Sharing Economy

Making Supply Meet Demand
Preface

Sharing economy refers to a market model that enables and facilitates the sharing of access to goods and services. For example, Uber allows riders to share a car. Airbnb allows homeowners to share their extra rooms with renters. Groupon crowdsources demands, enabling customers to share the benefit of discounted goods and services, whereas Kickstarter crowdsources funds, enabling backers to fund a project jointly. Unlike the classic supply chain settings in which a firm makes inventory and supply decisions, in a sharing economy, supply is crowdsourced and can be modulated by a platform. The matching-supply-with-demand process in a sharing economy requires novel perspectives and tools to address challenges and identify opportunities.

This edited book examines the challenges and opportunities arising from today’s sharing economy from an operations management perspective. Individual chapter authors present state-of-the-art research that examines the general impact of sharing economy on production and consumption, the intermediary role of a sharing platform, crowdsourcing management, and various context-based operational problems.

Toronto, Canada Ming Hu
March 2018
Acknowledgments

This book cannot exist without the strong commitment of our colleagues. I am grateful to each of the contributing authors for sharing their cutting-edge research with us. I would like to thank Professor Chris Tang, the editor of the Springer Series in Supply Chain Management, who has encouraged me to work on this book. I am grateful to Mirko Janc for typesetting each chapter exceptionally carefully and rigorously.

This work was financially supported by the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2015-06757]; the National Natural Science Foundation of China (NSFC) [Grant No. 71772006]; the Rotman School of Management, University of Toronto; and the program of Guanghua Thought Leadership at Guanghua School of Management, Peking University.
Contents

1 **Introduction** ... 1
 Ming Hu
 1.1 Overall Structure ... 1
 1.2 Chapter Highlights ... 2
 1.2.1 Part I: Impact of Sharing Economy 2
 1.2.2 Part II: Intermediary Role of a Sharing Platform 3
 1.2.3 Part III: Crowdsourcing Management 6
 1.2.4 Part IV: Context-Based Operational Problems in
 Sharing Economy ... 7
 References.. 8

Part I Impact of Sharing Economy

2 **Peer-to-Peer Product Sharing** ... 11
 Saif Benjaafar, Guangwen Kong, Xiang Li, and Costas Courcoubetis
 2.1 Introduction.. 12
 2.2 Literature Review .. 15
 2.3 Model Description.. 17
 2.3.1 Matching Supply with Demand 19
 2.4 Equilibrium Analysis... 21
 2.4.1 Impact of Collaborative Consumption on
 Ownership and Usage 22
 2.4.2 Impact of Collaborative Consumption on Consumers ... 25
 2.5 The Platform’s Problem.. 26
 2.5.1 The For-Profit Platform 27
 2.5.2 The Not-for-Profit Platform 29
 2.5.3 Systems with Negative Externalities 31
 2.5.4 The Impact of Extra Wear and Tear and
 Inconvenience Costs ... 33
 2.6 Concluding Comments.. 33
 References.. 35

