Online Appendix to “Intertemporal Segmentation via Flexible-Duration Group Buying”

A. Premium Group-Buying Product

Lemma A.1 (Customers’ Sign-up Behavior). For any \(\theta \neq 1 \) and \(N \), if high-end (low-end) customers sign up at state \(n (1 \leq n \leq N) \), then all high-end (low-end) customers sign up at any subsequent state \(n' (1 \leq n' \leq n) \).

Proof of Lemma A.1. See online supplement. \(\square \)

Proposition A.1 (No-Group-Buying Benchmarks). In the absence of group buying as an option, there exists a threshold for the inventory holding cost, \(\hat{h}_1 \), such that

(i) if \(h \leq \hat{h}_1 \), it is optimal for the firm to offer both products by using the product-line strategy, and high-end customers purchase the premium product while low-end customers purchase the regular product;

(ii) if \(h > \hat{h}_1 \), the firm offers only the regular product,

(ii-1) when \(H/L \leq 1/\gamma \), it is optimal for the firm to adopt the volume strategy, and both high- and low-end customers purchase the regular product;

(ii-2) when \(H/L > 1/\gamma \), it is optimal for the firm to adopt the margin strategy, and only high-end customers purchase the regular product.

Proof of Proposition A.1. See online supplement. \(\square \)

Proof of Theorem 1. Consider a customer with valuation \(v \) who arrives at pledge-to-go state \(n (1 \leq n \leq N) \). She would like to sign up if and only if \(v - p - c \cdot w(n) \geq 0 \). Denote the threshold for customers’ valuation at state \(n \) as \(\bar{v}_n \).

Note that \(v \) follows either a continuous or a discrete distribution. First, consider the case of a general continuous distribution. We assume \(v \in [0,v_m] \) with a finite upper bound \(v_m \) or \(v \in [0,\infty) \).

Thus, \(\bar{v}_n = p + c \cdot w(n) \), where \(w(n) = \frac{1}{\lambda} \sum_{k=1}^{n-1} \frac{1}{F(v_k)} \) is the expected waiting time at state \(n \) and \(\bar{F}(v) = 1 - F(v) \). Then, define the difference between two neighboring thresholds as

\[
\Delta v_n \equiv \bar{v}_{n+1} - \bar{v}_n = c \cdot w(n+1) - c \cdot w(n) = \frac{c}{\lambda} \sum_{k=1}^{n} \frac{1}{F(\bar{v}_k)} - \frac{c}{\lambda} \sum_{k=1}^{n-1} \frac{1}{F(\bar{v}_k)} = \frac{c}{\lambda F(\bar{v}_n)} > 0,
\]

where \(1 \leq n < N \). Thus, \(\bar{v}_n \) is increasing in \(n \), and \(\Delta v_n \) is also increasing in \(n \). Moreover, we have

\[
\bar{v}_n = \bar{v}_1 + \frac{c}{\lambda} \left[\frac{1}{F(\bar{v}_1)} + \frac{1}{F(\bar{v}_2)} + \cdots + \frac{1}{F(\bar{v}_{n-1})} \right] = \bar{v}_1 + \frac{c}{\lambda} \sum_{k=1}^{n-1} \frac{1}{F(\bar{v}_k)}.
\] (A.1)
The firm’s long-run average profit can be written as

\[
\pi(\bar{v}_1, \bar{v}_2, \ldots, \bar{v}_N) = \sum_{n=1}^{N} \left[p^*(\bar{v}_1, \bar{v}_2, \ldots, \bar{v}_N) \cdot \lambda \cdot \bar{F}(\bar{v}_n) \cdot P(n) \right]
\]

\[
= \frac{\bar{v}_1 \lambda \sum_{n=1}^{N} \bar{F}(\bar{v}_n) [w(n + 1) - w(n)]}{w(N + 1)}
\]

\[
= \frac{cN \lambda \bar{v}_1 \bar{F}(\bar{v}_N)}{\lambda(\bar{v}_N - \bar{v}_1) \bar{F}(\bar{v}_N) + c},
\]

