure

Since there can be multiple edges between the same pair of nodes, we use
two-level hash tables to represent GM . At the first level, we use a hash table
to store all the pairs of vertices taking the names of the two nodes as the hash
key. Each entry of the first hash table is a pointer to another (second-level)
hash table that contains a list of all the edges between these two nodes. The
edge label (i.e., “property” in the 5-tuple) is used as the hash key. Each edge
points to a list of subscriptions that contain this edge.

Figure 7 shows the data structure of GM . There are two edges between node
A and B and both s1 and s2 contain the edge a between A and B.

Any subscription can contain multiple variables that can be matched by any
vertex in the publication graph. For example, Figures 5(a) and 5(b) show two

10

Fig. 7. Data Structure

subscription graphs containing variables and the merged subscription graph,
GM , in Figure 5(d).

The data structure from Figure 7 allows us to store uniquely labelled nodes
only once. In other words, nodes belonging to different subscriptions, but with
the same label map to the same node in GM . This is possible because each
node in a graph is uniquely identified by its label. However, this is not the
case with nodes with variable labels. Variable labels do not uniquely identify
nodes, but instead they represent a (possibly constrained) pattern on node
labels from a publication.

We introduce a special sequence of labels, ?i|i ≥ 1, to represent variables. The
value of index i is bounded by the number of variables in the subscription
with the most variables among all subscriptions in GM .

For example, in Figure 5(d), we use one node labelled as ?1 to represent both
?x and ?z; ?x and ?y are represented by two nodes ?1 and ?2 since they appear
in the same subscription. Mapping between original variable labels from the
subscription (e.g., ?x) to the corresponding star name is preserved.

Mapping of variables from subscriptions to star labels is arbitrary for the sake
of simplicity, even though some mappings are better than others since they
can results in a sparser GM . In the future, we are going to investigate how
much can be gained, in terms of matching performance, by having a more
sophisticated mapping.

4.2 Matching Algorithm

We use a graph GM to contain all subscriptions. First, we discuss how GM

is created when inserting subscriptions. Suppose GS is a subscription graph.
|GS.?| is the number of variables in the subscription graph, variable vertices in
GS are labelled as ?i where 0 < i < |GS.?|. GM .? is the number of stars in GM .
Note that all vertices in GS and GM are unique. GM .T1 is the first-level hash
table, and T2 is the second-level hash table. E.subs is a set of subscriptions

11

containing edge E, GM .subs is the set of all subscriptions in GM . E (and E2)
is a directed edge from E.v to E.w, E.smEdge is an edge in GM that overlaps
with E. newTable(A,B) creates a table with 2 columns A and B that will be
used to decided on the bindings for variables.

Algorithm Insert(GS)
1. if GS .? > GM .?
2. GM .? = GS .?
3. for each edge E ∈ GS .edges
4. T2 = GM .T1.getTable(E.v, E.w)
5. if (T2 is null)
6. T2 = GM .T1.insert(E.v, E.w)
7. E2 = T2.getEdge(E)
8. if (E2 is null)
9. E2 = T2.insertEdge(E)
10. E2.bindingTable = newTable(E.v, E.w)
11. E2.subs = E2.subs + GS

12. GM .subs = GM .subs + GS

13. E.smEdge = E2

Algorithm Insert is the procedure for subscription insertion. For each edge in
GS, we check if there is a corresponding edge in the first-level hash table. If
there is no such edge, we update the hash tables by inserting E.vE.w into the
first-level hash table and inserting edge E into the corresponding second-level
hash table. Finally, the subscription id is inserted into the list associated with
edge E and added to GM .subs.

Next, we explain how to perform matching using the subscription graph GM

when a publication arrives. GP is the publication graph (the number of edges
in GE is m). G′

P is a completed graph containing vertices E.v, E.w, ?i such
that 0 < i < |GM . ? | + 1. All nodes in GP are unique. SubSet contains all
subscriptions that have at least one edge in GM that are referenced by GP .
Result is a set of (S,R) where S is a subscription and R is a satisfying binding
for variables. Natural join (./) is an equality join on all common columns.

