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n the classic revenue management (RM) problem of selling a fixed quantity of perishable inventories to price-sensi-

tive non-strategic consumers over a finite horizon, the optimal pricing decision at any time depends on two impor-
tant factors: consumer valuation and bid price. The former is determined exogenously by the demand side, while the
latter is determined jointly by the inventory level on the supply side and the consumer valuations in the time remaining
within the selling horizon. Because of the importance of bid prices in theory and practice of RM, this study aims to
enhance the understanding of the intertemporal behavior of bid prices in dynamic RM environments. We provide a prob-
abilistic characterization of the optimal policies from the perspective of bid-price processes. We show that an optimal bid-
price process has an upward trend over time before the inventory level falls to one and then has a downward trend. This
intertemporal up-then-down pattern of bid-price processes is related to two fundamental static properties of the optimal
bid prices: (i) At any given time, a lower inventory level yields a higher optimal bid price, which is referred to as the
resource scarcity effect; (ii) Given any inventory level, the optimal bid price decreases with time; that is referred to as the
resource perishability effect. The demonstrated upward trend implies that the optimal bid-price process is mainly driven by
the resource scarcity effect, while the downward trend implies that the bid-price process is mainly driven by the resource
perishability effect. We also demonstrate how optimal bid price and consumer valuation, as two competing forces, interact
over time to drive the optimal-price process. The results are also extended to the network RM problems.
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opportunity cost of losing one unit of the resource.

1. Introduction In a discrete capacity/inventory system, it is calcu-

Revenue management (RM) has arisen as an impor- lated as the first-order difference of the value function
tant tactic in many industries, such as airlines, hotels, (i.e., the expected revenue function) with respect to
and retailing, that are characterized by fluctuating the inventory level at any given time. It is a crucial
demand, perishable capacity and a finite selling sea- factor in determining the optimal policy (e.g., pricing
son. Advances in information and communication or capacity allocation) in RM. However, there are still

technology enable sellers to easily adjust their pricing gaps in our understanding of how bid-price processes
and capacity allocation decisions depending on the may evolve over time. To quote Dr. Darius Walczak,
inventory level and remaining time in the selling sea- Director of Optimization, at PROS Pricing, in his per-
son to better match supply and demand intertempo- sonal communication with us:
rally. Talluri and van Ryzin (2004) provide a
comprehensive review of industrial practices and the
growing RM literature, where they classify the RM
models into two categories: dynamic pricing models,
which vary prices over time, and capacity rationing
models, which allocate capacity to different priority-
class customers.

In RM, optimal bid price (bid price, hereafter for
simplicity), which is also referred to as shadow price, Our paper aims to characterize the probabilistic
is a central economic concept for measuring the trends of the bid-price processes and to investigate

1135

In the airline industry, many carriers do rely on
bid-price control. Despite popularity of bid
prices, there are still misconceptions remaining
among the users: some claim that bid prices
should have increasing trend, some claim the
opposite, and some others believe that there is
no trend to be expected.
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their implications for pricing and capacity allocation
decisions in dynamic RM environments.

In a typical single-product setting, the dynamic
pricing and capacity rationing models have two com-
mon structural properties: the expected revenue func-
tion is concave in the inventory level, and
submodular in the inventory level and elapsed time;
that implies that the bid price of the inventory is
decreasing in the inventory level and elapsed time
(see, e.g., Feng and Xiao 2000, Gallego and van Ryzin
1994, Zhao and Zheng 2000 for dynamic pricing mod-
els, and Lautenbacher and Stidham (1999), Feng and
Xiao (2001) for capacity allocation models). The
monotonicity in the inventory level means that the
less the remaining capacity, the higher the bid price;
this is called the resource scarcity effect. The monotonic-
ity in time means that the more time is elapsed, the
lower the bid price; this is called the resource perishabil-
ity effect. In a dynamic pricing setting, Gallego and
van Ryzin (1994) infer from these static properties that
the optimal price is decreasing in the remaining
inventory level at any given time, and is decreasing in
the elapsed time for any given inventory level.