where the second equation follows from \(p^*(\bar{v}_1, \bar{v}_2, \ldots, \bar{v}_N) = \bar{v}_n - \frac{c}{\lambda} \sum_{k=1}^{n-1} \frac{1}{F(\bar{v}_k)} \) for any \(n \ (1 \leq n \leq N)\) and the last equation follows from the expression of \(w(n)\) and (A.1). For ease of exposition, define \(\pi(\bar{v}_1, \bar{v}_N) \equiv \frac{cN \lambda \bar{v}_1 \bar{F}(\bar{v}_N)}{\lambda(\bar{v}_N - \bar{v}_1) \bar{F}(\bar{v}_N) + c}\). Therefore, the firm’s optimization problem can be reduced to

\[
\max_{\bar{v}_1, \bar{v}_N} \pi(\bar{v}_1, \bar{v}_N) \quad \text{s.t.} \quad \bar{v}_n = \bar{v}_{n-1} \cdot \frac{c}{\lambda \bar{F}(\bar{v}_{n-1})}, \quad \text{for any} \ (1 < n \leq N),
\]

which demonstrates that the problem for an arbitrary \(N \geq 2\) under a general continuous distribution can be technically challenging. Moreover, \(\bar{v}_N < v_m\) always holds, because otherwise, if \(\bar{v}_N = v_m\), \(\bar{F}(\bar{v}_N) = 0\), and then \(\pi(\bar{v}_1, \bar{v}_N) = 0\) always holds.

Second, consider the case of a general discrete distribution. We assume \(v \in \{v_1, v_2, \ldots, v_M\}\), where \(0 \leq v_1 < v_2 < \ldots < v_M\) and \(M\) is arbitrary. Thus, \(\bar{v}_n = v_j\), where \(v_{j-1} < p + c \cdot w(n) \leq v_j, \ 0 < j \leq M, \) and \(w(n) = \frac{1}{\lambda} \sum_{k=1}^{n-1} \frac{1}{F(v_k)}\). Then, for any \(n \ (1 \leq n < N)\), \(\bar{v}_{n+1} = v_{j'}\), where \(v_{j'-1} < p + c \cdot w(n+1) \leq v_{j'}\) and \(j' \leq M\). If \(j' = j\), then \(\bar{v}_{n+1} = \bar{v}_n\). If \(j' > j\), then there must exist some \(i \ (j+1 \leq i \leq M)\) such that \(v_j < p + c \cdot w(n+1) \leq v_i\), and hence, \(\bar{v}_{n+1} = v_i > v_j = \bar{v}_n\). Thus, \(\bar{v}_n\) is increasing in \(n\). Moreover, \(\bar{v}_N \leq v_m\). \(\square\)

Proof of Proposition 1. By Lemma A.1, if the high-end customers sign up first, there are three possible scenarios: \(\{H\}\), \(\{H; H + L\}\), and \(\{H + L\}\), which are defined as Case I for ease of analysis. Similarly, if the low-end customers sign up first, there are also three possible scenarios: \(\{L\}\), \(\{L; H + L\}\), and \(\{L + H\}\), which are defined as Case II. Here we rule out the scenario \(\{L + H\}\) in Case II to avoid repetition. We use the tipping state \(\bar{x}^G\) to stand for different scenarios.\(^1\) Specifically, in Case I, \(\bar{x}^G = 0\), \(1 \leq \bar{x}^G < N\), and \(\bar{x}^G = N\) represent scenarios \(\{H\}\), \(\{H; H + L\}\), and \(\{H + L\}\), respectively. In Case II, \(\bar{x}^G = 0\) and \(1 \leq \bar{x}^G < N\) represent scenarios \(\{L\}\) and \(\{L; H + L\}\), respectively.