Algorithm match(GP)
1. for each E ∈ GP .edges
2. create a fully connected graph G′

P

3. for each edge E2 ∈ G′
P

4. T2 = GM .T1.getTable(E2.v, E2.w)
5. if (T2 not null)
6. E3 = T2.getEdge(E)
7. if (E3 not null)

12

8. for all S ∈ E3.subs
9. S.edgeCount + +
10. E3.bindingTable+ = (E.v, E.w)
11. SubSet = SubSet + E3.subs
12. result = 0
13. for all subscriptions S ∈ SubSet
14. if (S.edgeCount ≥ |S.edges|)
15. S.edgeCount = 0
16. b = E.smEdge.bindingTable|E ∈ S
17. for every edge E2 ∈ S.edges−E
18. b = b ./ E2.smEdge.bindingTable
19. for every row R ∈ b
20. if CheckConstraint(R,CS , T)
21. result = result + (S, R)

Algorithm match is the procedure for matching publications against subscrip-
tions. There are two stages in the matching process. First, for each edge in the
publication, we check all the corresponding subscription edges in GM . Then
we find the satisfying bindings for variables and evaluate the constraints.

In the first stage, for the publication edge v1v2, it can be matched by edges
v1v2, v1?i, ?iv2 and ?i?j in GM . There are three actions to perform on these po-
tentially matching edges. (1) Add v1v2 into the binding tables of all matching
edges so that they can be used in the second stage. (2) Increase the counters
of subscriptions associated with these edges. (3) Put the subscriptions into
Subset as matching candidates. This completes the first stage of matching.

In the second stage, we find the matched subscriptions by checking the candi-
dates in Subset one-by-one. For each subscription si in Subset, we join all the
binding tables of edges belonging to si. If the result table is not empty, then
the entries in the result table contain all valid binding values for all variables
in the subscription.

Figure 8 provides an example for a binding table join. For example, the sub-
scription contains two edges A?1 and ?1B. There are three entries in the
binding table of A?1 which means A?1 is matched by three edges AB, AC and
AE in the publication. ?1B is matched by 5 edges in the publication. Joining
of these two tables produces ACB and AEB and hence ?1 can be bounded
with value C and E.

After identifying all valid bindings of variables, we can use the binding value
w to evaluate the constraint. For the constraint (?x, op, v), we need to check
whether (w op v) is true. For the value filtering constraint, (w op v) is evaluated
using standard relational operator comparison.

For the class taxonomy filtering constraint (w op v), we need to check the

13

Fig. 8. Binding table join

descendant-ancestor relationship between the specific instance w and the class
v by traversing the taxonomy tree. The constraint checking algorithm is shown
in Algorithm CheckConstraint .

Algorithm CheckConstraint(R, CS , T)
1. for each variable ? in S
2. find the value v in R and the constraint (op, c)
3. return isTrue(v, op, c, T)

Algorithm isTrue(v, op, c, T)
1. if op = LT return isNodeDescendant(v, c, T)
2. if op = GT return isNodeDescendant(c, v, T)
3. if op = EQ return (c.equals(v))

For example, in Figure 5(d), for subscription s2, ?2 is matched by node “2005”
since 2005 > 2004 and ?1 is matched by node “Home Page]325” since it is
descendant of class “Academia.”

4.3 Analysis

Space Complexity: The space cost mainly includes two parts: hash tables
and linked lists associated with each edge to store the subscription ids that
contain this edge. The size for the hash tables is determined by the number
of unique edges among all the subscriptions. The length of the linked list
depends on the average number of subscriptions each edge is associated with.
Therefore, the space complexity is

O(|GM .edgs|+ |GM .edgs| ×Nse)

14

where |GM .edges| is the number of unique edges in matrix GM and NSe is the
average number of subscriptions each edge is associated with.

Time Complexity: For the procedure of insert a subscription into the sys-
tem, he insert(GS) algorithm iterates for every edge in the coming subscrip-
tion, locate the corresponding list associated with the edge and add an entry
of the coming subscription into the list. Thus, the insert algorithm depends
on the number of edges for each subscription and the time complexity is

O(|GS.edges|).

To form the graph GM which contains all subscriptions, we have to insert
subscriptions one by one. Therefore, the time to load a batch of subscriptions
at a time is

∑
si
|GSi

.edges|. Since the number of edges in each subscription is
very small, the time complexity of loading subscription is

O(number of subscriptions).