3 The Strategic and Economic Implications of Consumer-to-Consumer Product Sharing
Baojun Jiang and Lin Tian

3.1 Introduction

3.2 Modeling Framework

3.3 Effects of Sharing on Firm's Pricing Strategy, Profit, and Consumer Surplus

3.4 Effects of Sharing on Product Quality and Distribution Channel

3.4.1 Effects of Sharing on Product Quality

3.4.2 Effects of Sharing on Distribution Channel

3.5 Conclusions and Discussions

References

4 Operational Factors in the Sharing Economy: A Framework
Tunay I. Tunca

4.1 Introduction

4.2 The Framework

4.3 Examples

4.3.1 Ride Sharing

4.3.2 Group Buying

4.4 Concluding Remarks

References

5 Ride Sharing
Siddhartha Banerjee and Ramesh Johari

5.1 Introduction

5.2 Anatomy of a Modern Ridesharing Platform

5.2.1 Timescales

5.2.2 Strategic Choices

5.2.3 Operation and Market Design

5.3 A Modeling Framework for Ridesharing Platforms

5.3.1 Modeling Stochastic Dynamics of the Platform

5.3.2 Platform Controls

5.3.3 Platform Objectives

5.3.4 Local Controls and Closed Queueing Models

5.3.5 Modeling Endogenous Entry of Drivers

5.4 Analyzing the Model: Key Findings

5.4.1 Fast-Timescale Control of Platform Dynamics

5.4.2 The Slow Timescale: Pricing and Driver Entry

5.5 Related Literature

5.6 Conclusion

References
Part II Intermediary Role of a Sharing Platform

6 The Role of Surge Pricing on a Service Platform with Self-Scheduling Capacity 101
Gerard P. Cachon, Kaitlin M. Daniels, and Ruben Lobel
6.1 Introduction .. 102
6.2 Literature Review ... 103
6.3 Model ... 105
6.4 Profitability of Commission Contract 108
6.5 Impact of Dynamic Prices on Consumers 110
6.6 Conclusion ... 111
References ... 112

7 Time-Based Payout Ratio for Coordinating Supply and Demand on an On-Demand Service Platform 115
Jiaru Bai, Kut C. So, Christopher S. Tang, Xiqun (Michael) Chen, and Hai Wang
7.1 Introduction .. 116
7.2 Literature Review ... 117
7.3 A Model of Wait-Time Sensitive Demand and Earnings Sensitive Supply ... 119
 7.3.1 Customer Request Rate \(\lambda \) and Price Rate \(p \) 120
 7.3.2 Number of Participating Providers \(k \) and Wage Rate \(w \) .. 120
 7.3.3 Problem Formulation ... 122
7.4 The Base Model .. 122
 7.4.1 Special Case 1: When the Payout Ratio \(w/p \) Is Fixed... 124
 7.4.2 Special Case 2: When the Service Level Is Exogenously Given ... 125
7.5 Numerical Illustrations Based on Didi Data 127
 7.5.1 Background Information 127
 7.5.2 Number of Rides and Drivers Across Different Hours ... 128
 7.5.3 Travel Distance and Travel Speed 128
 7.5.4 Pricing and Wage Rates 129
 7.5.5 Strategic Factors and Their Implications 130
 7.5.6 Numerical Examples for Illustrative Purposes 130
7.6 Conclusion ... 134
References ... 135

8 Pricing and Matching in the Sharing Economy 137
Yiwei Chen, Ming Hu, and Yun Zhou
8.1 Introduction .. 138
 8.1.1 Two-Sided Pricing ... 138
 8.1.2 Two-Sided Matching .. 138
 8.1.3 Pricing and Matching Under Strategic Behavior 140
8.2 Two-Sided Pricing and Fixed Commission 141
 8.2.1 The Price and Wage Optimization Problem 141
 8.2.2 The Fixed Commission Contract 143
 8.2.3 Numerical Study .. 145
8.3 Dynamic Matching with Heterogeneous Types 146
 8.3.1 Priority Properties of the Optimal Matching Policy 147
 8.3.2 Bound and Heuristic ... 151
8.4 Pricing and Matching with Strategic Suppliers and Customers 153
 8.4.1 Upper Bound of the Intermediary’s Optimal Profit 157
 8.4.2 A Simple Dynamic Policy: Asymptotic Optimality 158
8.5 Conclusion ... 163
References .. 163

9 Large-Scale Service Marketplaces: The Role of the Moderating Firm .. 165
 Gad Allon, Achal Bassamboo, and Eren B. Çil
 9.1 Introduction ... 165
 9.2 Literature Review ... 168
 9.3 Model Formulation ... 170
 9.4 No-Intervention Model .. 171
 9.4.1 Characterization of SPNE 173
 9.5 Operational Efficiency Model .. 175
 9.5.1 Characterization of the Market Equilibrium 178
 9.6 Communication Enabled Model 185
 9.6.1 Characterization of the (δ, ϵ)-Market Equilibrium 186
 9.7 A Marketplace with Non-identical Agents 188
 9.8 Conclusion ... 189
References .. 191

