Supplemental Note

“Pricing and Matching with Forward-looking Buyers and Sellers”

A. Auxiliary Properties

This section discusses some useful auxiliary properties that will be used for the analysis in this

paper.

LEMMA S.1. If (ICd’) and (IRA) hold, then for any ¢,
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Proof of Lemma S.1. Define ut(¢,ys) = %U‘i(qb, Ys). Applying the envelope theorem, we have:
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where the first equality follows from Fubini’s theorem and the envelope theorem (specifically,
Theorem 2 of Milgrom, P, I Segal. 2002. Envelope theorems for arbitrary choice sets. Econometrica
70(2) 583-601), the second equality follows from the definition of u?(-) and U%(¢,ys) = vgmy —
Py —b(sy —ty), and the inequality follows from (IRd) for ¢,. Consequently,

o [Po] = VB [my] —E_4 [U (¢7y¢)] —bE_4[(s6 —14)]
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where the first equality follows from the definition of U9(-), the first inequality follows from
(S.1). O
LEMMA S.2. If (ICd’) and (IRA) hold, then
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Proof of Lemma S.2. We have that
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where the inequality follows from Lemma S.1. We now prove that the right hand side of the above

is the desired quantity by changing the order of integration:
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where the second and the fourth equalities follow from the fact that v, is independent of ¢4, and

the third equality follows from an exchange in the order of integration that

/ / Jdv' f(vg)dv :/ / fH(vs)dvsE_g [my ] dv’
vp=uv Jv'=v v'=p Juu=v’

= /, Fd(U/)E_¢ [m%,} dU/

TR
, )

B /%—v ?d((;)j)) B [mo] fd(%)d%- U

E_y [my ]fd(v')dv




LEmMA S.3. If (ICs’) and (IRs) hold, for any v,
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Proof of Lemma S.3. Define u®(¢,y) £ afw U*(1,y). Applying the envelope theorem, we have:
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where the first equality follows from Fubini’s theorem and the envelope theorem (specifically,
Milgrom and Segal 2002, Theorem 2), the second equality follows from the definition of u*(-) and
U*(+), and the inequality follows from (IRs) for z. Consequently,
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> cyE_y [my] +/ E_y [my,, ] de’ +hE_; [(sy —ty)],
C :C¢

where the first equality follows from the definition of U®(-), the first inequality follows from
(S.2). O

LeEMMA S.4. If (ICs’) and (IRs) hold, then
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Proof of Lemma S.4. We have that
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where the inequality follows from Lemma S.3. We now prove that the right hand side of the above

is the desired quantity by changing the order of integration:
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where the second and the fourth equalities follow from the fact that ¢, is independent of ¢,,, and
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LEMMA S.5. u* and J* are increasing in A* and \*, respectively.

Proof of Lemma S.5. (1) In this part, we prove that u* and J* are increasing in \%.

Consider any two market conditions with A\¢ and A4, where A\{ < A\4. The subscript (1 or 2) in
all following notation denotes the index of the market environment that the intermediary operates
at. Therefore, we need to show pj; > py and J3 > Jy.

The proof of u} > ui is as follows.

For p € [0,min {A{,A*}] N [0, min {4, A\*}] = [0, min {A{, \*}], we have



Vo (1) = Vi () = V* (Fd"l (/\;LT» ~ve (Fd’_l <)\§T>> =0,

where the inequality follows from Assumption 1. In addition, Assumptions 1 and 2 imply that
Vi (p) is decreasing in p. Therefore, py > ui.

The proof of J; > J; is as follows.

Given the optimal prices p} and w; in market environment 1 with \¢, we construct prices p, and
w, for market environment 2 with A4, where A\{F? (py) = A F4 (p*) and w, = wi.

Therefore, J; > ATpy F? (py) — N Two F* (wy) = MNTpo F (pt) — N Twi F* (wr) > N{Tpi Fé (pt) —
XNTwiF* (wi) = J;. The first inequality follows from the property that p, and w, are feasible but
not necessarily optimal solutions to the optimization problem (D). The first equality follows from
the definitions of p, and w,. The second inequality holds since the condition that A\{ < A4 implies
P < Do

(2) In this part, we prove that u* and J* are increasing in A,

Consider any two market conditions with A{ and A3, where Aj < A5. The subscript (1 or 2) in
all following notation denotes the index of the market environment that the intermediary operates
at. Therefore, we need to show u} > u; and J5 > J7.