For Case II, the IR and IC constraints are

\(^1\)\(n^G\) denotes the largest integer that is less than or equal to \(\bar{x}^G\), thus we use \(\bar{x}^G\) instead of \(n^G\) in the Online Appendices and Supplements for preciseness.
\[
\begin{cases}
IR_L : \theta L - p^G - c \cdot w^G(n) \geq 0 & 1 \leq n \leq N, \\
IC_L : \theta L - p^G - c \cdot w^G(n) \geq L - r^G & 1 \leq n \leq N, \\
IR_{H1} : H - r^G \geq 0 & \bar{x}^G < n \leq N, \\
IC_{H1} : H - r^G \geq \theta H - p^G - c \cdot w^G(n) & \bar{x}^G < n \leq N, \\
IR_{H2} : \theta H - p^G - c \cdot w^G(n) \geq 0 & 1 \leq n \leq \bar{x}^G, \\
IC_{H2} : \theta H - p^G - c \cdot w^G(n) \geq H - r^G & 1 \leq n \leq \bar{x}^G,
\end{cases}
\]

where \(0 \leq \bar{x}^G < N \) and the expected waiting time \(w^G(n) \) is

\[
w^G(n) = \begin{cases} \\
\frac{n-1}{\bar{x}^G} + \frac{n-\bar{x}^G-1}{(1-\gamma)\lambda} & 1 \leq n \leq \bar{x}^G, \\
\bar{x}^G < n \leq N.
\end{cases}
\]

In equilibrium, \(IR_L \) is binding at state \(n = N \). Thus, \(p^G(\bar{x}^G) = \theta L - c \cdot w^G(N) \). Define two prices \(\bar{r}_1^G(\bar{x}^G) \equiv p^G(\bar{x}^G) - (\theta - 1) H + c \cdot w^G(\bar{x}^G) \), \(\bar{r}_2^G(\bar{x}^G) \equiv p^G(\bar{x}^G) - (\theta - 1) L + c \cdot w^G(N) \). \(\bar{r}_1^G(\bar{x}^G) < \bar{r}_2^G(\bar{x}^G) \) always holds because \(H > L \) and \(w^G(n) \) is monotonously increasing in \(n \). To satisfy \(IC_{H1} \) and \(IC_L \), the price \(r^G \) should meet the constraints \(r^G < \bar{r}_1^G(\bar{x}^G) \) and \(r^G \geq \bar{r}_2^G(\bar{x}^G) \). Since \(\bar{r}_1^G(\bar{x}^G) < \bar{r}_2^G(\bar{x}^G) \) when \(\theta > 1 \), it is impossible to satisfy these two constraints at the same time. Therefore, Case II cannot become the equilibrium.

Using similar logic, we can show that Case I can become the equilibrium, which proves the proposition. Refer to the proof of Proposition 2 for details of Case I. \(\square \)

Proof of Proposition 2. We continue the detailed analysis for Case I in this part (see the definition in the proof of Proposition 1). In the base model, the IR and IC constraints are

\[
\begin{cases}
IR_{H} : \theta H - p^G - c \cdot w^G(n) \geq 0 & 1 \leq n \leq N, \\
IC_{H} : \theta H - p^G - c \cdot w^G(n) \geq H - r^G & 1 \leq n \leq N, \\
IR_{L1} : L - r^G \geq 0 & \bar{x}^G < n \leq N, \\
IC_{L1} : L - r^G \geq \theta L - p^G - c \cdot w^G(n) & \bar{x}^G < n \leq N, \\
IR_{L2} : \theta L - p^G - c \cdot w^G(n) \geq 0 & 1 \leq n \leq \bar{x}^G, \\
IC_{L2} : \theta L - p^G - c \cdot w^G(n) \geq L - r^G & 1 \leq n \leq \bar{x}^G,
\end{cases}
\]

where \(0 \leq \bar{x}^G \leq N \) and the expected waiting time \(w^G(n) \) is

\[
w^G(n) = \begin{cases} \\
\frac{n-1}{\bar{x}^G} + \frac{n-\bar{x}^G-1}{(1-\gamma)\lambda} & 1 \leq n \leq \bar{x}^G, \\
\bar{x}^G < n \leq N.
\end{cases}
\]