The matching algorithm consists of two stages. First is edge matching. By
checking each edge in the publication, we determine all the subscriptions that
have at least one edge matched by the publication. The time of the first stage
depends on the size of the completed graph G′

P and the number of edges in
the publication. Since each graph G′

P contains all the stars in GM plus E.v

and E.w, the number of edges in G′
P is

(
k+2
2

)
. Suppose k is the number of

stars in GM , m is the number of edges in the publication, we have

O(m ∗ 2

(
k + 2

2

)
) ∼ O(mk2).

In the second stage, for each subscription in SubSet, if all the edges of it
are matched, we perform a join operation on the binding tables to determine
whether there is a satisfying binding for the variables, then we check the
constraints. To join two tables, the time is linear with the size of the smaller
table. The time complexity to find satisfying bindings of variables for each
subscription is

O(k ∗ l)

where k is the number of stars in GM and l is the size of the smallest binding
table for variables.

The time to check whether the constraint for the variable is satisfied according
to the class taxonomy is dependent on the complexity of the taxonomy tree.
Since multiple parents are allowed in the class taxonomy tree, the time is O(dt)
where d is the depth of the tree and t is the average number of parents each
node may have.

15

Overall, the matching time to evaluate all subscriptions is

O(mk2) + O(n ∗ k ∗ l + n ∗ k ∗ dt)

where n is the number of subscriptions in SubSet. In real applications, the
class taxonomy tree is fixed, the number of variables in one subscription is
small (usually 1 to 3, at most 5), m << n, and n is around the number of
matched subscriptions. Therefore, the overall matching time is linear with the
number of matched subscriptions:

O(ratiomatch ∗ number of subscriptions).

5 Evaluation

Table 1
The workload parameters in experiments

parameters default values description

SizeP (35,90) size of publication

SizeS (5,35) size of subscription

Nsub 30,000 number of subscriptions

ratiomatch 0.1% ratio of matched subscriptions among all

Nstars 2 number of stars (variables) in one subscription

Nsub∗ 27,000 number of subscriptions containing stars

overlaps 50% ratio of overlap among subscriptions

We have implemented the algorithm in Java. We experimentally evaluate the
rate of matching and the memory use. We run the experiments on a Linux
system with 1GB RAM and a 1GHz microprocessor. We are using a synthetic
workload so that we can independently examine various aspects of G-ToPSS.
We report the results for the two most important metrics from a user’s per-
spective, namely the rate of matching and the memory requirements. The
workload parameters are shown in Table 1.

SizeP and SizeS are decided by (number of nodes, number of edges) the
publication graph and the subscription graph. The number of edges must be
larger than the number of nodes in order to obtain a connected graph. We use
ratiomatch to control the number of matched subscriptions that are generated
as subgraphs from the publication graph.

We generate the test workload using the parameter values from Table 1. A
publication is generated first. For example, for publication of size (k,m) we

16

first generate a simple path of length k − 1 and then we generate m − k + 1
edges between random pairs of the k nodes.

Subscriptions are generated in four steps. 1.ratiomatch subscriptions that match
the publication are generated by randomly selecting a subgraph of the pub-
lication. 2. Using same technique, overlapped subscriptions are generated as
subgraphs from one big graph. 3. Nsub ∗ (1 − overlaps) non-overlapping sub-
scriptions are generated randomly in the same way that the publication was
generated. 4. Nstars vertices are selected from all Nsub∗ subscriptions and re-
placed with a variable (?). Alternatively, we limit values that can be bound
to a variable by adding constraints.

All measurements are performed after G-ToPSS has loaded all the subscrip-
tions. We look at the effect of the number of subscriptions, subscription size
and matching ratio (number of subscriptions matched by a publication). Fi-
nally, we compare G-ToPSS with two alternative implementations. For each
experiment, we vary one parameter and fix the others to their default values
as specified in Table 1.

Number of subscriptions: Figure 9(a) shows the memory use with increas-
ing number of subscriptions. We see that the memory size grows linearly as the
number of subscriptions increase. Since all subscriptions in our experiments
are of the same size and the overlap factor is constant, the memory increase
per subscription is also a constant.

Figure 9(b) shows the time to find all matches for a publication given a fixed
set of subscriptions. As the set of subscriptions increases, so does the time.
The number of subscriptions that match the publication is relative to the
total number of subscriptions in the set. Consequently, the number of matches
increases as the number of subscriptions increases.

The time to match a publication is split between structure matching phase and
constraint evaluation phase. As the number of subscriptions increases, both
of these times increase by a fixed amount because the number of matches
increases constantly.

