
Disconnected Operation in Publish/Subscribe Middleware

Ioana Burcea†, Hans-Arno Jacobsen†‡, Eyal de Lara‡, Vinod Muthusamy†, Milenko Petrovic†
†Department of Electrical and Computer Engineering

‡Department of Computer Science
University of Toronto

{ioana,jacobsen,vinod,petrovi}@eecg.toronto.edu
delara@cs.toronto.edu

Abstract

The decoupling of producers and consumers in time and
space in the publish/subscribe paradigm lends itself well to
the support of mobile users who roam about the environ-
ment and have intermittent network connectivity. This pa-
per identifies the factors that affect the performance of a
distributed publish/subscribe architecture supporting mo-
bility; formalizes mobility algorithms for distributed pub-
lish/subscribe systems and develops and evaluates opti-
mizations that reduce the costs associated with supporting
mobility in publish/subscribe systems. In our analysis, we
focus on the “unicast” traffic generated to support mobile
users, as opposed to the regular “multicast” traffic used for
event dissemination to stationary clients. We find that the
network capacity must be doubled to handle the extra load
of just 10% of mobile users.

1. Introduction

Computing devices are becoming more pervasive and
our dependence on the information delivered through these
devices is increasing. Due to these trends, users expect ac-
cess to information on multiple devices at various geo-
graphic locations at any time. For example, a user might re-
ceive stock quotes, press releases, audio and video footage,
and other kinds of alerts delivered to her laptop at the office,
her PDA while shopping, or her desktop at home. In some
applications, users expect that data disseminated while they
are disconnected, for example when commuting between
locations, is reliably stored and delivered upon reconnec-
tion. Users may disconnect when network connectivity is
absent or to conserve battery life. Therefore, support for dis-
connected operation is essential for information dissemina-
tion applications that supports mobile users.

Information dissemination applications have been ef-
fectively modeled with publish/subscribe style inter-

actions [10, 19], where publishers act as information
providers, subscribers act as information consumers, and a
broker mechanism routes relevant publications (events) to
interested subscribers.

Publish/subscribe systems have a number of desirable
characteristics for mobile information dissemination appli-
cations. First, they can efficiently filter and disseminate
large amounts of data to large number of users. Second, they
decouple communication, both in time and space, allowing
publishers and subscribers to communicate without having
to be connected simultaneously or having to know about
each other. Therefore, the publish/subscribe paradigm natu-
rally supports disconnected operation.

In this paper, we show that existing proposals [7, 11]
for supporting disconnected operation, which are based
on state-transfer protocols implemented using unicast mes-
sages, may result in drastic increases in the load on a net-
work where events are disseminated in a multicast fashion
to stationary users. We show that even a small percentage
of mobile users in the system can significantly increase the
traffic in the network. In our evaluations we see that mobil-
ity can increase the average network traffic by up to 100%.

The three most important contributions we make in this
paper are as follows:

1. We identify and classify the factors that affect the per-
formance of a publish/subscribe system that supports
client mobility.

2. We formalize mobility algorithms for distributed pub-
lish/subscribe systems. We use an analytical model to
reason about the network cost of supporting mobility.

3. We develop and experimentally evaluate optimizations
that reduce the costs associated with disconnected op-
eration. While we prototype these algorithms on top
of the Toronto Publish/Subscribe System (ToPSS) sys-
tem [15, 17], all the optimizations we propose are ap-
plicable to any type of publish/subscribe system.

The rest of the paper is organized as follows. Sec-
tion 2 provides a brief overview of the publish/subscribe
paradigm. Section 3 describes the algorithm most com-
monly used to support disconnected operation in pub-
lish/subscribe systems, and develops a number of optimiza-
tions to this algorithm. Section 4 develops an analytical
model for reasoning about the network cost of support-
ing mobile clients. Section 5 presents an experimental
evaluation of the mobility algorithm and the proposed op-
timizations. Section 6 discusses related work and puts our
work in perspective. Finally, Section 7 concludes the pa-
per and discusses directions for future work.

2. Background

The publish/subscribe paradigm is effective at support-
ing information dissemination applications [1, 2, 4, 11, 12,
13]. Clients in a publish/subscribe systems are autonomous
components that exchange information by publishing events
and by subscribing to events of interest. Clients that produce
information are referred to aspublishers, while clients that
consume information are referred to assubscribers1. Pub-
lishers generate messages (publications or events) to inform
the external world that a certain condition has occurred.
Subscribers, which express their interest in events by means
of subscriptions, are then notified of the occurrence of these
events. The central component of a publish/subscribe sys-
tem is theevent broker, which records all subscriptions in
the system. When a certain event is published, the event bro-
ker matches it against all subscriptions. On a match, the
event broker notifies the corresponding subscriber.

Publish/subscribe systems can be based on the notion of
topics (or subjects), types, or content. In topic-based pub-
lish/subscribe, clients can subscribe to several topics and
receive notifications about all events within these topics.
These systems usually offer flat or hierarchical addressing.
In flat addressing, all topics are disjoint, while in hierar-
chical addressing topics are organized in hierarchies; sub-
scriptions can address any node in the hierarchy, implic-
itly addressing all subtopics of the node.Type-basedpub-
lish/subscribe systems are similar to topic-based, but use
event types instead of topics for matching.Content-based
publish/subscribe systems improve the expressiveness of
subscriptions by allowing subscriptions to contain complex
queries on the event content.

The broker represents the most important component in
the system. It has to perform the matching between the in-
coming events and subscriptions in the system and it also
has to send the subscribers all the events for which they
have expressed interest. It is important to note that mes-
sages from the publishers (events) do not contain any ad-

1 Note that a client can be both a publisher and a subscriber.

dress; instead, they are routed through the system based on
their content (for a content-based system). The broker ar-
chitecture can be centralized or distributed.

In a distributed broker architecture, one of the most im-
portant problems is the routing of publications to inter-
ested subscribers based on the content of the publication.
There are several routing algorithms proposed in the litera-
ture [9, 11, 4]. The key point of all these algorithms is that,
based on the subscriptions available in the system, the algo-
rithms build a multicast tree such that when an event enters
the system, it is sent along the multicast tree to all inter-
ested subscribers, rather than sending it individually to all
interested subscribers.