The proof of s > u7 is as follows.

For p € [0,min {A", A{}] N [0, min {A%, A5}] = [0, min {A?, A{ }], we have

Va(p) = Vi () =—V* (Fs’_l <)\5T>> s (F&_l (MMT» =0

where the inequality follows from Assumption 2. In addition, Assumptions 1 and 2 imply that

Vi (p) is decreasing in p. Therefore, ps > pi.

The proof of J; > J; is as follows.

Given the optimal prices p; and wj in market environment 1 with Aj, we construct prices p, and
wy for market environment 2 with A3, where p, = p; and ASF* (wy) = \; F'® (wy).

Therefore, J; > A Tp, F (py) — NsTwo F* (wy) = NTp F (pt) — N Twi F* (w?) > XNTpi Fé (pr) —
NsTwi F* (w}) = Ji. The first inequality follows from the property that p, and w, are feasible but
not necessarily optimal solutions to the optimization problem (D). The first equality follows from
the definitions of p, and w,. The second inequality holds since the condition that A{ > A4 implies

wyj < wy. Therefore, J* is increasing in A\*. [



B. Proofs for §5
Proof of Proposition 1. Note that F¢(-) has the inverse F%~!(-) and F*(-) has the inverse

F*~!(.). Then we can prove the result in the quantile space. Define qf 2 pd (ﬁf) and R(qf) £
#dF? (7#d). Then
dnd dm Fe () dfy
/(LAY Ad d = 7d ¢ (7
R(qt)_dgF(t) f( )dfi__<7rt_fd(ﬁ’§)>f(7rt)dq;
Fd (74)\ dFd Fd(#d
— <ﬁf— . (T§)> (;Tt) =7 — % (8:3)
fa(rd) dg fi(7f)

Hence, Assumption 1 implies that R(q) is concave in ¢, since #¢ decreases in ¢¢. Similarly, define
£ e (77) and O(q5) £ 77 F* (#%). Analogously, we can show that Assumption 2 implies that C(q)
is convex in q.

Optimization problem (D) is equivalent to the following optimization problem:

T T
maX{qﬁl,th6[0,1]:Vte[o,T]}/0 )\dR(qg)dt_/o )\Sc(qts)dt

s.t. Mgl =Nq;, Vtelo,T).
The optimization problem above is equivalent to the following optimization problem

max a4y T (A'R(g") = A*C(g")) (S.4)

s.t. NTq? = NT¢.

To compute the optimal solution to the optimization problem (S.4), denoted as (¢*%,¢"*), we
define a new variable = A\%T'q?. Now, we can write the optimization problem (S.4) in the following

tractable form with respect to py:

max T (MR (1) -3¢ (5)) (S.5)
st p€ [0,min {\T, AT} .

In the optimization problem (S.5), for the objective function, we have

CZLT (xR <A5T> NC ()\MT>> —F (XILT) - (A5T> =V

Recall that R(q) is concave in ¢ and C(q) is convex in g. Hence,




a7 (' (i) - () <o

In addition, we notice that

7 R (5ig) e ()

Therefore, the optimal solution to the optimization problem (S.5), denoted as p*, is given by the

following equation:

W= max{u € [O,min{)\dT, )\ST}] : dCLT </\dR (%) - A°C <)\5T>> > 0}

= max {p € [0, min {\T,\*T}] : V () >0} .

Therefore, the optimal value of the optimization problems (D) and (S.4) is J* = (p* — w*) p*.

Next, we prove p* > w*. This result immediately follows from properties that

where the second inequality follows from Equation (2). O
Proof of Lemma 2. Consider the optimal solution of optimization problem (B),
{x;w 1, € HT}. Define mj = ZweHT zy, , and mj, = Z¢GHT - Hence, mj,my, € {0,1}. We

have
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The first inequality follows from the property that b,h > 0. The second equality holds for any
n € R. The fourth equality follows from the definitions of V¢ (v,) and V* (¢,). The second inequality

follows from the property that m},m;, € {0,1}.