10 Inducing Exploration in Service Platforms 193
 Kostas Bimpikis and Yiagios Papanastasiou
 10.1 Introduction .. 193
 10.2 Related Literature ... 194
 10.3 Illustrative Example ... 197
 10.4 Benchmark Model ... 198
 10.5 Inducing Exploration .. 199
 10.5.1 Strategic Information Disclosure 202
 10.5.2 The Value of Information Obfuscation 205
 10.5.3 Minimizing Regret .. 206
 10.5.4 Incentivizing Customers Using Payments 208
 10.6 Promising Directions .. 210
 10.6.1 Learning in Dynamic Contests 210
 10.6.2 Dealing with Misinformation 212
 10.7 Concluding Remarks .. 213
References .. 214
Ying-Ju Chen, Costis Maglaras, and Gustavo Vulcano

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Background and Motivation</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Overview of Results</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Literature Review</td>
</tr>
<tr>
<td>11.2</td>
<td>Model</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Description of the Market</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Problems to Address</td>
</tr>
<tr>
<td>11.3</td>
<td>Asymptotic Analysis of Marketplace Dynamics</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Background: Revenue Maximization for an $M/M/1$ Monopolistic Supplier</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Setup for Asymptotic Analysis</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Transient Dynamics via a Fluid Model Analysis</td>
</tr>
<tr>
<td>11.3.4</td>
<td>State-Space Collapse and the Aggregate Marketplace Behavior</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Limit Model and Discussion</td>
</tr>
<tr>
<td>11.3.6</td>
<td>A Numerical Example</td>
</tr>
<tr>
<td>11.4</td>
<td>Competitive Behavior and Market Efficiency</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Suppliers’ First-Order Payoffs and the Capacity Game</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Suppliers’ Second-Order Payoffs and the Pricing Game</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Centralized System Performance</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Competitive Equilibrium</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Coordination Scheme</td>
</tr>
<tr>
<td>11.4.6</td>
<td>Simulation Results</td>
</tr>
<tr>
<td>11.5</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>

References 248

12 Operations in the On-Demand Economy: Staffing Services with Self-Scheduling Capacity .. 249
Itai Gurvich, Martin Lariviere, and Antonio Moreno

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>12.2</td>
<td>Model</td>
</tr>
<tr>
<td>12.3</td>
<td>Analysis</td>
</tr>
<tr>
<td>12.3.1</td>
<td>The Cost of Self Scheduling</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Earnings Constraint and Agent Flexibility</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Time-Varying Demand</td>
</tr>
<tr>
<td>12.3.4</td>
<td>The Benefit of Flexible Capacity</td>
</tr>
<tr>
<td>12.4</td>
<td>Variants of the Base Model</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Volume-Dependent Compensation Schemes</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Price-Dependent Newsvendor</td>
</tr>
<tr>
<td>12.4.3</td>
<td>When Maintaining a Larger Pool Costs More</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Period-Dependent Threshold Distributions</td>
</tr>
<tr>
<td>12.5</td>
<td>Concluding Remarks</td>
</tr>
</tbody>
</table>

References 277
13 On Queues with a Random Capacity: Some Theory, and an Application .. 279
Rouba Ibrahim
13.1 Introduction ... 279
13.2 Theoretical Background: Queues with Uncertain Parameters 281
13.2.1 Self-Scheduling Servers: A Binomial Distribution 284
13.2.2 What Do the Asymptotic Results Mean? 285
13.3 Self-Scheduling Agents: A Long-Term Staffing Decision 289
13.3.1 The Model ... 289
13.3.2 Fluid Formulation .. 290
13.3.3 Optimal Staffing Policy 291
13.4 Short-Term Controls ... 294
13.4.1 Delay Announcements: Performance Impact 295
13.5 Joint Control of Compensation and Delay Announcements 299
13.6 Jointly Optimizing Long and Short-Term Controls 302
13.6.1 Low Minimum Wage 302
13.6.2 High Minimum Wage 303
13.7 Conclusions ... 303
Technical Appendix ... 304
References .. 315