B

B

B

B

BB

S P

Figure 1. Routing in a hierarchical broker ar-
chitecture

In a hierarchical distributed broker architecture, the rout-
ing problem can be addressed as follows. Subscriptions al-
ways propagate upward to the root broker. Each broker on
the path from the subscriber to the root stores the subscrip-
tions together with the node identifier of the interested chil-
dren (see Figure 1, where dashed arrows represent subscrip-
tions, and solid arrows represent events). An event enters the
system when the publisher publishes the event to the bro-
ker it is connected to. Upon receiving an event, a broker
forwards it to its parent and, based on matches in its sub-
scription table, also sends the event to any interested chil-
dren. Therefore, events are always propagated upward to the
root, but downward only towards interested subscribers.

Subscription covering [9] can optimize the routing algo-
rithm presented above. Given two subscriptionss1 ands2,
s1 coverss2 if and only if all the events that matchs2 also
matchs1. In other words, if we denote withE1 andE2 the
set of events that match subscriptions1 ands2, respectively,
thenE2 ⊆ E1. When a brokerB receives a subscriptions,
it will send it to its parent if and only if it has not previ-
ously sent another subscriptions′, that coverss, to its par-

Subscription s1 Subscription s2 Covering Relation
(product = “computer”, brand = “IBM”,
price≤ 1600)

(product = “computer”, brand = “IBM”,
price≤ 1500)

s1 coverss2

(product = “computer”, brand = “IBM”,
price≤ 1600)

(product = “computer”, price≤ 1600) s2 coverss1

(product = “computer”, brand = “IBM”,
price≤ 1600)

(product = “computer”, brand = “Dell”,
price≤ 1500)

s1 does not covers2 s2 does not cover
s1

ent. BrokerB will receive all events that matchs, since it
receives all events that matchs′. Table 1 presents some ex-
amples of subscriptions and the corresponding covering re-
lations. The goal of subscription covering is to quench sub-
scription propagation, thereby reducing network traffic and
trimming the size of subscription (i.e. routing) tables.

One problem with the scheme presented above is that the
root broker of the hierarchical topology can become a bot-
tleneck for the system: all events and subscriptions reach
the root broker. Advertisements [9] address this by requiring
publishers to announce the set of publications they are going
to publish. Advertisements look like subscriptions, but play
a different role in the system. For example, if a publisher
produces only events about products with brand “IBM” and
prices greater than 500, it can issue the following adver-
tisement:(brand = “IBM”, price ≥ 500). In other words,
each attribute-value pair from the publication is “covered”
by a predicate in the advertisement. We say that a subscrip-
tion intersects with an advertisement if there is at least one
event that matches both the subscription and the advertise-
ment. In general, using advertisements in a hierarchical ar-
chitecture changes the routing scheme as follows. The ad-
vertisements are sent up to the root, and subscriptions go
up to the root and down to the publishers that issue adver-
tisements that intersect the subscriptions. When an event is
published, it is forwarded only to those brokers that previ-
ously sent it subscriptions that match the event. Thus, events
are never unnecessarily propagated up the tree. Usually, the
number of events in the system is much larger than that
of subscriptions and advertisements, thus one expects ad-
vertisements to reduce the overall network traffic. Adver-
tisements are most effective when subscribers interested in
events from a publisher are localized in the network.

3. Disconnected Operations

To the best of our knowledge, Cugola et al. [11] were the
first to support mobility in publish/subscribe systems. They
introduce the “movein” and “moveout” operations that of-
fer subscribers the ability to disconnect from and reconnect
to the system. In this section, we first describe the mobil-
ity algorithm proposed by Cugola et al. [11], which we re-
fer to as thestandard algorithm. We then present a set of
optimizations to this algorithm. Since we only study the mo-
bility of subscribers in this paper, we use the term client to
only mean subscribers from now on.

Figure 2. Disconnected operation timeline

3.1. Standard Algorithm

Figure 2 illustrates a timeline of a client going into a pe-
riod of disconnection and reconnecting to a different bro-
ker. During periodt1, the client is connected to Broker 1
and can receive events. At the end of periodt1, the client
disconnects from Broker 1 and reconnects after periodt3
to Broker 2. Periodt2 is used by an optimization described
in Section 3.2. Periodt4 is required to complete the recon-
nection phase, which involves retrieving and playing back
events that the client missed while disconnected. Finally,
during periodt5 the client receives newly published events
as in periodt1.

The objective of the algorithm is to reconfigure the event
multicasting tree to account for client mobility. We assume
the client always reconnects to its physically closest broker.
When a client disconnects from Broker 1, the broker be-
gins to locally store the events that the client would have re-
ceived if it had been connected. If the client reconnects to
Broker 1, then the stored events are simply replayed to the
client during periodt4. The more interesting case is when
the client reconnects to some other broker, say Broker 2.
The following steps take place during periodt4:

1. Upon reconnection, the client notifies Broker 2 that it
was previously connected to Broker 1.

2. Broker 2 retrieves the subscriptions associated with the
client from Broker 1.

3. Broker 2 subscribes to these subscriptions, and then

sends aREQUNSUB message to Broker 1 request-
ing it to unsubscribe.

4. Broker 2 stores in a local queue new events it receives
for the client.

5. Broker 1 forwards stored events to Broker 2.

6. All the state has now been transferred from Broker 1
to Broker 2. Broker 2 now replays both the events re-
ceived from Broker 1, and the new events stored in its
local queue, to the client.

In Step 6, duplicates in the set of events transfered from
Broker 1, and those in Broker 2’s local queue are removed.
This assumes duplicate events can be distinguished, with,
for example, a publisher-specific event sequence numbers.