In a dynamic stochastic system, inventory level falls
over time. The decrease in the inventory level and the
elapse of time have opposite effects on the bid prices.
At any point in time, the future bid prices can be
either higher or lower than the current bid price.
Thus, the statically monotonic structural properties
cannot predict how the bid-price process will evolve.
Since the optimal policy is driven by the bid prices,
the static properties also cannot predict the trends of
optimal decisions, for example, the optimal-price
trends. Assuming a Poisson arrival process and time-
invariant customer valuation distribution, Gallego
and van Ryzin (1994) show that the sample path of an
optimal-price process has a zig-zag pattern over time
that does not exhibit monotonicity. Xu and Hopp
(2009) identify sufficient conditions under which the
average sample path of the optimal-price process has
some monotonic trends in the probabilistic sense.
They show that if the customer valuation increases
rapidly, the optimal-price process is a submartingale,
which implies an upward trend. If the customer valu-
ation decreases rapidly, the optimal-price process is a
supermartingale, which implies a downward trend.
However, they do not study the bid-price trends
under the optimal policy. In a stochastic fluid model
with an iso-elastic demand function, Xu and Hopp
(2006) show that the optimal-price process is a martin-
gale. It is not hard to infer from their closed-form
solutions that the bid-price process of their model is
indeed a martingale as well. In a more general sto-
chastic fluid model under the bid-price control,
Akan and Ata (2009) also show that the bid-price pro-
cess is a martingale. They propose an e-optimal

approximation model under which the bid-price pro-
cess has the martingale property. Inspired by the
interesting findings of Xu and Hopp (2006) and Akan
and Ata (2009), we aim to answer the following ques-
tions: Do bid-price processes in the conventional RM
models (e.g., Gallego and van Ryzin (1994), Zhao and
Zheng (2000)) also evolve as martingales? In dynamic
pricing models, how do the two competing forces, bid
price and consumer valuation, drive the optimal-price
processes?

In this study, we analyze the bid-price processes
under the optimal policies for the standard RM mod-
els with discrete inventory levels. More specifically,
we show that in a dynamic pricing model, the bid-
price process under the optimal policy has an upward
trend before the inventory level falls to one, and a
downward trend afterwards. Such an up-then-down
pattern implies that the bid-price processes are not
martingales and moreover, that they are neither su-
permartingales nor submartingales. This finding
implies that each of the two driving forces of the bid
prices, namely, resource scarcity and resource perish-
ability, plays a dominant role in different situations:
When the inventory level is greater than one, the
resource scarcity effect is the dominant driver for the
bid-price trend; when only one unit of inventory is
left, the resource scarcity no longer exists and the per-
ishability effect becomes the only driver for the bid-
price trends.

To explore the implications of the bid-price trends,
we first investigate the trends of optimal selling prices
(optimal price, hereafter for simplicity). We show that
the optimal-price trends are determined jointly by the
trends of bid-price and valuation processes. In partic-
ular, when the valuation distributions are stationary,
the optimal-price trends may also exhibit similar up-
then-down patterns: the optimal-price processes are
expected to move upward before the inventory level
falls to one and then to move downward. This result
is different from that of Xu and Hopp (2009), who
show that when the valuation increases or decreases
dramatically over time, the optimal-price trends are
upward or downward, respectively. We focus on the
role of bid-price trends in determining the optimal-
price trends, while they focus on the role of valuation
trends. From this standpoint, our analysis comple-
ments theirs for an understanding of the optimal-
price trends.

In the numerical study, we demonstrate the effects
of valuation trends, demand/capacity ratio, and the
demand and capacity scaling, on the bid-price and
optimal-price trends. We observe that the bid-price
trends are not sensitive to the valuation trends,
whereas the optimal-price trends are. We also observe
that the higher the demand/capacity ratio—hence the
more stringent the capacity—the more significant are
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the up-then-down patterns of the bid-price and opti-
mal-price trends. When both demand and capacity
are sufficiently high with their ratio fixed, the bid-
price and optimal-price processes tend to behave like
martingales, an observation that is in line with the
finding of Akan and Ata (2009) for stochastic fluid
models.

Finally, we extend our results on the bid-price
trends and optimal-price trends to the network RM
problem.

In summary, our contribution is twofold. First, we
provide a probabilistic characterization of the bid-
price process and show that the bid-price trends have
an up-then-down pattern. To the best of our knowl-
edge, this is a new insight for RM problems. Second,
we show how the two competing forces, bid-prices,
and customer valuation, drive the optimal-price trend
in the dynamic pricing model, a finding which com-
plements Xu and Hopp (2009).

Throughout the rest of the study, we use “decreas-
ing” and “increasing” in a weak sense. For any real
numbers x,y, x Ay = min(x,y) and xVy = max(x,y).
For any vector x, x’ is its transpose.