In equilibrium, \(IR_{L1} \) is binding. Thus, \(r^G(\bar{x}^G) = L \). Whether \(IC_H \) or \(IC_{L2} \) is binding in equilibrium depends on the relative size of \(\bar{x}^G \). Since \(w^G(n) \) is monotonously increasing in \(n \), no matter whether \(IC_H \) or \(IC_{L2} \) is binding, the binding must happen at the largest possible state \(n \). Define two prices \(\bar{p}_1^G(\bar{x}^G) \equiv \theta L - c \cdot w^G(\bar{x}^G) \), \(\bar{p}_2^G(\bar{x}^G) \equiv (\theta - 1) H + L - c \cdot w^G(N) \), and we know that \(\bar{p}_1^G(\bar{x}^G) < \bar{p}_2^G(\bar{x}^G) \) if and only if \(\bar{x}^G > \bar{x}_1^G \), where \(\bar{x}_1^G \equiv N - 1 + \gamma - (\theta - 1)(H - L)\gamma/c \). Then, we can write the price \(p^G \) as the function of tipping state \(\bar{x}^G \):

\[
p^G(\bar{x}^G) = \begin{cases} \\
\bar{p}_2^G(\bar{x}^G) & 1 \leq \bar{x}^G \leq \bar{x}_1^G, \\
\bar{p}_1^G(\bar{x}^G) & \bar{x}_1^G < \bar{x}^G \leq N.
\end{cases}
\]
We then derive the firm’s long-run average profit π^G, also as the function of tipping state \bar{x}^G:

$$\pi^G(\bar{x}^G) = \left[p^G(\bar{x}^G) \cdot \gamma + r^G(\bar{x}^G) \cdot (1 - \gamma) \lambda \right] \cdot P(n > \bar{x}^G) + \left[p^G(\bar{x}^G) \cdot \lambda \right] \cdot P(n \leq \bar{x}^G)$$

$$= \frac{p^G(\bar{x}^G) \cdot \gamma \lambda + L(1 - \gamma) \lambda \cdot \frac{N - \bar{x}^G}{N} + p^G(\bar{x}^G) \cdot \frac{\bar{x}^G}{\lambda}}{N - (1 - \gamma) \bar{x}^G}.$$

For $\bar{x}^G_1 < \bar{x}^G \leq N$, plugging $p^G(\bar{x}^G) = p^G_1(\bar{x}^G)$ into $\pi^G(\bar{x}^G)$, we have

$$\pi^G(\bar{x}^G) = \frac{\theta L \gamma \lambda N + L(1 - \gamma) \lambda (N - \bar{x}^G) - c \gamma N(\bar{x}^G - 1)}{N - (1 - \gamma) \bar{x}^G}.$$

Taking the first-order derivative of $\pi^G(\bar{x}^G)$ w.r.t. \bar{x}^G, we have

$$\frac{\partial \pi^G(\bar{x}^G)}{\partial \bar{x}^G} = \frac{\gamma N [L(1 - \gamma)(\theta - 1) - c(N - 1 + \gamma)]}{[N - (1 - \gamma) \bar{x}^G]^2}.$$

We can see that $\frac{\partial \pi^G(\bar{x}^G)}{\partial \bar{x}^G} > 0$ if and only if $N \leq \tilde{N}_1$. Therefore, for $\bar{x}^G_1 < \bar{x}^G \leq N$, when $N \leq \tilde{N}_1$, the firm sets $\bar{x}^G = N$; when $N > \tilde{N}_1$, the firm sets $\bar{x}^G = \bar{x}^G_1$. Note that $\bar{x}^G_1 > 0$ if and only if $N > \tilde{N}_2$.

