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Online Appendix to “Intertemporal Segmentation via

Flexible-Duration Group Buying”

A. Premium Group-Buying Product

Lemma A.1 (Customers’ Sign-up Behavior). For any θ ∕= 1 and N , if high-end (low-end)

customers sign up at state n (1 ! n ! N), then all high-end (low-end) customers sign up at any

subsequent state n′ (1! n′ ! n).

Proof of Lemma A.1. See online supplement. □

Proposition A.1 (No-Group-Buying Benchmarks). In the absence of group buying as an

option, there exists a threshold for the inventory holding cost, h̄1, such that

(i) if h! h̄1, it is optimal for the firm to offer both products by using the product-line strategy,

and high-end customers purchase the premium product while low-end customers purchase the

regular product;

(ii) if h> h̄1, the firm offers only the regular product,

(ii-1) when H/L! 1/γ, it is optimal for the firm to adopt the volume strategy, and both high-

and low-end customers purchase the regular product;

(ii-2) when H/L > 1/γ, it is optimal for the firm to adopt the margin strategy, and only

high-end customers purchase the regular product.

Proof of Proposition A.1. See online supplement. □

Proof of Theorem 1. Consider a customer with valuation v who arrives at pledge-to-go state

n (1! n!N). She would like to sign up if and only if v−p− c ·w(n)" 0. Denote the threshold for

customers’ valuation at state n as v̄n.

Note that v follows either a continuous or a discrete distribution. First, consider the case of a

general continuous distribution. We assume v ∈ [0, vm] with a finite upper bound vm or v ∈ [0,∞).

Thus, v̄n = p+ c · w(n), where w(n) = 1
λ

'n−1

k=1
1

F̄ (v̄k)
is the expected waiting time at state n and

F̄ (v) = 1−F (v). Then, define the difference between two neighboring thresholds as

∆vn ≡ v̄n+1 − v̄n = c ·w(n+1)− c ·w(n) = c

λ

n!

k=1

1

F̄ (v̄k)
− c

λ

n−1!

k=1

1

F̄ (v̄k)
=

c

λF̄ (v̄n)
> 0,

where 1! n<N . Thus, v̄n is increasing in n, and ∆vn is also increasing in n. Moreover, we have

v̄n = v̄1 +
c

λ

(
1

F̄ (v̄1)
+

1

F̄ (v̄2)
+ · · ·+ 1

F̄ (v̄n−1)

)
= v̄1 +

c

λ

n−1!

k=1

1

F̄ (v̄k)
. (A.1)
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The firm’s long-run average profit can be written as

π(v̄1, v̄2, · · · , v̄N) =
N!

n=1

(
p∗(v̄1, v̄2, · · · , v̄N) ·λ · F̄ (v̄n) ·P (n)

)

=
v̄1λ

'N

n=1 F̄ (v̄n)
*
w(n+1)−w(n)

+

w(N +1)

=
cNλv̄1F̄ (v̄N)

λ(v̄N − v̄1)F̄ (v̄N)+ c
,

where the second equation follows from p∗(v̄1, v̄2, · · · , v̄N) = v̄n− c
λ

'n−1

k=1
1

F̄ (v̄k)
for any n (1! n!N)

and the last equation follows from the expression of w(n) and (A.1). For ease of exposition, define

π(v̄1, v̄N)≡ cNλv̄1F̄ (v̄N )

λ(v̄N−v̄1)F̄ (v̄N )+c
. Therefore, the firm’s optimization problem can be reduced to

max
v̄1,v̄N

π(v̄1, v̄N) =
cNλv̄1F̄ (v̄N)

λ(v̄N − v̄1)F̄ (v̄N)+ c

s.t. v̄n = v̄n−1 +
c

λF̄ (v̄n−1)
, for any n (1<n!N),

which demonstrates that the problem for an arbitraryN " 2 under a general continuous distribution

can be technically challenging. Moreover, v̄N < vm always holds, because otherwise, if v̄N = vm,

F̄ (v̄N) = 0, and then π(v̄1, v̄N) = 0 always holds.

Second, consider the case of a general discrete distribution. We assume v ∈ {v1, v2, . . . , vM}, where

0! v1 < v2 < · · ·< vM and M is arbitrary. Thus, v̄n = vj, where vj−1 < p+ c ·w(n)! vj, 0< j !M ,

and w(n) = 1
λ

'n−1

k=1
1

P (v!v̄k)
. Then, for any n (1! n<N), v̄n+1 = vj′ , where vj′−1 < p+ c ·w(n+1)!

vj′ and j ! j′ !M . If j′ = j, then v̄n+1 = v̄n. If j
′ > j, then there must exist some i (j+1! i!M)

such that vj < p+ c · w(n+ 1) ! vi, and hence, v̄n+1 = vi > vj = v̄n. Thus, v̄n is increasing in n.