Subscription size: Figure 9(c) shows how the space used by the subscriptions
decreases as the overlap between them increases. We present this to validate
our workload. The matrix space is the size of GM , while whole memory is
equal to the size of GM plus the space used to store all the subscriptions.

Figure 9(e) shows the effect of increasing subscription size on the matching
time. We see that the time increases more rapidly as the number of edges
increases (e.g., from 4 to 8), the time almost doubles. On the other hand, as
the number of edges increases slowly, so does the increase of matching time,
hence the matching time is not affected by the number of nodes, but by the

17

(a) Memory vs. #subscriptions (b) Matching time vs. #subscriptions

(c) Memory vs. subscription overlap (d) Memory vs. subscription size

(e) Matching time vs. subscription
size

(f) Matching time vs. matching ratio

Fig. 9. Experimental performance results

number of edges in the subscription.

Matching ratio: Figure 9(f) shows the effect of increasing the number of
subscriptions that match the publication. As this number grows, the time to
match grows very rapidly. This is mainly due to increase in time to calculate
all the bindings for each subscription.

G-ToPSS vs. Alternatives: In Figure 10(a) we compare the performance of
our algorithm to the OPS algorithm [25]. As the graph shows, OPS matching
time increases very rapidly with the number of subscriptions. The main reason
for the significant difference in matching times comes from the differences
in basic assumptions. The OPS algorithm makes the same basic assumption
as do other, traditional, subgraph isomorphism algorithms [24], namely that
every node in a subscription is a variable. In other words, any node of a
publication can match with any other node in the subscription graph. However,

18

(a) G-ToPSS vs. OPS (b) OPS vs. naive

Fig. 10. Compare G-ToPSS with other algorithms

this assumption unnecessarily increases the matching complexity, as we see
in the evaluation. We make a more realistic assumption that the number of
variables in any subscription is low as compared to the total number of nodes
in a subscription graph and the nodes in a RDF publication are unique.

Figure 10(b) illustrates that, even though OPS is less scalable than G-ToPSS,
it is still far better then a naive approach which sequentially checks all sub-
scriptions to find the matching ones.

6 Application

Recent years have seen a rise in the number of unconventional publishing tools
on the Internet. Tools such as wikis, blogs, discussion forums, and web-based
content management systems have experienced tremendous rise in popularity
and use; primarily because they provide something traditional tools do not:
easy of use for non computer-oriented users and they are based on the idea of
“collaboration.” It is estimated, by pewinternet.org, that 32 million people
in the US read blogs (which represents 27% of the estimated 120 million US
Internet users) while 8 million people have said that they have created blogs.

Web-based collaboration is the common idea for this new breed of content-
management tools. The center piece of such tools is a web page that is being
used as an area where multiple users participate in content creation. More sig-
nificantly, the collaboration enabling tool used is the web page itself (accessed
through the all-pervasive web browser).

With these new web applications, there rouse a need for users to stay informed
about changes to the content. In general, users want to be updated about daily
news headlines of interest to them, or be notified when there is a reply in a
discussion they participate in, or their favorite web personality has updated
his/her blog (online diary etc.).

19

RSS 4 is quickly becoming the dominant way to disseminate content update
notifications on the Internet. pewinternet.org reports that 6 million people
in the US use RSS aggregators (a service/application that monitors large
numbers of RSS feeds). 5

Web-based content management systems (CMS) have also grown in popularity
mainly because they are based on the publishing tools just described, but also
because they are much easier to use and maintain than traditional CMS. 6 Like
traditional CMS systems, they provide content access control, user profiles,
persistent storage, web access, RSS authoring, advanced content management,
content routing and taxonomic content classification.

In this section, we describe an extension to content management systems,
CMS-ToPSS, for scalable dissemination of RSS documents, based on the pub-
lish/subscribe model. To illustrate the effectiveness of the system, we ex-
tend an existing open-source web-based content-management system, Drupal
(drupal.org) to use CMS-ToPSS in a manner that is transparent to end users,
yet provides an efficient content-routing architecture.

CMS-ToPSS consists of three main components: The Drupal module (a conent
management system), the G-ToPSS filtering service and connector between
them. The overall architecture is shown in Figure 11. The Drupal module acts
as a client to the filtering service. The module does not require any changes
to Drupal, and any Drupal installation can experience the benefits of CMS-
ToPSS by simply retrieving and installing the module.