For $1 \leq \bar{x}^G \leq \bar{x}^G_1$, plugging $p^G(\bar{x}^G) = p^G_2(\bar{x}^G)$ into $\pi^G(\bar{x}^G)$, we have

$$\pi^G(\bar{x}^G) = \frac{[(\theta - 1)H + L] \gamma \lambda N + L(1 - \gamma) \lambda (N - \bar{x}^G) - c N(N - 1) + c(1 - \gamma) N \bar{x}^G}{N - (1 - \gamma) \bar{x}^G}.$$

Taking the first-order derivative of $\pi^G(\bar{x}^G)$ w.r.t. \bar{x}^G, we have

$$\frac{\partial \pi^G(\bar{x}^G)}{\partial \bar{x}^G} = \frac{(1 - \gamma) N [c + (\theta - 1) H \gamma \lambda]}{[N - (1 - \gamma) \bar{x}^G]^2} > 0.$$

Since $\frac{\partial \pi^G(\bar{x}^G)}{\partial \bar{x}^G} > 0$ always holds, for $1 \leq \bar{x}^G \leq \bar{x}^G_1$, the firm always sets $\bar{x}^G = \bar{x}^G_1$.

Comparing the results above, we define two thresholds for the batch size N:

$$\tilde{N}_1 = \frac{(\theta - 1)(1 - \gamma)L \lambda}{c} + 1 - \gamma,$$

$$\tilde{N}_2 = \frac{(\theta - 1)(H - L) \gamma \lambda}{c} + 1 - \gamma,$$

which determines the optimal tipping state \bar{x}^G. Besides, \tilde{N}_1 increases in L. For a given L, \tilde{N}_2 increases in H/L. $\tilde{N}_2 > \tilde{N}_1$ if and only if $H/L > 1/\gamma$. Thus, the REE when offering group buying is

(i) when $H/L \leq 1/\gamma$,

1) if $N \leq \tilde{N}_1$, $\bar{x}^G = N$, $r^G = L$, $p^G = \theta L - c(N - 1)/\lambda$, and $\pi^G = \theta L \lambda - c(N - 1)$;

2) if $N > \tilde{N}_1$, $\bar{x}^G = \bar{x}^G_1$, $r^G = L$, $p^G = \theta L + \gamma (\theta - 1)(H - L) - c(N - 2 + \gamma)/\lambda$, and $\pi^G = \pi^G_1$;

(ii) when $H/L > 1/\gamma$,

1) if $N \leq \tilde{N}_2$, $\bar{x}^G = 0$, $r^G = L$, $p^G = (\theta - 1)H + L - c(N - 1)/(\gamma \lambda)$, and $\pi^G = (\theta - 1)H \gamma \lambda + L \lambda - c(N - 1)$;
(2) if $N > \tilde{N}_2$, $\bar{x}^G = \bar{x}_1^G$, $r^G = L$, $p^G = \theta L + \gamma (\theta - 1)(H - L) - c(N - 2 + \gamma)/\lambda$, and $\pi^G = \pi_1^G$; where

$$\pi_1^G \equiv \frac{(\theta - 1)(H - L)L(1 - \gamma)\gamma \lambda^2 + (\theta - 1)cHN \gamma^2 \lambda + cL\lambda [1 + \theta(1 - \gamma)\gamma N + \gamma^2(N + 1) - 2\gamma] - c^2 \gamma N(N - 2 + \gamma)}{c[1 + \gamma(N - 2 + \gamma)] + (\theta - 1)(H - L)(1 - \gamma)\gamma \lambda}.$$

Proof of Theorem 2. The range in which one strategy dominates the others follows directly by comparing the profits. Define the following thresholds for the inventory holding cost h:

$$\bar{h}_2 \equiv \frac{2c(N - 1) + 2(\theta - 1)(H \gamma - L)\lambda}{N + 1},$$

$$\bar{h}_3 \equiv \frac{2c(N - 1)}{N + 1},$$

$$\bar{h}_4 \equiv \frac{2\lambda A_1[(\theta - 1)H \gamma + L] - 2A_2}{(N + 1)A_1},$$