Moreover, v̄N ! vm. □

Proof of Proposition 1. By Lemma A.1, if the high-end customers sign up first, there are three

possible scenarios: {H}, {H;H+L}, and {H+L}, which are defined as Case I for ease of analysis.

Similarly, if the low-end customers sign up first, there are also three possible scenarios: {L}, {L;H+

L}, and {L+H}, which are defined as Case II. Here we rule out the scenario {L+H} in Case II to

avoid repetition. We use the tipping state x̄G to stand for different scenarios.1 Specifically, in Case

I, x̄G = 0, 1! x̄G <N , and x̄G =N represent scenarios {H}, {H;H+L}, and {H+L}, respectively.

In Case II, x̄G = 0 and 1! x̄G <N represent scenarios {L} and {L;H +L}, respectively.

For Case II, the IR and IC constraints are

1 n̄G denotes the largest integer that is less than or equal to x̄G, thus we use x̄G instead of n̄G in the Online Appendices
and Supplements for preciseness.
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,
--------.

--------/

IRL : θL− pG − c ·wG(n)" 0 1! n!N,

ICL : θL− pG − c ·wG(n)"L− rG 1! n!N,

IRH1 :H − rG " 0 x̄G <n!N,

ICH1 :H − rG " θH − pG − c ·wG(n) x̄G <n!N,

IRH2 : θH − pG − c ·wG(n)" 0 1! n! x̄G,

ICH2 : θH − pG − c ·wG(n)"H − rG 1! n! x̄G,

where 0! x̄G <N and the expected waiting time wG(n) is

wG(n) =

&
n−1
λ

1! n! x̄G,
x̄G

λ
+ n−x̄G−1

(1−γ)λ
x̄G <n!N.

In equilibrium, IRL is binding at state n=N . Thus, pG(x̄G) = θL− c ·wG(N). Define two prices

r̄G1 (x̄
G)≡ pG(x̄G)− (θ−1)H+ c ·wG(x̄G), r̄G2 (x̄

G)≡ pG(x̄G)− (θ−1)L+ c ·wG(N). r̄G1 (x̄
G)< r̄G2 (x̄

G)

always holds because H >L and wG(n) is monotonously increasing in n. To satisfy ICH1 and ICL,

the price rG should meet the constraints rG < r̄G1 (x̄
G) and rG " r̄G2 (x̄

G). Since r̄G1 (x̄
G) < r̄G2 (x̄

G)

when θ > 1, it is impossible to satisfy these two constraints at the same time. Therefore, Case II

cannot become the equilibrium.

Using similar logic, we can show that Case I can become the equilibrium, which proves the

proposition. Refer to the proof of Proposition 2 for details of Case I. □
Proof of Proposition 2. We continue the detailed analysis for Case I in this part (see the defi-

nition in the proof of Proposition 1). In the base model, the IR and IC constraints are
,
--------.

--------/

IRH : θH − pG − c ·wG(n)" 0 1! n!N,

ICH : θH − pG − c ·wG(n)"H − rG 1! n!N,

IRL1 :L− rG " 0 x̄G <n!N,

ICL1 :L− rG " θL− pG − c ·wG(n) x̄G <n!N,

IRL2 : θL− pG − c ·wG(n)" 0 1! n! x̄G,

ICL2 : θL− pG − c ·wG(n)"L− rG 1! n! x̄G,

where 0! x̄G !N and the expected waiting time wG(n) is

wG(n) =

&
n−1
λ

1! n! x̄G,
x̄G

λ
+ n−x̄G−1

γλ
x̄G <n!N.

In equilibrium, IRL1 is binding. Thus, r
G(x̄G) =L. Whether ICH or ICL2 is binding in equilibrium

depends on the relative size of x̄G. Since wG(n) is monotonously increasing in n, no matter whether

ICH or ICL2 is binding, the binding must happen at the largest possible state n. Define two prices

p̄G1 (x̄
G)≡ θL− c ·wG(x̄G), p̄G2 (x̄

G)≡ (θ− 1)H +L− c ·wG(N), and we know that p̄G1 (x̄
G)< p̄G2 (x̄

G)

if and only if x̄G > x̄G
1 , where x̄G

1 ≡N − 1+ γ − (θ− 1)(H −L)γλ/c. Then, we can write the price

pG as the function of tipping state x̄G:

pG(x̄G) =

&
p̄G2 (x̄

G) 1! x̄G ! x̄G
1 ,

p̄G1 (x̄
G) x̄G

1 < x̄G !N.
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We then derive the firm’s long-run average profit πG, also as the function of tipping state x̄G:

πG(x̄G) =
*
pG(x̄G) · γλ+ rG(x̄G) · (1− γ)λ

+
·P (n> x̄G)+

*
pG(x̄G) ·λ

+
·P (n! x̄G)

=
[pG(x̄G) · γλ+L(1− γ)λ] · N−x̄G

γλ
+ [pG(x̄G) ·λ] · x̄G

λ

x̄G

λ
+ N−x̄G

γλ

=
pG(x̄G) · γλN +L(1− γ)λ(N − x̄G)

N − (1− γ)x̄G
.

For x̄G
1 < x̄G !N , plugging pG(x̄G) = p̄G1 (x̄

G) into πG(x̄G), we have

πG(x̄G) =
θLγλN +L(1− γ)λ(N − x̄G)− cγN(x̄G − 1)

N − (1− γ)x̄G
.

Taking the first-order derivative of πG(x̄G) w.r.t. x̄G, we have

∂πG(x̄G)

∂x̄G
=

γN [L(1− γ)(θ− 1)λ− c(N − 1+ γ)]

[N − (1− γ)x̄G]
2 .

We can see that ∂πG(x̄G)

∂x̄G
" 0 if and only if N ! N̄1. Therefore, for x̄

G
1 < x̄G !N , when N ! N̄1, the

firm sets x̄G =N ; when N > N̄1, the firm sets x̄G = x̄G
1 . Note that x̄G

1 > 0 if and only if N > N̄2.

For 1! x̄G ! x̄G
1 , plugging pG(x̄G) = p̄G2 (x̄

G) into πG(x̄G), we have

πG(x̄G) =
[(θ− 1)H +L]γλN +L(1− γ)λ(N − x̄G)− cN(N − 1)+ c(1− γ)Nx̄G

N − (1− γ)x̄G
.

Taking the first-order derivative of πG(x̄G) w.r.t. x̄G, we have

∂πG(x̄G)

∂x̄G
=

(1− γ)N [c+(θ− 1)Hγλ]

[N − (1− γ)x̄G]
2 > 0.

Since ∂πG(x̄G)

∂x̄G
> 0 always holds, for 1! x̄G ! x̄G

1 , the firm always sets x̄G = x̄G
1 .

Comparing the results above, we define two thresholds for the batch size N :

N̄1 ≡
(θ− 1)(1− γ)Lλ

c
+1− γ,

N̄2 ≡
(θ− 1)(H −L)γλ

c
+1− γ,

which determines the optimal tipping state x̄G. Besides, N̄1 increases in L. For a given L, N̄2

increases in H/L. N̄2 > N̄1 if and only if H/L> 1/γ. Thus, the REE when offering group buying is

(i) when H/L! 1/γ,

(1) if N ! N̄1, x̄
G =N , rG =L, pG = θL− c(N − 1)/λ, and πG = θLλ− c(N − 1);

(2) if N > N̄1, x̄
G = x̄G

1 , r
G =L, pG = θL+ γ(θ− 1)(H −L)− c(N − 2+ γ)/λ, and πG = πG

1 ;

(ii) when H/L> 1/γ,

(1) if N ! N̄2, x̄
G = 0, rG = L, pG = (θ− 1)H +L− c(N − 1)/(γλ), and πG = (θ− 1)Hγλ+

Lλ− c(N − 1);
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(2) if N > N̄2, x̄
G = x̄G

1 , r
G =L, pG = θL+ γ(θ− 1)(H −L)− c(N − 2+ γ)/λ, and πG = πG

1 ;

where

πG
1 ≡ (θ− 1)(H −L)L(1− γ)γλ2 +(θ− 1)cHNγ2λ+ cLλ [1+ θ(1− γ)γN + γ2(N +1)− 2γ]− c2γN(N − 2+ γ)

c [1+ γ(N − 2+ γ)] + (θ− 1)(H −L)(1− γ)γλ
. □

Proof of Theorem 2. The range in which one strategy dominates the others follows directly by

comparing the profits. Define the following thresholds for the inventory holding cost h:

h̄2 ≡
2c(N − 1)+ 2(θ− 1)(Hγ−L)λ

N +1
,

h̄3 ≡
2c(N − 1)

N +1
,

h̄4 ≡
2λA1[(θ− 1)Hγ+L]− 2A2

(N +1)A1

,

h̄≡min
0
h̄1, h̄2, h̄3, h̄4

1
,

where A1 ≡ c[1 + γ(N − 2+ γ)] + (θ− 1)(H −L)(1− γ)γλ and A2 ≡ (θ− 1)(H −L)L(1− γ)γλ2 +

(θ− 1)cHNγ2λ+ cLλ [1+ θ(1− γ)γN + γ2(N +1)− 2γ]− c2γN(N − 2+ γ).