G−ToPSS

Drupal running on a Web Server

Web Browser
content (web pages, forum, etc.)

subscriptions(GQL)Publication

matching Publication

RSS feed

matching RSS

To Client

CMS−ToPSS

converterXML−RPC

user profile

Fig. 11. CMS-ToPSS system architecture

4 web.resource.org/rss/1.0/spec
5 Reported by Pew Internet & American Life Project (www.pewinternet.org), an
organization that produces reports that explore the impact of the Internet on
families, communities, the daily life. Also reported by “RSS at Harvard Law”
(blogs.law.harvard.edu/tech/)
6 Mid Market Web CMS Vendors Pull Ahead. Brice Dunwoodie. CMSwire.com

20

G-ToPSS filtering service is accessible via XML-RPC and can be accessed
by the XML-RPC client. The CMS-ToPSS connector reads RSS feeds and
serializes them into publications and subscriptions as input to G-ToPSS. In
Figure 13 we show an example of an RSS feed (ie.e, a publication) and a
subscription is shown in Figure 12. Both publications and subscriptions are
RSS feeds. And subscriptions are differentiated by the key word GQL in title
and the query can be taken out from description.

Fig. 12. Subscription example

Upon receiving a publication and subscriptions, G-ToPSS performs the match-
ing between them and the outputs are notifications which are also serialized
as RSS feeds over the converter back to the client via XML-RPC. Each sub-
scription that a user submits is, in fact, a distinct RSS feed (containing items
matching the user’s subscription).

The Drupal module performs both subscribing and publishing based on user
interaction with Drupal CMS. User can easily generate an RDF document
using our template and publish to G-ToPSS. Also user can form a subscription
with specified constraints from the interaction panel and send it to G-ToPSS.
The module serializes all content changes in Drupal using RSS and sends them
to the G-ToPSS filter service. The filtering service forwards the document to
the interested clients which could be other XML-RPC clients as well as other
Drupal modules. Note that the G-ToPSS filtering service can serve multiple
Drupal sites.

In addition to publishing all content changes in RSS, the Drupal module also
extends different kinds of Drupal content with change notification capabilities.
For example, users can subscribe to receive notifications when they have replies
on the discussion forum, or when a certain web page in Drupal has been

21

Fig. 13. RSS feed example

updated. The Drupal module registers these kinds of subscriptions with the
G-ToPSS filtering service transparently to the user.

A user, using a web browser, accesses a Drupal site that is extended with the
module described in this paper. The user can choose to receive notifications
for content of her choice (e.g., discussion forum replies, web page updates
etc.) Drupal supports convenient taxonomic content classification, which can
be directly mapped to a G-ToPSS ontology. In this case, the user will get
notifications only when both the content and taxonomic constraints of her
subscription are satisfied. The users can also create content (e.g., participate
in a discussion form or create/update a web page) to trigger notifications.
The users’ subscriptions are stored as part of their Drupal profile. Via the
profile web page, users can review their notification requests as well as see all
notifications received for those requests.

We also allow users to subscribe directly on the RSS content by expressing
their subscriptions in G-ToPSS’s SQL-like subscription language (GQL). The
subscriptions and their results are also shown as part of the user profile. The
screenshot of the user interface is shown in Figure 14.

22

Fig. 14. CMS-ToPSS User API

7 Conclusions and Future Work

Use of RDF as a language for representing metadata is growing. Applications
such as RSS and content management are exhibiting use patterns that current
systems were not designed for.

The G-ToPSS prototype shows that a data-centric, push-based architecture
such as a publish/subscribe system is a very good fit for just such applications
(as illustrated by CMS-ToPSS described in Section 6). G-ToPSS is able to
support high matching rates for very complex subscriptions. In practice, we
expect these subscriptions to be simpler (i.e., have smaller number of edges
and stars) on average than the ones used in our experiments.

Being based on RDF, G-ToPSS can be easily extended to use additional se-
mantic information expressed in languages built on top of RDF, such as RDFS
and OWL. We show how a RDFS taxonomy can be used to increase the ex-
pressiveness of the G-ToPSS query language. Our implementation uses an
efficient traversal of the class hierarchy with support for multiple inheritance,
which adds more expressiveness to the language without unduly affecting the
matching rate. On the other hand, more powerful inference techniques such
as those of Descriptions Logics (on which OWL is based) could augment the
constraint filtering without significant changes to the matching engine.