Define
Fi(v) }
d(, A -
g (n) =maxqve|v,v:v— <n,.
o 2maxfoe oo -
Following from the property that - (F?(v)(v—mn)) = —f%(v) (v — ?5((;’)) —17) and Assumption 1,
we have
g'(n) € argmax F(v)(v—n).
ve|v,v

Define

g*(n) émax{ce lc,e]:c+ F{e) < 77}-

kﬁ
»
—
<
~

Following from the property that - (F*(c)(c—n)) = f*(c) <c+ 700 —17) and Assumption 2, we
have
9°(n) € arg min I *(e)(e—=n).
cel¢e,C
We have

Jo" = NT E +MTE

O R R (sl

AT / ;d(n) (U P n> pioyo-xT o <c+ o) _ n> FH(e)de

 f(w) e f2(e)
= MTF* (g"(n)) (9%(n) —n) = XTF*(g°(n)) (¢°(n) — n) (S.6)
= max T (XF'v)(v—n)=NF*(c)(c—n)). (S.7)

v€(v,0],c€[c,c]

The first equality is due to Wald’s identity. The second equality follows from the definitions of g¢(n)
and g¢*(n). The third equality is due to fvﬁ:gd(m (v Fd(”))fd(v)dv = fvﬁ:gd(n) (wfi(v) — F(v))dv =

RO
f::gd(n) vfi(v)dv—vF(v)) )~ fvv:gd('r]) vfi(v)dv = g%(n)F?(g%(n)) by integration by parts, and
analogously, fcg:sin) (c+ 1;: ((z))) fe(e)de = g*(n)F*(g°(n)). The fifth equality follows from properties

that g%(n) € arg mMax,c(, 5 Fi(v)(v—n) and g°(n) € arg min,(, 4 F* (c)(c—mn).



By setting ¢¢ = Fé(v), R(q%) 2 vF(v), ¢ £ F*(c), and C(¢*) = cF*(c), Equation (S.7) can be

written in the following way:

max T (A (R(q") —ng?) = A*(C(¢°) —ng”)) - (S.8)

q%,q5€[0,1]

Optimization problem (S.8) is a Lagrangian relaxation of the optimization problem (S.4). Recall

from the proof of Proposition 1 that the objective function in (S.8) is concave in (¢%, ¢*). In addition,

the solution (¢¢,¢°) = (W’/\d%w) satisfies conditions that ¢%,¢* € (0,1) and NTq? = \*T¢°.

Therefore, Slater’s theorem (strong duality theorem) implies

Therefore,

U
Proof of Theorem 1. (i) Under policy 7V¥P | given that all other buyers ¢ # ¢ and all sellers

T WFP M8 WFP M8

W
behave myopically, buyer ¢’s best response stopping rule 7; and purchasing rule ag

can be calculated by solving the following optimization problem:

sup €U () |27 (1,0) 0.

T¢E[t¢,T]
a¢6{0,1}

Denote by y7' buyer ¢’s myopic policy, where 7" =1, and a}' =1{v, > p*}. Consider any y4 with
Ty € [ty, T] and a, € {0,1}. We have

ﬂ;\ZFPd ([t¢_)+74
ﬂ_XZFPd (I.,) ] [ Vg —p ) my —b(1, —ty) WX;/FP d (It¢)+,¢]

TFZZFP “ (Itas*)Jr 74

E\U(¢,90) |7, (T, )" ,4 E[v¢m¢ Ps—b(s5—1t4)

To

=E (v¢ - ﬂ'WFP’d> mey —b(sy —ty)

WXIFPd (I%) ,cb] E[(v¢ p) Mg

WFPd (It¢—)+,¢:|,

< E |(vo—p") my—b(rs—ty)

— E|v (6u3) |

where the second inequality follows from the greedy matching policy that if 753 > 75 and ay = a4 =1,

then mj <my, and the property that 74 > t,.
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WFP WFP
M8 M8

Therefore, buyer ¢’s best response is 7, =ty and ag =1{v, >p*}.

(ii) The proof is analogous to part (i), expect that the expectations are not conditional on
(L))" O

Proof of Proposition 2. (a) We denote N = > sent L{vg > p*} and Ny = > wemt 1{cy Sw'}
Hence, N is a Poisson random variable with parameter A% F (p*) = p* %, and N} is a Poisson
random variable with parameter AtF* (w*) = p*%.