Define the following four thresholds for the batch size N :

N̄3 ≡
(θ− 1)Lλ

c
+1,

N̄4 ≡
(θ− 1) [(1− γ)L+ γH]λ

c
+2− γ,

N̄5 ≡
[L+(θ− 2)Hγ]λ

c
+1,

N̄6 ≡
[(γ+(1− γ)θ)L+ γ(θ− 2)H]λ

2c
+1− γ

2
+

√
A3

2cγ
,

whereA3 ≡ [4(1− γ)(L−Hγ)λ (c(1− γ)+ (H −L)(θ− 1)γλ)+ γ(c(2− γ)+ (L(γ+(1− γ)θ)+Hγ(θ− 2)λ)2)]γ.

N̄3 increases in L. For a given L, N̄4 increases in H/L, N̄5 increases in H/L when θ > 2 while

decreasing in H/L when 1 < θ ! 2, and N̄6 decreases in H/L. Note that N̄4 > N̄3 > N̄1 always

holds. For simplicity of notation, we further define the following threshold for the batch size N :

N̄ ≡
&
N̄4 H/L! 1/γ,

max{N̄5, N̄6} H/L> 1/γ.

When θ > 2, N̄5 > 0 always holds; while when 1 < θ ! 2, N̄5 > 0 if and only if H/L < m̄, where

m̄ > 1/γ is a threshold for the valuation heterogeneity H/L, defined as the unique solution to the

equation N̄2 = N̄6. □
Proof of Theorem 3. The customer surpluses under the volume, margin, and product-line

strategies are: SV = SV
H = (H −L)γλ, SV

L = 0; SM = SM
H = SM

L = 0; SP = SP
H = (H −L)γλ, SV

L = 0.

As for the group buying, the customer surpluses are
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SG =
N!

n=1

SG
H(n) · γλ ·P (n)+

x̄G1!

n=1

SG
L (n) · (1− γ)λ ·P (n),

SG
H =

N!

n=1

SG
H(n) · γλ ·P (n),

SG
L =

x̄G1!

n=1

SG
L (n) · (1− γ)λ ·P (n),

where SG
H(n) = θH − pG − c ·wG(n) and SG

L (n) = θL− pG − c ·wG(n) are the individual surpluses

for the high- and low-end customers at state n, respectively. By ICH , IRL1 and IRL2, we know

SG
H(n)"H−L and SG

L (n)" 0 hold for any n (1! n!N). The former equation does not always hold

for all states, while when H/L" 1/γ and N < N̄2, S
G
L (n) = 0 holds for all states. In addition, since

'N

n=1P (n) = 1, and P (n)> 0 for any n (1! n!N), we have SG > (H −L)γλ, SG
H > (H −L)γλ,

and SG
L " 0, which prove the theorem. □

B. Contingent Pricing

Proposition B.1 (REE under Contingent Pricing). Under contingent pricing, for any

given θ > 1 and N , there exist two thresholds for the batch size, N̄C
2 ≡ (θ − 1)(L−Hγ)λ/c and

N̄C
3 ≡ (θ− 1)(Hγ−L)γλ/c, such that

(i) when H/L! 1/γ, the firm sets prices so that

(i-1) if N ! N̄C
2 , {H +L} is an REE;

(i-2) if N > N̄C
2 , {H;H +L} is an REE;

(ii) when H/L> 1/γ, the firm sets prices so that

(ii-1) if N ! N̄C
3 , {H} is an REE;

(ii-2) if N > N̄C
3 , {H;H +L} is an REE.

Proposition B.2 (Profitability of Contingent Pricing). Compared with uniform pric-

ing, contingent pricing always increases the firm’s profit and enhances the firm’s incentive to offer

group buying.

Theorem B.1 (Profit Comparison under Contingent Pricing). Suppose θ> 1.

(i) If H/L! 1/γ, as N increases, the firm’s optimal group-buying strategy changes from {G (H+

L), R (∅)}→ {G (H;H +L), R (L;∅)}→ {NG, R (H +L)}.

(ii) If H/L > 1/γ, as N increases, the firm’s optimal group-buying strategy changes from

{G (H), R (L)}→ {G (H;H +L), R (L;∅)}→ {NG, R (H)}.
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C. Unobservable Group Buying

Proposition C.1 (REE in Unobservable Group Buying). In unobservable group buying,

for any given θ> 1 and N , the firm sets prices so that

(i) when H/L! 1/γ, {H +L} is an REE;

(ii) when H/L> 1/γ, {H} is an REE.