In Step 3, to guarantee that no events are lost, we require
that the common ancestor of Brokers 1 and 2 in the bro-
ker hierarchy sees the subscriptions from Broker 2 before
the unsubscriptions from Broker 1. To simplify this step,
we assume that the overlay broker hierarchy is consistent
with the underlying network hierarchy such that the short-
est path between any two brokers in the overlay topology
is the shortest path in the underlying topology. We also as-
sume that messages between brokers are received in the or-
der they were sent, which is reasonable as we expect TCP
connections between brokers. Since Broker 2 sends the sub-
scriptions followed byREQUNSUB, the common ances-
tor sees them in this order, and since the common ancestor
is in the shortest path between Brokers 1 and 2 in the over-
lay topology, Broker 1 seesREQUNSUB after the com-
mon ancestor, by our assumption. Thus, our requirement is
met, and no events are lost. More elaborate schemes [7] are
possible in cases where our assumption is not valid. How-
ever, more complex protocols likely increase the state trans-
fer costs, and thus only worsen the overhead costs we quan-
tify in Section 5.

All the messages exchanged between the two brokers
represent unicast messages. As we will see in the exper-
imental section, the unicast messages contribute signifi-
cantly to system overhead. Also, it is possible that cost of re-
configuring the multicast tree may be greater than the gains
from having events take the shortest path.

3.2. Optimizations

3.2.1. PrefetchingThe prefetching algorithm ex-
ploits knowledge of future mobility patterns. It is sim-
ilar to the standard algorithm except that Steps 2-5
(the transfer of subscriptions and stored events) occur dur-
ing periodt2. In periodt4 only Step 6 (the replay of stored
events) takes place.Prefetching gains in two ways.
First, the latency of the state transfer from Broker 1 to Bro-
ker 2 is hidden from the user since is occurs while the user

is disconnected. This results in a shortert4 period. Sec-
ondly, since state transfer occurs early, there are very
few stored events that Broker 1 needs to forward. There-
fore there are fewer messages transferred overall.

The effectiveness ofprefetching depends on the
successful prediction of the client’s destination. To improve
the likelihood of success, Broker 1 can predict theset of
brokers that are likely to be the next destination of the mo-
bile client. Broker 1 can make this prediction based, for ex-
ample, on statistics of the mobility patterns of its clients. If
the client reconnects to one of the predicted brokers, that
particular broker replays all stored events, and informs the
other brokers to discard the stored events and subscriptions
for that client. If the client reconnects to a completely dif-
ferent broker, the new broker can contact the closest bro-
ker from the set of prefetched brokers, and the state transfer
happens as in thestandard algorithm. We do not evalu-
ate prefetching to multiple brokers in this paper.

3.2.2. Logging The logging algorithm exploits sub-
scription locality (a measure of the similarity of subscrip-
tions) in the system. Here, all brokers maintain a log of re-
cently received events. When the mobile client reconnects,
Broker 2 scans its log for events of interest to the mo-
bile client. Any relevant events found in the log do not need
to be transferred from Broker 1.

The state transfer is similar to thestandard algorithm.
After Step 2, however, Broker 1 sends a message with the
IDs of its stored events to Broker 2. Broker 2 checks for
these events in its log and sends any matched IDs to Broker
1 instructing it to not send these events during Step 5. By
only transferring, in Step 5, those events not already at Bro-
ker 2, the periodt4 can be shorter than in thestandard al-
gorithm. However, if no such events exist, the wasted over-
head of sending event IDs can make periodt4 longer. Thus,
in terms of both message and latency costs,logging can
perform better or worse thanstandard depending on the
movement scenario and subscription locality.

Logging requires that events have system-wide unique
IDs. This can be easily achieved if we consider that each
publisher in the system has a unique ID and that events are
ordered within the publisher. Thus, the ID for the event is
composed from the ID of the publisher that sent it and its
local ID given by the order number.

3.2.3. Home-Broker In this algorithm each client is as-
signed a home broker. On amovein , a client reconnects
to its physically closest broker. The client, however, recon-
nects logically to its home broker. Subscriptions remain on
the home broker, which keeps receiving events through the
regular multicast mechanism. The home broker then for-
wards these events to the client using unicast messages.

Home-broker gains by not migrating subscriptions
and rebuilding the multicast tree, at the expense of not send-

ing events through the shortest path. Note that there is uni-
cast traffic even when the client is connected.

3.2.4. Subscriptions-on-deviceSubscription migration is
an important component of state transfer. If the mobile de-
vice has enough resources, it locally stores the subscrip-
tions, it can directly send the subscriptions to the new bro-
ker upon reconnection. This way, the old broker does not
need to transfer the subscriptions to the new broker. The ap-
plicability of this method depends on the number of sub-
scriptions that a client has, the resources of the mobile de-
vice, and whether the user wishes to use than one device.

3.2.5. DiscussionIt should be noted that these optimiza-
tions make minimal assumptions about the underlying sys-
tem. They can be used with any type of distributed pub-
lish/subscribe system. Moreover, the optimizations can be
combined. For example, subscriptions-on-the-device can be
combined withprefetching or logging .

4. Analysis of Optimizations

In this section we develop an analytical model to rea-
son about the number of unicast messages required to sup-
port a mobile client under thestandard mobility algo-
rithm introduced in Section 3.1. We then use this model to
discuss the effects that the optimizations proposed in Sec-
tion 3.2 have on the message overhead. Our analysis is in-
dependent of the underlying network topology that connects
brokers and the matching algorithm used by brokers.

To a first approximation, the total number of messages
required to support a reconnecting mobile client is equal to
the sum of two quantities: the cost to migrate subscriptions
and the cost to forward queued events. Equation 1 reflects
this relationship.

total msg cost = subs msg cost+
event msg cost

(1)

Equation 2 models the message cost to migrate subscrip-
tions, which is a linear function of the number of subscrip-
tions the mobile client has. For each subscription (s), three
messages are transmitted: one message describing the sub-
scription is sent from the old to the new broker, one sub-
scription message is sent by the new broker to the network
of brokers, and one unsubscription message is sent by the
old broker to the network of brokers. (Each of these mes-
sages can actually take multiple overlay hops.)