2. Single-Product Dynamic Pricing

2.1. The Model

Consider a monopolistic firm that sells C discrete
units of a perishable product over a finite horizon [0,
T]. Customers arrive according to a non-homoge-
neous Poisson process with a time-varying arrival
rate A;, t € [0,T]. At any point in time, the firm selects
a selling price p from a compact set [p,p]. Each arriv-
ing customer will buy one item if and only if the price
p is no more than his or her valuation of the product.
At the end of the horizon, all unsold items have zero
salvage values. The firm aims to maximize the total
expected revenue over the horizon.

Assume that A; > Oforallt € (0,7). Forany t € [0,T),
let @(-): Ry — [0,1] be the cumulative distribution
function of customer valuation with probability density
function ¢, : Ry — R... Define the failure (or hazard) rate
of ®;() as ()=, (-)/D:(-), where @;(-) = 1 — D).
Assume that both ®; and ¢, are continuous and differen-
tiable. Note that the failure rate is also called the inverse
Mills ratio, where the Mills ratio is defined as
mi(p)=1/h(p). We assume that @ (p) is strictly
increasing in p with the support [p, p|.

Then, @;(p) is strictly decreasing in [p,p], and for
any d € [0,1], there is a unique p such that d = ®(p).
Moreover, the strict monotonicity implies that ®;(p)
has an inverse function, denoted by ,(d), such that
Y(d) is also a strictly decreasing function. The one-to-
one mapping between p and d implies that one can
treat d, the probability that customer valuation is
greater than price, as the decision variable. See Galle-

go and van Ryzin (1994) for the same assumption of
one-to-one correspondence between prices and
demand rates. For convenience, we call d the demand
rate in the following analysis. Then the expected reve-
nue rate becomes A;7;(d), where r:(d)2dy,(d) is the
expected revenue per arrival. Like Gallego and
van Ryzin (1994), we assume that 7;(d) is bounded
and concave in d; that ensures that r(d) has a
bounded least maximizer d;=inf{d € [0,1]:7(d) =
maxgc(o,1] 7+ (<) }. The concavity of r4(d) implies that the
marginal value of the expected revenue rate, r;(d), is
decreasing in d, consistent with the standard eco-
nomic assumption. In fact, even if r,(d) is not a con-
cave function, there exists a maximum increasing
concave envelope (MICE) for r¢(d) such that the optimal
policy can be found on the MICE (see Feng and Xiao
2000 for a detailed discussion). Thus, the concavity
assumption for r¢(d) is without loss of generality.

Let U be the set of admissible policies. A policy u in
U can be specified as {d"(t),0 < t < T}, where d"(t) is
the demand rate under policy u at time t. Define
t,=inf{t € [0, T]|N(t) = n}, which represents the hit-
ting time when the inventory level first falls to the
level n. Note that in the literature a null price is typi-
cally used to model the out-of-stock condition under
which the demand is zero (see, e.g., Gallego and van
Ryzin 1994). However, to analyze the price trend,
such a null price may artificially distort the price
trends: in practice, a product that is out of stock is
more likely to be removed from the market, instead of
being offered at an outrageously high price to shut
down demand. Following Xu and Hopp (2009), we
assume that the price process is stopped immediately
after the inventory level falls to zero and let the price
process take the value it had just before the occur-
rence of this stockout. That is, d"(t) = d"(to—) if
t > 19. Correspondingly, for any u € U, the total num-
ber of sales up to time (< 19), denoted by A"(t), is a
Poisson process with arrival rate Ad"(t) and the
maximum value C. Since the sales process stops
when the inventory falls to zero, we assume that
Au(t) = AM(’Eo—) for t > T0-

Suppose that the demand process is defined on a
probability space (Q,F). For any policy u € U, the
associated probability measure P" is defined on (Q, F)
such that A“(t) admits the (P", F;)-intensity
A(E) = Ad(t), where F; = {A%(s)|0 < s < t} is the
filtration (history) generated by A*(t). The revenue rate
for a unit sale at time f under the policy u is ,(d" (t—)),
that is, the optimal price right before time ¢. Then the
firm’s expected revenue maximization problem is

T
max E [ / i (d (s—))dA (5) | Fo

ueld

subject to A"(s) <C for all s.
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Let u* be an optimal policy and N(t)2C — A" (t) be
the inventory process under the optimal policy. Given
the inventory level n at time f (i.e., N(t) = n), let V(t,n)
be the expected revenue over period [¢,T] under the
optimal policy (namely, the value function), that is,

T
V(t,n)AE [ [ i spaar 917

The boundary conditions are V(t,0) =0 and V(T,
n) = 0 for any t and n. Note that since the underly-
ing sales process is Markovian, the dependence on
the filtration F; can be replaced by the condition
N(@) = n.