First, we analyze the price process on the demand side. For the unmatched supply-demand
quantity I,_ = N7 — N, we have E[[,_] =E[N; | —E[N{] =0 and Var[l,_] = Var [N} | +

Var [N{L] = Q“T*t Therefore, for any k € [0,1), we have
I, < O)

1 . t 1, . t
Pr (It>—2p*mm{k,1—T} It§0> =1-Pr <It§—2,u mln{k,l—T}

Pr (I, <—1p*min{k,1-L})

—1-
Pr(l;_ <0)

>1-2Pr | L,_ < L i k,1 t

—2Pr ( I,_ < —=p*min - =
= t— = 2:“ ) T
>1- 16t .

,u*min{kﬂ,(l—%) }T

1 16

wr min{k‘Q, (1- %)2}

The first inequality follows from the symmetry property that for any n € N, P([,_=n) =
P (I,- =—n). Thus, P(I;- <0) > ;. The second inequality follows from Chebyshev’s inequality.
The third inequality follows from the property that ¢t <T.

Consider any k € [0,1). Define AN £ N3 mqersrry — Vi Hence, E[AN?] = Var[AN;] =

m:

p*min {k,1— L£}. Therefore, we have

* 3 _i
PI‘(AN;Zlu*mln{k71_t}> 21_ 1% mll’l{]{f,l T} 2
! r (s min {k, 1= £} — 3o min (k. 1~ £)

*

I
(e min (k1= 5} — g min {5, 1= £
4

- w* min{kQ, (1- %)2}

The first inequality follows from Chebyshev’s inequality. The second inequality follows from the
property that min {k,1— £} <1.
For any t € [0,T), define A, £ {I,_ € (—ip*min{k,1— L} 0] and AN; >y min{k,1-L}}
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and AS £ {I,_ < —Ip*min{k,1— L} or AN; < Lp*min{k,1—L}}. Hence,

Pr (./42‘75@ :t,’l)¢ Zp*,_[t, < 0) =1-Pr (At‘t(j) :t,’l)¢ Zp*,_[t, < 0)

1 . t
=1-Pr <It>2y*m1n{k,1T} It§0>
s 1 * e 3
-Pr[ AN} 2§u min k:,l—f
1 4
<1—|1- 0 5 1-— 5
,u,*min{kQ,(l—%) } M*min{kﬂ,(l—%) }

20

,u*min{kQ, (1- %)2}

IN

In addition, we notice that Pr(Aty=t,vs>p*, I, <0) < 1. Therefore,

c _ * : 20
Pr(A¢t, =t,v, >p*, I, <0) < mln{#*min{w’(l%)z},l}.

Therefore, for any t € [0,T"), we have

Elsy —tslts =t,v5>p", I, <0]
=E[sy —tylto =t v, >p", Li- <0, A]-Pr(Aifty =t,vs >p", I, <0)
+E[sy —tylts =t,vs>p", I, <0, A7]-Pr(Aflty =t,vs >p*, I, <0)
<min{kT, T —t}-14+T-Pr(Alty=t,vs >p", I;— <0)

20

w min{k‘Q, (1- %)2}’

< min{k7T,T —t} + T min
For any t € [0,7), we have

Pr(mg=1|ty, =t v, >p*, I, <0) > Pr(Alt, =t,v, >p*,I,_ <0)

=1-Pr(Aflts=t,vs>p", ;- <0)

20
> 1 —min ,1

p* min {kz, (1- %)2}

Therefore,

. . 20
E[$¢7 _t¢’t¢ :t,'U¢ Zp*ajt— S 0] - mln{kT,T—t}—i-Tmln{m,l}
Pr(mg =1ty =t,vs >p*, I, <0) ~ 1—min{ 20 L)2}71}
T

p* min{k2,(1—
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In addition, for any I;_ >0 and buyer ¢ with ¢, =t and v, > p*, we have sy, =t, and mg4 = 1.

Hence, for any I,_ >0,

=0.