Some implementations may require an additional mes-
sage to ensure that the subscription migration is atomic and
that all events are reliably delivered to the client. The ex-
tra message, sent from the new to the old broker, guaran-
tees that the old broker does not stop logging (and forward-
ing) events before the new broker has a chance to register
for event delivery. On the other hand, for some systems it

may be possible to save one message per subscription by
storing subscription information in the mobile client itself.
Upon reconnection, subscriptions are sent to the new bro-
ker from the subscriber instead of the old broker.

Covering optimizations (as described in Section 2) may
reduce the cost of migrating subscriptions by obviating the
need for brokers to send messages to subscribe and unsub-
scribe to events. Equation 2 incorporates the effects of cov-
ering optimizations by calling on the binary functioncov-
erage, which takes as arguments a subscription (s) and a
broker (old, new), and returns 0 if the subscription is cov-
ered by some other subscription at the broker (eliminating
the need to send a message), and 1 otherwise. There can be
multiple implementations of thecoveragefunction; ranging
from implementations that closely mimic specific covering
algorithms, to those based on simple probabilistic models.

subs msg cost =
∑n

s=1
(1 + 1 ∗ coverage(s, old)
1 ∗ coverage(s, new))

(2)

The message cost to forward stored events is a function
of the length of the disconnection period and the sum of the
publication rates of the events to which the mobile client
subscribes. Equation 3 captures this relationship. The dis-
connection time for thestandard protocol is shown in
Equation 4. The terms for Equation 4 are derived from the
diagram shown in Figure 2, wheret3 represents the inter-
val between the time the mobile client disconnects from the
old broker and the time it reconnects to the new broker, and
t4 is the time it takes to migrate subscriptions and forward
queued events from the old to the new broker.

event msg cost =

n∑
e=1

rate(e) ∗ disconnection time (3)

disconnection time = t3 + t4 (4)

4.1. Reducing Message Cost

We now consider the effects of the optimizations pro-
posed in Section 3.2 on the above equations. Two of the
optimizations (prefetching andhome-broker) rep-
resent opposite extremes in the eagerness with which sub-
scriptions migrate between brokers, while the third opti-
mization (logging) reduces the message count by adding
a negative term to Equation 3.

Prefetching and home-broker change the pub-
lish/subscribe system’s perception of the length of time the
client remains disconnected (thedisconnection time term
in Equation 3). The systemperceivesa mobile client as
reconnected once subscriptions have been migrated to the

new location, and events can be delivered to the client us-
ing the standard event delivery mechanisms (i.e., multicas-
ting). Conversely, the publish/subscribe systemperceivesa
mobile client as disconnected as long as events are being
stored or forwarded for this client by the broker holding the
client’s subscriptions. Therefore, theperceivedlength of the
disconnection period can differ (depending on the mobil-
ity algorithm) from the actual time span the mobile client
spends physically disconnected from the network.

Prefetching reduces the number of stored events
that need to be propagated by eagerly migrating subscrip-
tions to a predicted destination broker. By migrating sub-
scriptions early,prefetching makes the disconnection
interval perceived by the publish/subscribe system equal to
just t2 in Equation 4. In reality, the mobile client remains
disconnected until the end oft3, but the publish/subscribe
system becomes aware of the mobile client migration, and
starts delivering events (by means of multicasting) to the
new broker, by the end of periodt2.

While successful prefetching can significantly reduce the
message cost to support a mobile client, a failure in pre-
dicting the mobile client’s destination increases the overall
number of messages sent by the system. A failed prefetch
incurs (in vain) the cost of transferring all subscriptions, as
well as all events logged in periodt2. Moreover, subscrip-
tions and events logged duringt3 andt4 have to be trans-
ferred from the miss-predicted broker to the broker to which
the mobile client actually reconnects. To increase the prob-
ability of predicting the correct destination, it is possible to
migrate the subscriptions to several target brokers. While
the cost of migrating the subscriptions grows linearly with
the number of predicted broker destinations, this cost can
still be significantly smaller than the costs related to miss
prediction. Moreover the extra cost to the publish/subscribe
network of replicating subscriptions in different brokers is
limited as it would likely result in small (if any) increases
in the multicast traffic used to propagate events.

Logging reduces the number of stored events that need
to be forwarded between brokers by exploiting subscription
locality in the system. (Locality refers to the correlation of
subscriptions at different parts of the network.) By logging
recently seen events, it is possible to obviate the need to for-
ward events that the mobile client shares with other clients
serviced by the new broker. We account for the reduction
in messages resulting from logging by adding a negative
term to the event message cost (see Equation 5). The num-
ber of logged events is hard to model analytically as it de-
pends on several factors including the size of the event log,
the event arrival rate, and the event locality.

event msg cost =
∑n

e=1
rate(e)

∗disconnection time
−logged events

(5)

The home-broker approach eliminates subscription
migration between brokers, sosubs msg cost becomes
zero.Home-broker makesdisconnection time equal to
t3. However,home-broker increases the perceived dis-
connection time by extending this period to include all time
the mobile client is not directly connected to its home bro-
ker. Note that as long as the client is connected through a
broker other than its home broker, events must be forwarded
from the home broker to the client.Home-broker can be
beneficial when the event rate is very low and the rate at
which the client roams between brokers is high enough that
messages needed for rebuilding the multicast tree outnum-
ber those messages needed to forward events.

4.2. Limitations

While the model described here helps in understanding
the costs and benefits of the various mobility algorithms, it
is not sufficient to predict results. For example, the terms
coverage andlogged events in Equations 2 and 5, respec-
tively, are difficult to derive analytically. In addition, the
model only quantifies the number of messages that must be
sent, not the number of hops these messages travel. The lat-
ter is a more accurate measure of network load and depends
on the mobility patterns of clients. Due to these limitations
of the analytical model, we carry out several simulations in
the next section and analyze these results.

5. Evaluation

In this section we first discuss the factors that affect
the evaluation of a distributed publish/subscribe system that
supports mobility. We then present an experimental evalua-
tion of the algorithms introduced in Section 3.