2.2. Optimal Bid-Price Trends

In RM, bid price of a unit of capacity is measured by
the opportunity cost of selling one unit of capacity.
More precisely, at any time t, given a capacity level
n > 1, the bid price is equal to the first-order difference
of the value function, that is, AV(tn) = V(t,n) —
V(tn — 1). According to the literature of intensity con-
trol of point process (e.g., Brémaud 1981), a sufficient
condition for a function V(t,n) to be the optimal value
function is that it satisfies the following Hamilton—-
Jacobi-Bellman (HJB) equation (see also Feng and
Xiao (2000)). That is,

0=2Vitn)+ max (Adly(d) = AV ()]} (1)

Clearly, given any inventory level n at time ¢, if one
knows the value of the bid price, AV(t,n), the opti-
mal demand rate can be obtained by solving
maxgeo117¢(d) — dAV(t,n)}. Since ri(d) is concave,
for any AV(t,n) >0, the objective function is con-
cave, and thus the optimal decision, if it is an inte-
rior point in [0,1], satisfies the first-order condition:
ri(d) = AV(t,n). Let d(t,n) and p(t,n) = y,(d(t,n))
denote the optimal demand rate and pricing deci-
sions for any given t and 7.

Zhao and Zheng (2000) show that the optimal bid
price AV(t,n) is decreasing in t and n. Their result
implies that the elapsed time and remaining capac-
ity are two key factors driving the bid price. When
one of these two factors is fixed, an increase in the
other factor leads to a decrease in the bid price. For
any t, the bid price is decreasing in 1, which reflects
the resource scarcity effect. For any n, the bid price is
decreasing in ¢, which reflects the resource perishabil-
ity effect. However, in a dynamic stochastic system,
as time goes by and more of the inventories are
sold, the decrease in the inventory level and the
increase in the elapsed time have opposite effects on
the bid price: the former drives the bid price up,
while the latter drives the bid price down. At any

point in time, the bid price in the future is deter-
mined by the future dynamics and is therefore
uncertain. To predict the probabilistic trend of the
bid-price process, we ask the following question:
which of the two driving factors is the dominant fac-
tor for the bid-price trend?

Note that the bid-price process stops when the
inventory level falls to zero. When the system runs
out of inventory, it may be more natural to virtually
let the future bid price be the one right before the
stockout, so as not to drive up prices artificially. Thus,
given an inventory process N(t), the optimal bid-price
process can be defined as

B(H)2AV(t Atg—,N(t Ato—))

AV(t,N(t)) if t<1y,
= V(t,l) if 171 <t <1,
V(‘EQ—,l) iftzto.

THeoreM 1 (OprtiMaL Bip-Price  Trenps.). For any
t € [0,T) and s € (,T],

(i) if N(t) > 1, then B(t) <E[B(s A 11)|F4);
(i) if N(t) = 1, then B(t) > E[B(s)|F4].

Theorem 1 shows that the bid-price process has an
upward trend before the inventory falls to one and
then it moves downward. It implies that the resource
scarcity is the dominant factor in the bid-price process
before the inventory falls to one and that resource per-
ishability then becomes the dominant factor in the
bid-price process. A stochastic process, B(t), is said to
be a martingale over [0,T] if for all 0 <t <s<T,
B(t) = E[B(s)|F:]. B(t) is said to be a submartingale
(or supermartingale) if the equality above is replaced
by < (or >). A martingale is also a submartingale and a
supermartingale. Theorem 1 implies that the bid-price
process before the inventory level falls to one,
B(t A 11), is a submartingale, and the bid-price process
after the inventory level falls to one, B(t V 11), is a su-
permartingale.

2.3. Optimal-Price Trends
This section analyzes how the bid-price trends drive
the dynamics of optimal prices. For simplicity, in the
following analysis of optimal-price trends, we further
assume that r;(d) is strictly concave in d.