Else —tglto=t,09>p" I, -] 0
Pr(my=1|t, =t,v, >p*, ;) 1

Therefore, for any t € [0,T),

Er [p =" = B, [p*— "L < 0] P (1 <0)
+E;,_ [p*—m"" L > 0] - P(I,- > 0)
min {kT,T —t} +Tmin{$ 1}

p*min{k2,(1—%)2}’

<b
. 20
1—mm{ﬁzﬁﬁﬁ:5ﬁJ}
As a special case, when b =0, we immediately have WXV FPd — o,

By doing the similar analysis for the price dynamics on the supply side, {7"¥F:*} except that

the probability and expectation are no loner conditional on I;_, for any ¢ € [0,7T), we have

i - w20
WFP,s * i {kT’T t} +Tmm{u* min{kQ,(l—%)Q}’l}
ﬂt wsh 20
1 min{ e e 1
As a special case, when h =0, we immediately have m,"""* = w*.

(b) Now, we prove the asymptotic result. Following from Equations (1) and (2) and Lemma S.5
that p* is increasing in A? and \*, respectively, we have p*™ >n2y*. By setting k) = ng—k/g, we

have that for any ¢ € [0,7),

bT 20 1
. *,(n) _ WEFP,d,(n) —
s o~ =40 < I (ks 2 ) =0 (1),

hT 2 1
lim sup w* (™ — VTP < <k+ 0 > —O( ) O

s 00 ne/3 M*k2 na/3

Proof of Theorem 2. The first inequality immediately follows from Lemma 2. Now, we prove
the second inequality. Under the waiting adjusted FP policy 7VFF, we denote by NI =
> sent 1{vs > p*} the number of buyers who arrive no later than time ¢ and request to buy the
product, and N £ vent 1{cy <w*} the number of sellers who arrive no later than time ¢ and
request to sell the product. Hence, N¢ is a Poisson random variable with parameter A\ F¢ (p*) =
p* %, and N; is a Poisson random variable with parameter A\*tF* (w*) = u*%. We denote by N, the

Poisson random variable with parameter p* .
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Therefore, under the waiting adjusted FP policy 7V¥F and the greedy policy M#, we have

g taME > vy > p 1 {my =11 = > w1 {ey <w}1{my =1}

¢eHT peHT
= (p* —w*) E [min { N{, Nj }]
E |:S¢—t¢‘t¢,’l)¢ Zp* ([t¢ ) }
—E[b

¢>€HT Pr (m¢ = Lltg,v5 2 p", (I1,-)

t¢|t¢,c¢<w]
h 1 <w'}1 =1
+ Z Pr ¢—1|tw,c¢§w ) feo swplim, =1}

>1{v¢>p p1{me =1}

=(p"—w ) [mln{Ng,N;}]
—E[b E[%—%\%% >p" (1e,-) }

sent Pr (m¢ =1ty vs > p*, (L, -)

) 1{v,>p*}E [ {my=1}ts,vs > p", (It¢—)+]

[y — tylty, cp <w?] . )
h 1{cy <w VE[L{my =1} |ty.cp <
+ ZPr (M = 1|ty cp < W*) {cy, W FE[L{my =1} |ty,cy <w?]

= (p* — w*) E [min { N{, N;. }| — E[b Z E [s¢ —tylts, v > D7, (It¢7)+} 1{v,>p"}

¢pcHT

+h Y Elsy —tyltyscp SwT1{ey §7~U*}}

weHT
— (v —w')E [min {NZ, N3 )] —E[ (50— to)+h 3 sw—t¢]
¢U¢>p ey <w*
= (p* —w") E [min { N, N3 }] E[ b Y 1{teltssgl}+h Y 1fte tw,sw]}dt]
qbv¢>p ey Sw*
(p" —w*)E [mln{Ng,Nr}} —E[ ) —i—h(NS td)+dt]
T

(p* —w")E [min { V&, N3 )] — / [b(N N R (N - N

(p* —w" E[u (v —Ngy* (u*—N%)ﬂ

T + ¢ + Nt ' A7
E b ,u*— +b<u*T—Nts> +h<Nt3—,u*T> —I—h(,u*T—Nt> dt

T

(p* — w* E[u (" = Nr)*] - (b+h)/t_0E <Nt—,u*,}>++<,u*;—Nt>+] dt
(p" —w” E[M —2(Np—p )++2(NT—N*)]

dt

_(b+h)/tT0E [2 (Nt—u*;y_ (M—wé)