5.1. Parameters

There are several factors that must be considered when
designing or evaluating a distributed publish/subscribe sys-
tem supporting mobility. We classify these factors into three
categories: network, mobility, and application. Note that
several of these factors are also issues in publish/subscribe
systems that do not support disconnected operation.

Network characteristics are those concerned with the
network infrastructure:

• Bandwidth and latency of the links in the network.
This includes the links between brokers and those be-
tween brokers and clients. Faster links can perform
state transfer quicker.

• Placement of brokers. This is related to availability
and load balancing issues: it is important to place more
brokers where user demand is high. Moreover, strate-
gic placement of brokers can help isolate traffic in the

network when publishers and subscribers exhibit inter-
est locality.

• Broker topology. Intuitively, the taller the topology,
the longer events potentially take to get up to the root
and down to the leaves. In contrast, a wider topol-
ogy increases the load on each broker since it serves
a greater number of neighbor (descendant) brokers.

• Number of brokers in the system. With an increased
broker density, physical mobility is more likely to lead
to network mobility, that is, the need to connect to a
different broker. The state transfer costs resulting from
this network mobility, will therefore increase.

Mobility characteristics are related to the movement and
disconnection patterns of users:

• Connection and disconnection times. Long discon-
nections result in higher unicast state transfer cost.

• Mobility patterns . It is possible to develop optimiza-
tions tuned for certain mobility patterns. For example,
with a repetitive pattern we can predict user movement,
and thus use theprefetching optimization. Other
optimizations might take advantage of group mobility
patterns where a large number of users (perhaps with
common subscription interest) move together.

Application specific characteristics are associated with
the nature of publishers, subscribers, publications and sub-
scriptions:

• Number of publishers and subscribers. The implica-
tions of this factor are captured in several other factors
below. For example, an increase in the number of pub-
lishers would increase the aggregate publication rate.
An increase in the number of subscribers, would in-
crease aggregate mobility, that is, the total number of
state transfers in the system, and can lead to an increase
or decrease in subscriber and interest locality.

• Publishing rate. A higher publication rate increases
the regular publish/subscribe multicast traffic, as well
as the number of events that must be stored during a
disconnection period and then unicast during the state
transfer protocol upon reconnection.

• Specificity of subscriptions. A very general subscrip-
tion will increase the number of events that must be
delivered to the subscribing client.

• Subscriber locality. This relates to whether sub-
scribers tend to be localized to a set of brokers
or spread throughout the network. It is also con-
cerned with the (network) distance between sub-
scribers and the publishers publishing events they are
interested in. This can influence the balance of load
across the brokers in the network.

• Subscription (interest) locality. This looks at the cor-
relation of subscriptions in the network. Ourlog-
ging approach, for example, benefits when clients at
the same broker have similar subscriptions.

• Event (publication) size. The contents of a publica-
tion might consist of only the predicates describing
that event, or might include other data such as a video.
Larger publications lead to more traffic during the state
transfer protocol.

5.2. Experiments

We developed three mobility scenarios: commute, per-
vasive, and random. The commute scenario depicts users
commuting from work to their homes. It is characterized by
medium to large disconnection periods. The pervasive sce-
nario depicts users who experience short disconnection pe-
riods while moving. The random scenario reflects average
subscriber behavior as all parameters are selected uniformly
from their respective value ranges. Below we describe our
experimental setup and metrics, and then discuss the exper-
iments in detail.

5.2.1. MethodologyWe performed all our experiments
using the ns2 network simulator [5]. We extended ns2 with
thestandard mobility algorithm described in Section 3.1
and the three optimizations presented in Section 3.2.

Designing realistic experiments to evaluate pub-
lish/subscribe systems is hard. The developing pub-
lish/subscribe field has yet to produce realistic values for
many important parameters discussed in Section 5.1. More-
over, it is difficult to obtain real-world traces for these
tests. Cellular phone companies, for example, are under-
standably hesitant to divulge information on the mobility
or disconnection patterns of their users. Despite these ob-
stacles, we have tried to design scenarios we feel are repre-
sentative of applications for which these systems would be
deployed. We have attempted to choose sensible parame-
ter values in each scenario.

We simulate a network with 64 brokers distributed across
a city. These brokers are the leaves of a tree of height 4 and
degree 4. Conceptually, the first few leaf brokers are located
at the west end of the city, the next few in downtown and the
last few in the east end. Each broker services a 0.5km range,
so the 64 brokers service a 32km wide city. Each publisher
is randomly assigned one of 27 unique events, which it pub-
lishes once every minute. Likewise, each subscriber ran-
domly subscribes to one of 40 subscriptions at the begin-
ning of the experiment. The first 27 of these subscriptions
exactly match one of the 27 publications. Of the remaining
subscriptions, 9 match 3 publications each, 3 match 9 pub-
lications each, and one matches all publications. These last
13 subscriptions can be used to evaluate the covering opti-

Parameter Value
num brokers 85
num leaf brokers 64
brokerheight 4
brokerdegree 4
broker log size 1000 events
num publishers (pi) 100
event(pi) rand(1,27)
rate(pi) 1 every minute
num subscribers (si) 200, 400, 600, 800

Table 2. Common experimental parameters

mization. The relatively small number of distinct subscrip-
tions is sufficient for these experiments. We are not con-
cerned with local matching time so a large number of com-
plex subscriptions is not necessary. Furthermore, these sub-
scriptions are sufficient to vary the subscription locality in
different parts of the network. These parameters are sum-
marized in Table 2. The clients’ mobility patterns vary with
each scenario and are described in the respective sections.

We measure the cost of supporting disconnected opera-
tion in terms of the message overhead introduced by state
transfer. We consider regular messages to be those deliv-
ered using multicast, and the overhead is the unicast mes-
sages used to migrate subscriptions and forward events.

5.2.2. Commute ScenarioIn this scenario we simulate
the evening commute home. Users are connected to the
company network while at work, disconnect for their com-
mute home, and reconnect at home. Publishers are ran-
domly placed in one of the 10 inner (downtown) brokers.
Each subscriber is assigned one of the 40 subscriptions and
subscribes to this at the beginning of the experiment. Sub-
scribers then disconnect and start their commute sometime
between 4:00pm and 6:00pm, and reconnect at home after
some time. Some subscribers live in the city center and ar-
rive home sooner than those that live in the outskirts. The
parameters are summarized in Table 3.