Part III Crowdsourcing Management

14 Online Group Buying and Crowdfunding: Two Cases of All-or-Nothing Mechanisms 319
Ming Hu, Mengze Shi, and Jiahua Wu
14.1 Introduction ... 319
14.2 Consumer Behavior Under All-or-Nothing Mechanisms 322
14.2.1 Empirical Model .. 323
14.2.2 Results .. 325
14.2.3 Potential Mechanisms Behind Threshold Effects 331
14.3 Coordination Under All-or-Nothing Mechanisms 333
14.3.1 Information Disclosure 333
14.3.2 Pricing ... 339
14.4 Conclusion .. 344
References .. 345

15 Threshold Discounting: Operational Benefits, Potential Drawbacks, and Optimal Design 347
Simone Marinesi, Karan Girotra, and Serguei Netessine
15.1 Introduction ... 348
15.2 Literature Review .. 350
15.3 The Model .. 352
15.3.1 Preliminaries ... 352
15.3.2 The Traditional Approach: Seasonal Closure or Regular Discounting ... 353
15.3.3 Threshold Discounting .. 357
15.3.4 Comparing Threshold Discounting with the
Traditional Approach .. 361
15.3.5 Impact of Strategic Customers on Threshold
Discounting Performance 364
15.3.6 Mediated Threshold Discounting 366
15.3.7 Design Considerations in Threshold Discounting
Offers .. 369
15.4 Discussion .. 375
References ... 376

16 Innovation and Crowdsourcing Contests 379
Laurence Ales, Soo-Haeng Cho, and Ersin Körpeoğlu
16.1 Introduction ... 379
16.2 A General Model Framework for Innovation Contests 382
16.3 A Brief Taxonomy of Contest Literature 388
16.4 Contests with Uncertainty 390
16.4.1 Optimal Award Scheme 390
16.4.2 Open Innovation and Agents’ Incentives 392
16.5 Contests with Heterogenous Agents 395
16.5.1 Optimal Award Scheme 396
16.5.2 Open Innovation and Agents’ Incentives 397
16.6 Conclusion and Future Research 400
References ... 405