Theorem C.1 (Profit Comparison in Unobservable Group Buying). Suppose θ> 1.

(i) If H/L! 1/γ, as N increases, the firm’s optimal group-buying strategy changes from {G (H+

L), R (∅)}→ {NG, R (H +L)}.

(ii) If H/L > 1/γ, as N increases, the firm’s optimal group-buying strategy changes from

{G (H), R (L)}→ {NG, R (H)}.

Proposition C.2 (Profitability of Unobservable Group Buying). When θ is suffi-

ciently large, compared with observable group buying, unobservable group buying increases the firm’s

profit and its incentive to offer group buying.

D. Heterogeneous Waiting Costs

Proposition D.1 (Customer Segmentation with Heterogeneous Waiting Costs).

Suppose θ > 1. If customers have heterogeneous waiting costs, there exists a threshold for the

waiting cost, c̄H , such that

(i) when cH ! c̄H , with group buying, customer segmentation in equilibrium must be one of the

following three scenarios: {H}, {H;H +L}, or {H +L};

(ii) when cH > c̄H , with group buying, customer segmentation in equilibrium must be one of the

following three scenarios: {L}, {L;L+H}, or {L+H}.

Proposition D.2 (REE with Heterogeneous Waiting Costs). If customers have het-

erogeneous waiting costs, for any given θ> 1 and N , there exists a threshold for the waiting cost,

c̄H , and three thresholds for the batch size, N̄D
1 ≡ (θ− 1)(1− γ)Lλ/cL + 1− γ, N̄D

2 ≡ (θ− 1)(H −

L)γλ/cH +1− γcL/cH , and N̄D
3 ≡ (θ− 1)Hγλ/cH + γ, such that

(i) when cH ! c̄H , the firm sets prices so that

(i-i) when H ! [γcL +(1− γ)cH ]L/(γcL)− (cH − cL)/[(θ− 1)λ],

(i-i-1) if N ! N̄D
1 , {H +L} is an REE;

(i-i-2) if N > N̄D
1 , {H;H +L} is an REE;

(i-ii) when H/L> [γcL +(1− γ)cH ]L/(γcL)− (cH − cL)/[(θ− 1)λ],

(i-ii-1) if N ! N̄D
2 , {H} is an REE;
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(i-ii-2) if N > N̄D
2 , {H;H +L} is an REE;

(ii) when cH > c̄H , the firm sets prices so that

(ii-i) if N ! N̄D
3 , {L+H} is an REE;

(ii-ii) if N > N̄D
3 , {L;L+H} is an REE.

Corollary D.1 (Effect of Heterogeneous Waiting Costs on Customer Segmentation).

If customers have heterogeneous waiting costs, compared with the base model,

(i) when cH ! cL, the attractiveness of {H;H +L} to the firm compared with {H} decreases;

(ii) when cL < cH ! c̄H , the attractiveness of {H;H+L} to the firm compared with {H} increases.

E. Inferior Group-Buying Product

Proposition E.1 (Customer Segmentation with Group Buying). Suppose θ < 1. With

group buying, the customer segmentation must be one of the following three scenarios: {L}, {L;L+

H}, or {L+H}.

Proposition E.2 (REE with Inferior Group-Buying Product). With inferior group

buying, for any given θ< 1 and N , there exists a threshold for the batch size N̄ I, and the firm sets

prices so that

(i) if N ! N̄ I, {L} is an REE;

(ii) if N > N̄ I, {L;L+H} is an REE.

Theorem E.1 (Profit Comparison with Inferior Group-Buying Product).

Compared with the volume and margin strategies, it is profitable for the firm to offer group buying

with an inferior product (i.e., θ < 1) if and only if N is in an intermediate range, which is not

empty if γ is sufficiently high.

F. Horizontally Differentiated Products

Proposition F.1 (REE with Horizontally Differentiated Products). In the context

of horizontally differentiated products, there exists a threshold for the batch size N̄H ≡ (H −

L)γλ/c+1− γ, and the firm sets prices so that

(i) if N ! N̄H, {G} is an REE;

(ii) if N > N̄H, {G;G+R} is an REE.

Theorem F.1 (Profit Comparison with Horizontally Differentiated Products).

In the context of horizontally differentiated products, there exists a threshold for the inventory

holding cost h̄H, above which it is optimal for the firm to offer the product line via flexible-duration

group buying rather than doing so noncontingently, and below which the opposite is ture.