$$\bar{h} \equiv \min \{\bar{h}_1, \bar{h}_2, \bar{h}_3, \bar{h}_4\},$$

where $A_1 \equiv c[1 + \gamma(N - 2 + \gamma)] + (\theta - 1)(H - L)(1 - \gamma)\gamma \lambda$ and $A_2 \equiv (\theta - 1)(H - L)L(1 - \gamma)\gamma \lambda^2 + (\theta - 1)cHN \gamma^2 \lambda + cL\lambda [1 + \theta(1 - \gamma)\gamma N + \gamma^2(N + 1) - 2\gamma] - c^2 \gamma N(N - 2 + \gamma)$.

Define the following four thresholds for the batch size N:

$$\bar{N}_3 \equiv \frac{(\theta - 1)H \gamma}{c} + 1,$$

$$\bar{N}_4 \equiv \frac{(\theta - 1)H[(1 - \gamma)L + \gamma H]\lambda}{c} + 2 - \gamma,$$

$$\bar{N}_5 \equiv \frac{[L + (\theta - 2)H \gamma]\lambda}{c} + 1,$$

$$\bar{N}_6 \equiv \frac{[(\gamma + (1 - \gamma)\theta)L + \gamma(\theta - 2)H]\lambda}{2c} + 1 - \frac{\gamma}{2} + \frac{\sqrt{A_3}}{2c\gamma},$$

where $A_3 \equiv [4(1 - \gamma)(L - H \gamma)\lambda(c(1 - \gamma) + (L - H)(\theta - 1)\gamma \lambda) + \gamma(c(2 - \gamma) + (L + (1 - \gamma)\theta + H \gamma(\theta - 2)\lambda^2)] \gamma$.\n
\bar{N}_3 increases in L. For a given L, \bar{N}_4 increases in H/L, \bar{N}_5 increases in H/L when $\theta > 2$ while decreasing in H/L when $1 < \theta \leq 2$, and \bar{N}_6 decreases in H/L. Note that $\bar{N}_4 > \bar{N}_3 > \bar{N}_1$ always holds. For simplicity of notation, we further define the following threshold for the batch size N:

$$\bar{N} \equiv \begin{cases} \bar{N}_4 & H/L \leq 1/\gamma, \\ \max\{\bar{N}_5, \bar{N}_6\} & H/L > 1/\gamma. \end{cases}$$

When $\theta > 2$, $\bar{N}_5 > 0$ always holds; while when $1 < \theta \leq 2$, $\bar{N}_5 > 0$ if and only if $H/L < \bar{m}$, where $\bar{m} > 1/\gamma$ is a threshold for the valuation heterogeneity H/L, defined as the unique solution to the equation $\tilde{N}_2 = \tilde{N}_6$. \qed

Proof of Theorem 3. The customer surpluses under the volume, margin, and product-line strategies are: $S^V = S^V_H = (H - L)\gamma \lambda$, $S^V_L = 0$; $S^M = S^M_H = S^M_L = 0$; $S^P = S^P_H = (H - L)\gamma \lambda$, $S^P_L = 0$. As for the group buying, the customer surpluses are
\[S^G = \sum_{n=1}^{N} S^G_n \cdot \gamma \cdot P(n) + \sum_{n=1}^{\bar{x}_1^G} S^G_n \cdot (1-\gamma) \cdot P(n), \]

\[S^G_H = \sum_{n=1}^{N} S^G_n \cdot \gamma \cdot P(n), \]

\[S^G_L = \sum_{n=1}^{\bar{x}_1^G} S^G_n \cdot (1-\gamma) \cdot P(n), \]

where \(S^G_n = \theta H - p^G - c \cdot w^G(n) \) and \(S^G_L = \theta L - p^G - c \cdot w^G(n) \) are the individual surpluses for the high- and low-end customers at state \(n \), respectively. By \(IC_H, IR_{L1} \) and \(IR_{L2} \), we know \(S^G_H(n) \geq H - L \) and \(S^G_L(n) \geq 0 \) hold for any \(n \) \((1 \leq n \leq N)\). The former equation does not always hold for all states, while when \(H/L \geq 1/\gamma \) and \(N < \bar{N}_2 \), \(S^G_L(n) = 0 \) holds for all states. In addition, since \(\sum_{n=1}^{N} P(n) = 1 \), and \(P(n) > 0 \) for any \(n \) \((1 \leq n \leq N)\), we have \(S^G > (H - L)\gamma \lambda, S^G_H > (H - L)\gamma \lambda, \) and \(S^G_L > 0 \), which prove the theorem. \(\square \)