Part IV Context-Based Operational Problems in Sharing
Economy

17 Models for Effective Deployment and Redistribution of Shared
Bicycles with Location Choices 409
Mabel C. Chou, Qizhang Liu, Chung-Piaw Teo, and Deanna Yeo
17.1 Introduction ... 410
17.1.1 Review of the Bicycle-Sharing Systems 410
17.1.2 Research Issues and Structure of the Chapter 412
17.2 The Stochastic Network Flow Model 413
17.2.1 Equilibrium State in Time Invariant System 417
17.2.2 Bicycle-Sharing System Design with Location Choice .. 419
17.3 Bicycle Sharing as Substitute for Train Rides 420
17.3.1 Bicycle Deployment and Utilization 421
17.3.2 Number of Bicycle Docks Needed 424
17.3.3 Effectiveness of Bicycle Redistribution 425
17.4 Case Study on Bicycle Sharing with Location Decisions .. 427
17.5 Concluding Remarks ... 432
References ... 434
18 Bike Sharing ... 435
Danil Freund, Shane G. Henderson, and David B. Shmoys
18.1 Introduction ... 435
18.2 Data and Statistical Challenges 439
18.3 Motorized Rebalancing ... 442
18.3.1 User Dissatisfaction Function 442
18.3.2 Optimal Allocation Before the Rush 443
18.3.3 Resulting Routing Problems 445
18.4 Allocating Capacity ... 448
18.4.1 Model formulation .. 449
18.4.2 Long-Run Average 450
18.4.3 Measuring the Impact 451
18.5 Beyond Motorized Rebalancing 452
18.5.1 Incentives ... 452
18.5.2 Valets and Corrals .. 453
18.6 Expansion Planning ... 454
18.7 Conclusion ... 456
References .. 457
19 Operations Management of Vehicle Sharing Systems 461
Long He, Ho-Yin Mak, and Ying Rong
19.1 Introduction ... 461
19.2 Service Region Design ... 464
19.2.1 Basic Model .. 464
19.2.2 Customer Adoption .. 466
19.2.3 Operational Profit ... 467
19.2.4 Numerical Results .. 471
19.3 Fleet Sizing ... 472
19.3.1 Two-Stage Stochastic Optimization Model 472
19.3.2 Numerical Results .. 473
19.4 Fleet Repositioning .. 474
19.4.1 Stochastic Dynamic Program Formulation 475
19.4.2 The 2-Region System 477
19.4.3 The \(\mathcal{N} \)-Region System 479
19.5 Other Topics .. 479
19.5.1 Dynamic Pricing .. 481
19.5.2 Reservation Management 481
19.6 Discussion .. 482
References .. 483
20 Agent Pricing in the Sharing Economy: Evidence from Airbnb 485
Jun Li, Antonio Moreno, and Dennis J. Zhang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>485</td>
</tr>
<tr>
<td>20.2</td>
<td>Literature Review and Hypothesis Development</td>
<td>487</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Literature Review</td>
<td>487</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Hypotheses Development</td>
<td>489</td>
</tr>
<tr>
<td>20.3</td>
<td>Empirical Setting and Data</td>
<td>491</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Empirical Setting: The Airbnb Platform</td>
<td>491</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Airbnb Data: Listings and Transactions</td>
<td>491</td>
</tr>
<tr>
<td>20.4</td>
<td>Performance of Professional vs. Nonprofessional Hosts: Econometric Specifications and Results</td>
<td>494</td>
</tr>
<tr>
<td>20.4.1</td>
<td>Daily Revenue</td>
<td>494</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Occupancy Rate and Average Rent Price</td>
<td>496</td>
</tr>
<tr>
<td>20.4.3</td>
<td>Exit Probability</td>
<td>498</td>
</tr>
<tr>
<td>20.5</td>
<td>Understanding the Differences in Performance</td>
<td>498</td>
</tr>
<tr>
<td>20.6</td>
<td>Conclusion</td>
<td>501</td>
</tr>
</tbody>
</table>

References | 502 |

21 Intermediation in Online Advertising 505
Santiago R. Balseiro, Ozan Candogan, and Huseyin Gurkan

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>Introduction</td>
<td>506</td>
</tr>
<tr>
<td>21.1.1</td>
<td>Main Contributions</td>
<td>507</td>
</tr>
<tr>
<td>21.1.2</td>
<td>Literature Review</td>
<td>507</td>
</tr>
<tr>
<td>21.2</td>
<td>Optimal Contracts for Intermediaries in Online Advertising</td>
<td>509</td>
</tr>
<tr>
<td>21.2.1</td>
<td>Mechanism Design Problem</td>
<td>511</td>
</tr>
<tr>
<td>21.2.2</td>
<td>Optimal Mechanism Characterization</td>
<td>514</td>
</tr>
<tr>
<td>21.2.3</td>
<td>Economic Insights</td>
<td>517</td>
</tr>
<tr>
<td>21.3</td>
<td>Multi-stage Intermediation in Display Advertising</td>
<td>519</td>
</tr>
<tr>
<td>21.3.1</td>
<td>Equilibrium Characterization</td>
<td>521</td>
</tr>
<tr>
<td>21.3.2</td>
<td>Economic Insights</td>
<td>523</td>
</tr>
<tr>
<td>21.4</td>
<td>Concluding Remarks</td>
<td>527</td>
</tr>
</tbody>
</table>