14

:(p*—w*)E[u*—z(NT_ *)q (b+h)/TE[ <Nt_,ﬁt>+ dt

T
> (P —w)pt = (" —w) Vi b+h/ \/>dt

—(p*—w*)u*—<p —w +3(b+h) )x//T

Here the second equality follows from the definition of the waiting adjusted FP policy. The seventh
equality follows from the definition of the greedy matching policy. The first inequality follows from
the property that min{X,Y} >a—(a—X)" —(a—Y)" and the property that (X +Y )" < X+ 4+Y™*.
The ninth and tenth equalities follow from the property that X+ = X + (—X)". The eleventh
equality is due to E[N,] = p*%. The second inequality follows from Gallego and van Ryzin (1994)

Equation (18) that if X is a random variable with mean p and standard deviation o, then

E[(X_a)q < o’ +(a—p)?—(a—p)

2
Therefore,
gV mE . (p*—w)p — (p" —w +20b+h)T)/p*
J (p* —w) p*
2(b+h)T\ 1
:1—<1+(+) > -0
3 p* —w* \/,l?

Next, we do the asymptotic analysis. First, following from Equations (1) and (2) and Lemma
S.5 that u* is increasing in A? and \*, respectively, we have p*(™ > n2y*.

Second, we have p*( < min {A\“MT, A>T} =min {A\"n*T, A*n*T} < n®max {4, \*} T.

Third, following from Equations (1), (2), and (3) and Lemma S.5 that J* is increasing in A% and
\°, respectively, we have J*) > na J*,

Therefore,

9 . (n) 1
1+ (b+h)Th
J*y(n) M*,(n)

d \s
<1+ (b+h)T n max{):,)\ }T) 1
=0

neJ* nep*
(=)

where the first equality follows from Equation (3), the first inequality follows from three properties

OO

L 2 (b+h) 1
3p*7(n) _w*,(n) / n)

IN
D
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that we prove in this corollary above. [J

C. Proofs for §6
Proof of Theorem 3. (1) First, we prove that p* is increasing in A%
Consider any two market conditions with A and A4, where A¢ < AJ. The subscript (1 or 2) in all
following notation denotes the index of the market environment that the intermediary operates at.
First, we prove that pj > p;.
For i € {1,2}, define W; (v) £ V; (vAIT) and v} £ i /NIT.

For v e [O,min{l, i—;}] N {O,min{ )5 H {0 mm{ )5 H, we have
Wy (v) =Wy (v)=-V? <Fs’_1 ( ij)) +Ve <FS’_1 <Vf\\§l>> <0,

where the inequality follows from Assumption 2. In addition, Assumptions 1 and 2 imply that
W; (v) is decreasing in v. Therefore, v; < vf. Therefore, the demand-supply balancing condition
(1) implies that pj; = F&=1 (13) > F4=1 (v}) = pi.

Second, the property that pj > p directly follows from Lemma S.5.

Third, we prove that wj > w;.

The demand-supply balancing condition (1) and the above property that p} > p jointly imply
that wg = P>~ ($:) > Pt () = wy.

Finally, the property that Ji > J; directly follows from Lemma S.5.

(2) Consider any two market conditions with \{ and A5, where Aj < A\5. The subscript (1 or 2) in
all following notation denotes the index of the market environment that the intermediary operates
at.

First, we prove that w} <w;j.

For i € {1,2}, define W; (v) £ V; (vA3T) and v; = i /X T.

For v e [O,min{l, /A\%}] N {O,min{ > H {O,mln{ > H, we have
W (v) =Wy (v) =V (Fd’1 <1/i\\2>> — v <Fd’1 (Vi:i)) <0,

where the inequality follows from Assumption 1. In addition, Assumptions 1 and 2 imply that
W; (v) is decreasing in v. Therefore, v; < vf. Therefore, the demand-supply balancing condition
(1) implies that w} = F*~ (v3) < F*~ 1 (v]) =wi.