B. Contingent Pricing

Proposition B.1 (REE under Contingent Pricing). Under contingent pricing, for any given \(\theta > 1 \) and \(N \), there exist two thresholds for the batch size, \(\bar{N}^G_2 \equiv (\theta - 1)(L - H\gamma)\lambda/c \) and \(\bar{N}^G_3 \equiv (\theta - 1)(H\gamma - L)\gamma\lambda/c \), such that

1. when \(H/L \leq 1/\gamma \), the firm sets prices so that
 - (i-1) if \(N \leq \bar{N}^G_2 \), \(\{H + L\} \) is an REE;
 - (i-2) if \(N > \bar{N}^G_2 \), \(\{H; H + L\} \) is an REE;
2. when \(H/L > 1/\gamma \), the firm sets prices so that
 - (ii-1) if \(N \leq \bar{N}^G_3 \), \(\{H\} \) is an REE;
 - (ii-2) if \(N > \bar{N}^G_3 \), \(\{H; H + L\} \) is an REE.

Proposition B.2 (Profitability of Contingent Pricing). Compared with uniform pricing, contingent pricing always increases the firm’s profit and enhances the firm’s incentive to offer group buying.

Theorem B.1 (Profit Comparison under Contingent Pricing). Suppose \(\theta > 1 \).

1. If \(H/L \leq 1/\gamma \), as \(N \) increases, the firm’s optimal group-buying strategy changes from \(\{G(H + L), R(\emptyset)\} \to \{G(H; H + L), R(L; \emptyset)\} \to \{NG, R(H + L)\} \).
2. If \(H/L > 1/\gamma \), as \(N \) increases, the firm’s optimal group-buying strategy changes from \(\{G(H), R(L)\} \to \{G(H; H + L), R(L; \emptyset)\} \to \{NG, R(H)\} \).
C. Unobservable Group Buying

Proposition C.1 (REE in Unobservable Group Buying). In unobservable group buying, for any given $\theta > 1$ and N, the firm sets prices so that

(i) when $H/L \leq 1/\gamma$, $\{H + L\}$ is an REE;

(ii) when $H/L > 1/\gamma$, $\{H\}$ is an REE.

Theorem C.1 (Profit Comparison in Unobservable Group Buying). Suppose $\theta > 1$.

(i) If $H/L \leq 1/\gamma$, as N increases, the firm’s optimal group-buying strategy changes from $\{G(H + L), R(\emptyset)\} \rightarrow \{NG, R(H + L)\}$.

(ii) If $H/L > 1/\gamma$, as N increases, the firm’s optimal group-buying strategy changes from $\{G(H), R(L)\} \rightarrow \{NG, R(H)\}$.

Proposition C.2 (Profitability of Unobservable Group Buying). When θ is sufficiently large, compared with observable group buying, unobservable group buying increases the firm’s profit and its incentive to offer group buying.

D. Heterogeneous Waiting Costs

Proposition D.1 (Customer Segmentation with Heterogeneous Waiting Costs). Suppose $\theta > 1$. If customers have heterogeneous waiting costs, there exists a threshold for the waiting cost, \bar{c}_H, such that

(i) when $c_H \leq \bar{c}_H$, with group buying, customer segmentation in equilibrium must be one of the following three scenarios: $\{H\}$, $\{H; H + L\}$, or $\{H + L\}$;

(ii) when $c_H > \bar{c}_H$, with group buying, customer segmentation in equilibrium must be one of the following three scenarios: $\{L\}$, $\{L; L + H\}$, or $\{L + H\}$.