References | 527 |
Contributors

Laurence Ales Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

Gad Allon University of Pennsylvania, Philadelphia, PA, USA

Jiaru Bai School of Management, Binghamton University, Binghamton, NY, USA

Santiago R. Balseiro Columbia University, New York, NY, USA

Siddhartha Banerjee Cornell University, Ithaca, NY, USA

Achal Bassamboo Northwestern University, Evanston, IL, USA

Saif Benjaafar Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN, USA

Kostas Bimpikis Graduate School of Business, Stanford University, Stanford, CA, USA

Gerard P. Cachon The Wharton School, University of Pennsylvania, Philadelphia, PA, USA

Ozan Candogan University of Chicago, Chicago, IL, USA

Xiqun (Michael) Chen College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China

Ying-Ju Chen School of Business and Management & School of Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong

Yiwei Chen Carl H. Lindner College of Business, University of Cincinnati, Cincinnati, OH, USA

Soo-Haeng Cho Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

Mabel C. Chou Department of Analytics and Operations, NUS Business School, National University of Singapore, Singapore, Singapore
Eren B. Çil University of Oregon, Eugene, OR, USA

Costas Courcoubetis Engineering and Systems Design, Singapore University of Technology and Design, Singapore, Singapore

Kaitlin M. Daniels Olin Business School, Washington University in St. Louis, St. Louis, MO, USA

Daniel Freund Cornell University, Ithaca, NY, USA

Karan Girotra Cornell Tech, New York, NY, USA

Huseyin Gurkan Duke University, Durham, NC, USA

Itai Gurvich Cornell Tech, New York, NY, USA

Long He NUS Business School, National University of Singapore, Singapore, Singapore

Shane G. Henderson Cornell University, Ithaca, NY, USA

Ming Hu Rotman School of Management, University of Toronto, Toronto, ON, Canada

Rouba Ibrahim University College London, London, UK

Baojun Jiang Olin Business School, Washington University in St. Louis, St. Louis, MO, USA

Ramesh Johari Stanford University, Stanford, CA, USA

Guangwen Kong Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN, USA

Ersin Körpeoğlu School of Management, University College London, London, UK

Martin Lariviere Kellogg School of Management, Evanston, IL, USA

Jun Li Ross School of Business, University of Michigan, Ann Arbor, MI, USA

Xiang Li Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, MN, USA

Qizhang Liu Department of Analytics and Operations, NUS Business School, National University of Singapore, Singapore, Singapore

Ruben Lobel Airbnb, San Francisco, CA, USA

Costis Maglaras Columbia Business School, New York, NY, USA

Ho-Yin Mak Saïd Business School, University of Oxford, Oxford, UK

Simone Marinesi The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
Antonio Moreno Harvard Business School, Boston, MA, USA
Serguei Netessine The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
Yiango Papanastasiou Haas School of Business, University of California, Berkeley, CA, USA
Ying Rong Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China
Mengze Shi Rotman School of Management, University of Toronto, Toronto, ON, Canada
David B. Shmoys Cornell University, Ithaca, NY, USA
Kut C. So The Paul Merage School of Business, University of California, Irvine, CA, USA
Christopher S. Tang Anderson School, University of California, Los Angeles, Los Angeles, CA, USA
Chung-Piaw Teo Department of Analytics and Operations, NUS Business School, National University of Singapore, Singapore, Singapore
Lin Tian School of Management, Fudan University, Shanghai, China
Tunay I. Tunca Robert H. Smith School of Business, University of Maryland, College Park, MD, USA
Gustavo Vulcano School of Business, Universidad Torcuato di Tella, Buenos Aires, Argentina
Hai Wang School of Information Systems, Singapore Management University, Singapore, Singapore
Jiahua Wu Imperial College Business School, Imperial College London, London, UK
Deanna Yeo Department of Analytics and Operations, NUS Business School, National University of Singapore, Singapore, Singapore
GE Healthcare, Singapore, Singapore
Dennis J. Zhang Olin Business School, Washington University in St. Louis, St. Louis, MO, USA
Yun Zhou DeGroote School of Business, McMaster University, Hamilton, ON, Canada