Figure 3 shows howstandard , prefetching ,
logging , andhome-broker compare in terms of the
state transfer message overhead. Theprefetching re-
sults assume perfect prediction. Forlogging we use a log
size of 1,000 events. The overhead is expressed as the ra-
tio of state transfer (unicast) vs. regular (multicast) mes-
sages over the length of a simulation run.

Home-broker ’s overhead is by far the highest, and in-
creases with the subscriber population. We explain this poor
performance in the analysis for Figure 5. Among the re-
maining approaches,standard performs the worst, and
also increases with subscriber population. An important re-
sult here is the almost 80% overhead ofstandard with
800 clients. This means that introducing mobility to a net-

Parameter Value
num publishers 100
broker(pi) rand(10 downtown brokers)
subscription(si) rand(1, 40)
startbroker(si) rand(20 downtown brokers)
moveout(si) rand(4pm, 6pm)
endbroker(si) for 40% ofsi:

rand(30 downtown brokers)
for 60% ofsi:
rand(remaining brokers)

movein(si) for 40% ofsi:
moveout(si) + rand(15min, 45min)

for 60% ofsi:
moveout(si) + rand(45min, 90min)

Table 3. Commute scenario parameters

 0

 1

 2

 3

 4

 5

 6

 7

 200 400 600 800

M
es

sa
ge

 o
ve

rh
ea

d
ra

tio

Number of subscribers

Standard

Logging

Prefetching

Home-broker

Figure 3. Avg. overhead (Commute scenario)

work built with enough capacity to service a non-mobile
publish/subscribe system will require almost doubling the
network capacity.Prefetching , by transferring state
early, has almost no overhead in this scenario, because the
periods of disconnection are large and the traffic required to
migrate subscriptions is much smaller than the event traf-
fic during the disconnection period.Logging improves on
standard by partially replacing unicast state transfer with
multicast by leveraging logging and subscription locality.

In Figure 4 we show the peak overhead instead of the av-
erage overhead as in Figure 3. In the commute scenario the
peak overhead occurs between 5:00pm and 5:30pm, which
is when the number of concurrent state transfers is high-
est. As expected, the relative performance of each approach
is comparable to the average case. But it is interesting that
during the peak time, the message overhead almost triples
as compared to the average case, and more than quadruples
in the case ofhome-broker . Looking at absolute values,

 0

 5

 10

 15

 20

 25

 30

 200 400 600 800

M
es

sa
ge

 o
ve

rh
ea

d
ra

tio

Number of subscribers

Standard

Logging

Prefetching

Home-broker

Figure 4. Peak overhead (Commute scenario)

standard incurs a 230% overhead for the population of
800 clients. This means that the situation is worse than we
indicated earlier; introducing mobility in this scenario re-
quires network administrators to more than triple the net-
work capacity to handle peak usage periods. Also, handling
mobility at the network layer (whichhome-broker tries
to emulate), leads to more than 25 times the peak load with
800 clients—clearly an infeasible solution.

In this scenario, for thestandard and logging ap-
proaches, we found that the portion of the unicast state
transfer protocol devoted to subscription migration is less
than 1%, so most of the overhead is due to the transfer of
stored events. Theprefetching overhead is almost fully
due to subscription migration and some constant overhead
of the state transfer protocol. Note that there are no mobil-
ity induced subscriptions in thehome-broker approach.

The commute scenario has up to 10% of subscribers con-
currently performing state transfer. Thus we see that serving
even only a fraction of disconnected users can increase the
network cost considerably. Consequently, supporting dis-
connected users will require provisioning much higher net-
work bandwidth compared to what is required for support-
ing only connected users.

In Figure 5 we plot the message cost over time with
800 subscribers. We see that the message cost ofstan-
dard and logging closely tracks the number of con-
current clients executing state transfers. This figure helps
explain the dismalhome-broker performance. After all
clients have reconnected, the other three approaches have
identical costs, since they rebuild the multicast tree and
events are multicast to clients. Withhome-broker , how-
ever, events are still unicast from the home-broker to the
client. This large and sustained unicast, which persists even
after reconnection is whyhome-broker performs poorly.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 15:00 pm 16:00 pm 17:00 pm 18:00 pm 19:00 pm
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

N
um

be
r

of
 s

ta
te

 tr
an

sf
er

s

Time

Standard
Logging

Prefetching
Home-broker

Figure 5. Total cost (Commute scenario)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 200 400 600 800

M
es

sa
ge

 o
ve

rh
ea

d
ra

tio

Number of subscribers

Standard

Logging

Prefetching

Home-broker

Figure 6. Avg. overhead (Random scenario)

5.2.3. Random ScenarioIn this scenario, each subscriber
is randomly assigned to one of the 27 subscriptions each of
which exactly matches one of the 27 publications. Each sub-
scriber alternates between periods of connection and dis-
connection, with each period varying uniformly between 10
and 30 minutes. While disconnected, the subscriber moves
at a randomly chosen speed of 5km/h (walking or cycling),
50km/h (city driving), or 100km/h (highway driving). The
disconnection period and speed together with a randomly
chosen direction of movement (east or west) determine the
broker that the subscriber reconnects to.

In Figure 6 we see similar trends and relative perfor-
mance of the four approaches.Standard with 800 clients
has virtually 100% overhead. The smallprefetching
overhead is due to the protocol messages for switching
from the old to the new location and transfer of any events
that arrive while switching over. Since the switch-over usu-
ally happens immediately after disconnection, the number

 0

 2

 4

 6

 8

 10

 12

 30 60 90

M
es

sa
ge

 o
ve

rh
ea

d
ra

tio

Interest locality (%)

Standard

Logging

Prefetching

Home-broker

Figure 7. Effect of locality (Random scenario)

of events that need to be exchanged is usually very small.
The other three algorithms have considerably more over-
head. We observe that thelogging overhead increases
marginally with larger population. Larger populations have
more users interested in the same content andlogging
can take advantage of that, whereas the other approaches
cannot. With 800 clients, thelogging overhead is less
than 70% that ofstandard .