Second, the property that pj > p directly follows from Lemma S.5.
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Third, we prove that p; <pj.
The demand-supply balancing condition (1) and the above property that p} > p jointly imply
that py = Pt (4 ) < Pt () =i

Finally, the property that Ji > J; directly follows from Lemma S.5. [

D. Proofs for Appendix B

d * * s
Proof of Theorem 4. Following from Equation 1, we have pu* = V+29€d_p =% 72((3’;79 ). Hence,

p* =V +60¢—20%* and w* =C — 605 4 20°u*
Because buyer valuation and seller cost are uniformly distributed, for ;< [0,1], we have

V() = V(S (1) = Ve (F 1 () = VE(V + 0% — 20%0) — Vo (C — 6° 4267 )

= (V467 =209 — 2090) — (C — 65 +20°1+20° 1) =V — C — (4 — 1) (67 + 6) .

Hence, following from Equation (2), we have

Therefore, u* is decreasing in ¢ + 0°.

Next, we analyze the effects of §¢ and 0° on p*. We have

V-6 if 7 +60° <Y€
V-G (s 1) i e+ > 15C

2 \ gd4ps

p =V +0 200" =

Now, we analyze the monotonicity property of 6¢ < 9 +§L — 1) wr.t. 64 We have
2701 (deg - 1> % 1. Hence, 570 (edwg > >0 if 94 < <\/m—05)+ and
2701 (deg - 1> <0 if §¢ > (\/m—W) Hence, 6¢ (edwg - 1) is increasing in 6¢ ¢
[0, <\/m— 95)+] and decreasing in 6¢ > (W— 95> :

Therefore, p* is decreasing in 8¢ € [0, max { (% — 93)+ , (\/m — 95> ’ H and increasing

in 9dzmax{(vgc ~6°)", (\/m—es)+}.

In addition, because p* is decreasing in 6°, p* is increasing in 6°.

Next, we analyze the effects of ¢ and 6° on w*. We have
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C+0° if 044 6° < Y=<
C+ 4 ($5%-1) ifor+0 > 15¢

0d+0s

w*=C —0° +260° " =

* *

Analogous to the analysis for we have that w is  increasing in

o € [O,max{( —69)* (\/W o) H and  decreasing  in  6° >
max{(vgf_ed)i(m_ed) }

In addition, because pu* is decreasing in 6¢, w* is decreasing in <.

Next, we analyze the effects of #? and 6* on J*. We have

J=p—w)p=(V-C-02u —1)(6"+6°))

VOl if 0140 < V=C
(v—C+o?10°)° :

: d s vV-C
8(0d-+6) if 09+ 6° > T3

2
Now, we analyze the monotonicity property of the function W w.r.t. x € R.. We have
2
4 W=Ctn)® (V=0 1 Hence, & V=C*2" <(if z [0,V —C]and £ V=S > 0 if 2 >V - C.
Hence, W is decreasing in x € [0,V — C|] and increasing in x >V — C.

Therefore, J* is decreasing in ¢ +6°* € [0,V — C] and increasing in ? +6*>V —C. O

Proof of Theorem 5. Consider any two market conditions with 6, and 6, where 6, < 05. The
subscript (1 or 2) in all following notation denotes the index of the market environment that the
intermediary operates at.

(1) First, we prove that p; > p;.

For i € {1,2}, define W; (p) 2 V; (NTF (p)) and p; & F ( O )

T

For p € [Fld’_ (mln{)\d, }) ’] [_d (mln{/\d, }) 7] = [_d’_l (min /\d,l}) ], we have

f35) _ 0y fi(01p/02) ~ fi(@)
Ff() — 02 Ff(010/62) = Ff(p)’

that Igdl ((p )) is increasing in p. In addition, we have F¢(p) = F? (ép) > Fd(p), where the inequality

where the inequality follows from the condition 6, < 6, and the property

follows from the condition 6, < 6, and the property that F'¢(p) is decreasing in p.

Therefore, we have

W)~ W) = (v ) -1 o) - (v (P (emr ) ) - v (P (o)) ) <o

where the inequality follows from the above two properties and Assumption 2. In addition, Assump-
tions 1 and 2 imply that W, (p) is increasing in p. Therefore, p} > p3.