In the future, we will work on extending G-ToPSS with full RDF language
features (such as bags and sequences), which we have left out since their
implementation does not affect the matching rate but merely adds syntactic
sugar.

Extending G-ToPSS to support variables on predicates is straight forward
since the same techniques for supporting variables on subjects and objects

23

can be used. Consequently, matching time complexity is not affected by this
extension.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In Symposium on
Principles of Distributed Computing, pages 53–61, 1999.

[2] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proceedings of the 26th VLDB Conference,
2000.

[3] I. Burcea, H.-A. Jacobsen, E. de Lara, V. Muthusamy, and M. Petrovic.
Disconnected operation in publish/subscribe middleware. In Mobile Data
Management, pages 39–, 2004.

[4] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor. A subscribable peer-
to-peer rdf repository for distributed metadata management. J. Web Sem.,
2(2):109–130, 2004.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, Aug. 2001.

[6] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient filtering
of XML documents with XPath expressions. The VLDB Journal, 11:354–379,
2002.

[7] P.-A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Publish/subscribe for
rdf-based p2p networks. In ESWS, pages 182–197, 2004.

[8] M. Cilia, C. Bornhoevd, and A. P. Buchmann. CREAM: An Infrastructure
for Distributed Heterogeneous Event-based Applications. In Proceedings of the
International Conference on Cooperative Information Systems, pages 482–502,
2003.

[9] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27:827–850, sep 2001.

[10] Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter: Efficient and scalable
filtering of XML documents. In Proceedings of ICDE2002, 2002.

[11] K. G. C. (ed). RDF Data Access Use Cases and Requirements. W3C Working
Draft, 2004.

[12] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe
systems. In SIGMOD Conference, 2001.

24

[13] E. Fidler, H. A. Jacobsen, and G. Li. The padres distributed publish/subscribe
system. In 8th International Conference on Feature Interactions in
Telecommunications and Software Systems, Leicester, UK, 2005.

[14] A. K. Gupta and D. Suciu. Stream processing of xpath queries with predicates.
In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 419–430, New York, NY, USA, 2003.
ACM Press.

[15] V. Haarslev and R. Moller. Incremental Query Answering for Implementing
Document Retrieval Services. In Proceedings of the International Workshop on
Description Logics, 2003.

[16] G. Li, S. Hou, and H. A. Jacobsen. A unified approach to routing,
covering and merging in publish/subscribe systems based on modified binary
decision diagrams. International Conference on Distributed Computing
Systems (ICDCS’05), 2005.

[17] G. Li and H. A. Jacobsen. Composite subscriptions in content-based
publish/subscribe systems. In ACM/IFIP/USENIX 6th International
Middleware Conference, Grenoble, France, 2005.

[18] H. Liu and H.-A. Jacobsen. A-ToPSS - a publish/subscribe system supporting
approximate matching. In Very Large Databases (VLDB’02), University of
Toronto, August 2002.

[19] V. Muthusamy, M. Petrovic, and H.-A. Jacobsen. Effects of routing
computations in content-based routing networks with mobile data sources.
In the Eleventh Annual International Conference on Mobile Computing and
Networking, Cologne,Germany, 2005.

[20] M. Petrovic, I. Burcea, and H.-A. Jacobsen. S-ToPSS - a semantic
publish/subscribe system. In Very Large Databases (VLDB’03), Berlin,
Germany, September 2003.

[21] M. Petrovic, H. Liu, and H.-A. Jacobsen. CMS-ToPSS - efficient dissemination
of rss documents. In Proceedings of 31st International Conference on Very Large
Data Bases (VLDB). (demo), September 2005.

[22] M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS - fast filtering of graph-
based metadata. In the 14th International World Wide Web Conference, Chiba,
Japan, May 2005.

[23] M. Petrovic, V. Muthusamy, D. Gao, and H.-A. Jacobsen. Publisher
mobility in distributed publish/subscribe systems. In DEBS Workshop at
ICDCS,Columbus, Ohio, 2005.

[24] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42,
1976.

[25] J. Wang, B. Jin, and J. Li. An Ontology-Based Publish/Subscribe System. In
Middleware, 2004.

25

[26] Z. Xu and H. A. Jacobsen. Efficient constraint processing for location-aware
computing. In 6th International Conference on Mobile Data Management
(MDM’05), Ayia Napa, Cyprus, 2005.

26