We try to improve on this by varying the interest local-
ity for a population of 800 users. To achievex% locality,
x% of the subscribers have identical interest (subscription)
and the remaining have a disjoint and random interest. With
increasing locality it becomes increasingly advantageous to
log events since more users can benefit. We note in Figure 7
that unlike the other approaches, the message cost forlog-
ging decreases with increasing interest locality. We also
see that that with appropriate subscription locality,log-
ging matches the performance ofprefetching .

The log size determines the effectiveness oflogging .
In Figure 8 we show the overhead oflogging as we
vary the log size. We observe that when the log size is in-
creased from 800 to 1200 events, thelogging overhead
decreases only marginally regardless of the population size,
so thelogging performance in previous figures (which
used 1,000 events) can not be improved much.

Similar to the commute scenario, here subscription mi-
gration represents about 2% of the unicast state transfer pro-
tocol traffic in thestandard and logging approaches.
Again, the overhead ofhome-broker is completely due
to stored and forwarded events, and stored events have a
negligible impact on theprefetching overhead.

5.2.4. Pervasive ScenarioAt the other end of the spec-
trum of disconnected operation, the pervasive scenario re-
flects an environment where devices are able to maintain

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800

M
es

sa
ge

 o
ve

rh
ea

d
ra

tio

Number of subscribers

log size 0

log size 400

log size 800

log size 1200

Figure 8. Effect of log size (Random scenario)

 0

 1

 2

 3

 4

 5

 200 400 600 800

M
es

sa
ge

 o
ve

rh
ea

d
ra

tio

Number of subscribers

Standard

Logging

Prefetching

Home-broker

Figure 9. Avg. overhead (Pervasive scenario)

connectivity as they roam. Here, disconnection periods are
very short but more frequent.

The mobility patterns in this scenario are almost iden-
tical to the random scenario. In the random scenario, a
subscriber disconnects from the source broker and recon-
nects to the destination broker when traveling between these
brokers. In this scenario, the subscriber remains connected
while traveling, by connecting in turn to the intermediate
brokers between the source and destination brokers. This is
akin to the handoffs between cells in a cellular network.

In Figure 9 we compare the four approaches in the per-
vasive scenario. We see thathome-broker approach still
has the highest overhead, but the other approaches all per-
form equally well. Short disconnection periods result in lit-
tle state at any broker, and thusstandard andlogging
perform comparably well toprefetching . Only sub-
scriptions and unsubscriptions contribute to the overhead in

these three approaches. The overhead ofhome-broker is
completely due to stored and forwarded events.

In this scenario, we found that subscription migration ac-
counts for about 60% of the unicast state transfer protocol
traffic in thestandard and logging approaches. This
percentage is even higher forprefetching . This implies
that a subscription-on-device approach would be beneficial
in this scenario. However, one can argue that such an ap-
proach diminishes usability. Notably, it discourages the user
from using more than one device; storing subscriptions at
the brokers relieves the user from having to keep subscrip-
tions consistent across all devices.

5.2.5. Advertisements and CoveringsAdvertisements
and covering are optimizations used to reduce subscrip-
tion traffic in distributed publish/subscribe systems (see
Section 2). Because mobility results in additional sub-
scriptions and unsubscriptions as the users connect to
and disconnect from the network, we expected advertise-
ments and covering to substantially reducing message over-
head. We found this not to be the case. This is due to the
lack of locality in our scenarios, and the fact that mo-
bility costs are dominated by the forwarding of stored
events in the commute and random scenarios. For exam-
ple, in the random scenario with800 clients (see Fig-
ure 6), subscriptions and unsubscriptions represent only
2% of traffic of forwarding stored events. While cover-
ing and advertisements do reduce some of the overhead,
their overall effect is negligible.

6. Related Work

The work in this paper is part of the Toronto Pub-
lish/Subscribe System (ToPSS) project of the Middle-
ware Systems Research Group (MSRG). In addition to the
Mobile-ToPSS research presented in this paper, other re-
lated projects in the MSRG include research into local
matching in publish/subscribe systems [3], Approximate-
ToPSS [15], Semantic-ToPSS [17], Location-ToPSS [6],
and P2P-ToPSS [20].

The publish/subscribe matching problem has been in-
vestigated extensively [13, 1, 12]. This work concentrated
on devising efficient algorithms for matching in centralized
publish/subscribe systems. Scalability concerns prompted
researchers to look at distributed publish/subscribe [9, 11,
4]. Common to all of them is the use of a network of bro-
kers which rely on multicast protocols for efficient dissemi-
nation of events. These approaches, however, focus on sce-
narios applicable to non-mobile clients.

SIENA [7, 8], JEDI [11], and ELVIN [18] have added ex-
tensions to support disconnected operation. However, these
approaches lack substantial quantitative analysis to evaluate
the large scale effects of mobility. In contrast to the quan-
titative evaluation we present in this paper, evaluations of

these systems focus either on the portability and flexibility
of the system, or present experimental results for small net-
works of brokers (e.g., 3 brokers). Moreover, we proposed
and evaluated a set of optimizations that reduce the over-
head associated with supporting mobile clients.

Mobile IP [16] uses the concept of a home agent to han-
dle mobile clients. Each IP client has a home agent associ-
ated with it. When some node wants to communicate with
this client, it contacts the node directly. When the node is
roaming, the home agent (transparently) redirects the con-
nection to the new location of the mobile client. This ap-
proach is equivalent to thehome-broker optimization
presented in Section 3.2.3.

Multicasting support for mobile clients in a general con-
text has been an active area of research [14]. Existing ap-
proaches usually assume that mobile users retain network
connectivity while they move. Our work, on the other hand,
assumes that users can be temporarily disconnected while
they move between brokers. The longer disconnection peri-
ods result in more state information that needs to be trans-
fered between brokers.