Proposition D.2 (REE with Heterogeneous Waiting Costs). If customers have heterogeneous waiting costs, for any given $\theta > 1$ and N, there exists a threshold for the waiting cost, \bar{c}_H, and three thresholds for the batch size, $\bar{N}_1^D \equiv (\theta - 1)(1 - \gamma)L\lambda/c_L + 1 - \gamma$, $\bar{N}_2^D \equiv (\theta - 1)(H - L)\gamma\lambda/c_H + 1 - \gamma c_L/c_H$, and $\bar{N}_3^D \equiv (\theta - 1)H\gamma\lambda/c_H + \gamma$, such that

(i) when $c_H \leq \bar{c}_H$, the firm sets prices so that

(i-i) when $H \leq [\gamma c_L + (1 - \gamma)c_H]L/([\gamma c_L] - (c_H - c_L))/[(\theta - 1)\lambda$],

(i-i-1) if $N \leq \bar{N}_1^D$, $\{H + L\}$ is an REE;

(i-i-2) if $N > \bar{N}_1^D$, $\{H; H + L\}$ is an REE;

(i-ii) when $H/L > [\gamma c_L + (1 - \gamma)c_H]L/([\gamma c_L] - (c_H - c_L))/[(\theta - 1)\lambda$],

(i-iii-1) if $N \leq \bar{N}_2^D$, $\{H\}$ is an REE;
(i-ii-2) if $N > \bar{N}_2^D$, \{H; H + L\} is an REE;

(ii) when $c_H > \bar{c}_H$, the firm sets prices so that

(iii) if $N \leq \bar{N}_3^D$, \{L + H\} is an REE;

(iv) if $N > \bar{N}_3^D$, \{L; L + H\} is an REE.

Corollary D.1 (Effect of Heterogeneous Waiting Costs on Customer Segmentation).

If customers have heterogeneous waiting costs, compared with the base model,

(i) when $c_H \leq c_L$, the attractiveness of \{H; H + L\} to the firm compared with \{H\} decreases;

(ii) when $c_L < c_H \leq \bar{c}_H$, the attractiveness of \{H; H + L\} to the firm compared with \{H\} increases.

E. Inferior Group-Buying Product

Proposition E.1 (Customer Segmentation with Group Buying). Suppose $\theta < 1$. With group buying, the customer segmentation must be one of the following three scenarios: \{L\}, \{L; L + H\}, or \{L + H\}.

Proposition E.2 (REE with Inferior Group-Buying Product). With inferior group buying, for any given $\theta < 1$ and N, there exists a threshold for the batch size \bar{N}_1^1, and the firm sets prices so that

(i) if $N \leq \bar{N}_1^1$, \{L\} is an REE;

(ii) if $N > \bar{N}_1^1$, \{L; L + H\} is an REE.

Theorem E.1 (Profit Comparison with Inferior Group-Buying Product).

Compared with the volume and margin strategies, it is profitable for the firm to offer group buying with an inferior product (i.e., $\theta < 1$) if and only if N is in an intermediate range, which is not empty if γ is sufficiently high.

F. Horizontally Differentiated Products

Proposition F.1 (REE with Horizontally Differentiated Products). In the context of horizontally differentiated products, there exists a threshold for the batch size $\bar{N}_1^H \equiv (H - L)\gamma \lambda / c + 1 - \gamma$, and the firm sets prices so that

(i) if $N \leq \bar{N}_1^H$, \{G\} is an REE;

(ii) if $N > \bar{N}_1^H$, \{G; G + R\} is an REE.

Theorem F.1 (Profit Comparison with Horizontally Differentiated Products).

In the context of horizontally differentiated products, there exists a threshold for the inventory holding cost \bar{h}^H, above which it is optimal for the firm to offer the product line via flexible-duration group buying rather than doing so noncontingently, and below which the opposite is true.