Second, we prove that uj > uj.
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The property that Assumptions 1 and 2 imply that V; (u) is decreasing in p, and the definition

of p; jointly imply that V; (u}) > 0. Hence, V¢ (Fld’_l ( O >> > 0. Thus, for p € [0,u}], we have

T

v (F 1 ( ,\dT)) >0, which follows from the property that V; (u) is decreasing in p.

Therefore, for u € [0, u;], we have

Va(w) = Vi) = Vi (B () ) - i (P (5))
B <F (3ez) - fg@f—/ﬁfw ) ( ) - qu‘/lAZW»)
- Zi (F 1 (G - fi (qu—/lA(ZAdT))) (Fld’l (o) - ff (Fdﬂ/lA(ZAdT)Q
= (1) (7 i) - ff(Fff-/lA(ZvT»)

= (5 ) (7 () =0

where the inequality follows from the condition that 6, < 05, and the property established above

that V2 (Fd -t (/\dT)) > 0. Therefore, pu3 > uj.

Third, we prove that wj > wy.

The demand-supply balancing condition (1) and the property above that pj > ui jointly imply
that wy = Fo~ (£ ) 2 Pt () = wi.

Finally, we prove that J; > J:.

Given the optimal prices p; and w7} in market environment 1 with 6;, we construct prices p, and
wsy for market environment 2 with 6,, where p, = p”{Z—2 and wy = w}. Hence, Fy (py) = F2 (pt).

Therefore, J5 > MNTpoFf(ps) — NTwoF*(wy) = MTpiFf(p;) — XNTwiF*(w)) >
NTps Fd (pt) — NTwi F* (w;) = J;. The first inequality follows from the property that p, and
wy are feasible but not necessarily optimal solutions to the optimization problem (D). The first
equality follows from the definitions of p, and w,. The second inequality follows from the condition
that 6, < 6,. Therefore, J; > J;.

(2) First, we prove that w} > w7.

For i € {1,2}, define W (w) 2V, (\TF? (w)) and wr 2 FF ( u )

AST )

For w € [O,Ff’fl <m1n{:\\:})] N [07F25,71 (mm{ij})} = {O,FQS’* <m1n{§f}>], we have

f5(w) 01 fi(01w/62) f1 (w)

where the inequality follows from the condition #; < 6, and the prop-

F5(w) — 03 F{(01w/02) — Ff(w)’
erty that u;f;((;”)) is decreasing in w. In addition, we have Fj(w) = F} <Z—;w> < F¥(w), where the

inequality follows from the condition ¢; < 6, and the property that F}(w) is increasing in w.
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Therefore, we have

W) - ) = (v (P () ) v (P (S ) ) ) - 0 ) - v ) 20

where the inequality follows from the two properties above and Assumption 1. In addition, Assump-
tions 1 and 2 imply that W; (w) is decreasing in w. Therefore, w} > wj.

Second, we prove that puj < uj.

For p € [0,min {\"T,\*T'}|, we have

Valw)=Vi(w) = Vs (B (555) ) + v (877 (555) )
== (77 )+ ) (0 ) o)
- (7 )+ rem) (57 G5+ srny)
=~ (g-1) (7 G+ ff(Ff%(;/AsT»)

= () (7 () <o

where the inequality follows from the condition that 6, < 6. Therefore, pus < p.

Third, we prove that p} > p;.

The demand-supply balancing condition (1) and the property above that u} < pj jointly imply
that ps = Fo1 ( s ) > fd.-1 </\u1 ) —pt.

Finally, we prove that J; < Jy.

Given the optimal prices p5 and wj in market environment 2 with 65, we construct prices p; and
w; for market environment 1 with 6,, where p; = p3 and w; = w3 91 . Hence, F3 (wy) = F} (wy).

Therefore, Ji > MNTp F?(p)) — XNTw Ff(w,) = )\dTpQFd (p3) — )ﬁTw;‘g—;FQS (wy) <
NTps e (ps) — MTwiF3 (w3) = J5. The first inequality follows from the property that p; and
w; are feasible but not necessarily optimal solutions to the optimization problem (D). The first
equality follows from the definitions of p; and w;. The second inequality follows from the condition

that 6; < 6,. Therefore, J_2* < jl*. O