7. Conclusions and Future Work

The scale of unicast traffic arising from the mobility of
subscribers in the publish/subscribe system has not been
previously studied. We presented an evaluation of the net-
work cost associated with supporting mobile clients in a dis-
tributed publish/subscribe system. Our experiments reveal
that the unicast traffic used to support mobile clients, on av-
erage, can double the load on the network even when only
up to 10% of clients are mobile. During the peak times, the
load spikes are triple the non-mobility load. In the scenarios
we evaluated, the mobility costs are dominated by the for-
warding of stored events, while the message overhead in-
curred by subscriptions and unsubscriptions is small.

We described and evaluated several optimizations that
reduce the cost of supporting mobile subscribers.Pre-
fetching can virtually eliminate the overhead,log-
ging reduced overhead to 70% ofstandard in the
random scenario, and we saw that with sufficient local-
ity, logging can approach the performance of the ideal
prefetching optimization. We also showed that han-
dling mobility at the network layer (as emulated by
home-broker) is likely infeasible as it needs more than
a 25 times capacity increase to handle peak loads.

There is much work to be done in this area. While re-
searching this topic, we quickly became aware that there
are countless parameters to consider. We were unable to
find “realistic” values for these parameters. Consequently,
one significant area for future work is to obtain real-world
usage patterns and scenarios. This includes communication
link speeds, mobility patterns (how fast, and where client

move), the number of brokers and clients, the publication
rate, the distribution of events and subscriptions, the local-
ity of clients (how close publishers and subscribers are to
each other), subscription locality, and publication locality.
Acquiring such data, however, might be difficult until the
distributed publish/subscribe paradigm is adopted by indus-
try. Thus, in the short term, we plan to devise and eval-
uate scenarios that are inherently different from the com-
mute scenario, including ones where subscribers’ interests
change over time and publishers are mobile.

In continuing research, we wish to examine not just mes-
sage costs but also how increased unicast traffic affects mes-
sage delivery latencies. Another area for future work is to
develop a protocol to perform state transfer in a multicast
fashion. An extension to thelogging approach where in-
termediate brokers would cache the events transferred dur-
ing state transfer, might be able to achieve this. We would
also like to investigate the covering and advertisements op-
timizations further.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and
T. D. Chandra. Matching events in a content-based sub-
scription system. InSymposium on Principles of Distributed
Computing, pages 53–61, 1999.

[2] M. Altinel and M. J. Franklin. Efficient filtering of XML
documents for selective dissemination of information. In
Proceedings of the 26th VLDB Conference, 2000.

[3] G. Ashayer, H. Leung, and H.-A. Jacobsen. Predicate match-
ing and subscription matching in publish/subscribe systems.
In DEBS’02 Workshop at ICDCS’02 (DEBS’02), Vienna,
Austria, 2002.

[4] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao,
R. E. Strom, and D. C. Sturman. An efficient multicast proto-
col for content-based publish-subscribe systems. InInterna-
tional Conference on Distributed Computing Systems, 1999.

[5] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, P. H.
A. Helmy, S. Mc-Canne, K. Varadhan, Y. Xu, and H. Yu. Ad-
vances in network simulation.IEEE Computer, 33:59–67,
May 2000.

[6] I. Burcea and H.-A. Jacobson. L-ToPSS - push-oriented lo-
cation based services. InProceedings of the 2003 Workshop
on Technologies for E-Services, Lecture Notes in Computer
Science. Springer, 2003.

[7] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and
evaluation of a support service for mobile and wireless pub-
lish/subscribe applications. Technical Report CU-CS-944-
03, Department of Computer Science and University of Col-
orado, Jan. 2003.

[8] M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal anal-
ysis of clients mobility in the Siena publish/subscribe mid-
dleware. Technical report, Department of Computer Science
and University of L’Aquila, Oct. 2002.

[9] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service.ACM

Transactions on Computer Systems, 19(3):332–383, Aug.
2001.

[10] A. Carzaniga and A. L. Wolf. Content-based networking:
A new communication infrastructure. InNSF Workshop on
an Infrastructure for Mobile and Wireless Systems, number
2538 in Lecture Notes in Computer Science, pages 59–68,
Scottsdale, Arizona, Oct. 2001. Springer-Verlag.

[11] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-
based infrastructure and its application to the development
of the OPSS WFMS.IEEE Transactions on Software Engi-
neering, 27(9), 2001.

[12] Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter: Efficient
and scalable filtering of XML documents. InProceedings of
ICDE2002, 2002.

[13] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. Ross,
and D. Shasha. Filtering algorithms and implementation for
very fast publish/subscribe systems. InSIGMOD Confer-
ence, 2001.

[14] K. Keeton, B. A. Mah, S. Seshan, R. H. Katz, and D. Fer-
rari. Providing connection-oriented network services to mo-
bile hosts. InProceedings USENIX Symposium on Mobile
& Location-Independent Computing, pages 83–102, August
1993.

[15] H. Liu and H.-A. Jacobsen. A-ToPSS - a publish/subscribe
system supporting approximate matching. InVery Large
Databases (VLDB’02), University of Toronto, August 2002.

[16] C. E. Perkins and D. B. Johnson. Mobility support in IPv6.
In Proceedings of 2nd ACM Conference of Mobile Comput-
ing and Networking, 1996.

[17] M. Petrovic, I. Burcea, and H.-A. Jacobsen. S-ToPSS - a se-
mantic publish/subscribe system. InVery Large Databases
(VLDB’03), Berlin, Germany, September 2003.

[18] P. Sutton, R. Arkins, and B. Segall. Supporting disconnect-
edness - transparent information delivery for mobile and in-
visible computing. InCCGrid 2001 IEEE International Sym-
posium on Cluster Computing and the Grid, 2001.

[19] Talarian Inc. Publish-subscribe middleware helps di-
rect traffic of Olympic proportions. http://messageq.
ebizq.net/communicationsmiddleware/talarian2.html.

[20] D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-
based publish/subscribe systems with distributed hash ta-
bles. In International Workshop On Databases, Informa-
tion Systems and Peer-to-Peer Computing, Berlin, Germany,
September 2003.