Like Xu and Hopp (2009), the optimal-price process
can be defined as

if t <1y,
if tZ’E().

o pEN()
P “)‘{ p(r0— N(10-))

That is, the price process stops immediately after a
stockout occurs and it takes the value it had just
before the stockout.
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For any t < T and n > 1, the optimal price p(t,n) is
obtained by solving the problem
max{®(p)[p — AV(¢,n)]}. (2)
pelp.pl
Since the support of valuation distribution is [p,p],
we know that the objective function is strictly
increasing in p as p<p and is zero when p >p. Hence,
the optimal price p(t,n) must be in [p, p]. Differentiat-

ing the objective function of (2), we can write the
marginal revenue rate function as

i(p) — e(p)p + di(p)AV (£, )
= ¢;(p)[AV(t,n) — Hi(p)],

where H;(p)=p — mi(p). Recall that the
mi(p) = 1/h(p) is the Mills ratio.

The following lemma helps characterize the opti-
mal pricing policy.

term

LEmma 1.

p € [p,pl-

For any t, Hi(p) is strictly increasing in

Lemma 1 implies that the optimal price satisfies the
first-order condition that AV (t,n) — H;(p) = 0 if and
only if Hy(p) < AV(t,n) < H(p). Since p is the upper
bound of the support of the valuation distribution,
®(p) = 0, which implies that Hi(p) = p. It is clear
that the bid price (or, the opportunity cost of the mar-
ginal inventory unit) AV(t,n) must be smaller than p
for any (t,n), which implies that AV(t,n) < H,(p).
Moreover, if H;(p) > AV(t,n), the optimal price is p.
Then the optimal price p(t,n) can be expressed as
¢ (AV(t,n)) = H;'(AV(t,n) Vv B,), where B, = H;(p)
and H; ! is the inverse function of H;.

Xu and Hopp (2009) identify a set of sufficient con-
ditions under which an optimal-price process has an
upward trend or a downward trend. Their discussion
focuses on the effect of the customer valuation pro-
cess. In particular, they show that when customer val-
uation increases (or declines) rapidly, the optimal
price may have an upward (or downward) trend.
However, they do not consider the influence of the
bid prices on the optimal-price trends. To gain insight
into how the two competing forces interact to drive
the optimal-price trends, we first consider the follow-
ing two special cases of valuation distributions.

ExaMPLE 1 (EXPONENTIAL VALUATION DISTRIBUTION).
Suppose that customer valuation is exponentially
distributed with a time-varying mean g and the
price range is p € (0,00). For any t and n, by solving
the price optimization problem (3), one can obtain
the optimal price p(t,n) = p, + AV(t,n). Then the

optimal-price process is P(t) = p;,,, +B(t), and
the optimal-price trends depend on which force is
dominant. When g, is non-decreasing in t, the opti-
mal price has the upward trend before the inventory
falls to one. Suppose that g, is a differentiable func-
tion of t. If, in particular, the increasing rate of , is
large enough (e.g., 4p; > — 5 V(t,1) for all #), then
the optimal price has an upward trend over the
entire selling horizon. Similarly, since the increase in
the bid-price trends may be limited, when p, falls
rapidly enough that the valuation trend is the domi-
nant driver of the optimal-price process, the opti-
mal-price process will have a downward trend.
When p; is constant, the optimal-price trends are
driven entirely by the bid-price trends.

ExampLE 2 (Iso-ELastic  DEMAND). Another com-
monly used demand model is the iso-elastic (or con-
stant elasticity) demand model ®;(p) = p~*, where
7, > 1 and p € [1,00) (see, e.g., McAfee and te Velde
2008). The assumption y;, > 1 indicates that the cus-
tomers are relatively sensitive to price changes. It is
clear that the optimal price is p(t,n) = w’;_’lAV(t,n).
Note that -

7i—1

decreases in y;. Then when the price

elasticity {y,} falls over time, the optimal-price pro-
cess has an upward trend before the inventory falls
to one. When the price elasticity {y,} increases over
time, the optimal-price process has a downward
trend after the inventory falls to one. When the price
elasticity is constant over time, the optimal-price
process has the same trend as the bid-price process.

For a more general valuation distribution, the fol-
lowing theorem identifies a sufficient condition under
which the optimal-price process may have the same
trend as the bid-price process.

THEOREM 2 (OPTIMAL-PRICE TRENDS.). Assume that
my(p) is convex in p for any t. Then, for any
0<t<s<T,

(i) if N@t)>1 and h
P(t) < E[P(s A1) |F4];

(i) if N(t)=1 and h
P(t) > E[P(s)|F4].

increases in t, then

decreases in t, then

Theorem 2 demonstrates how the temporal trend
and static structure of valuation distribution and the
bid-price process drive the trend of the optimal-price
process. In particular, if the valuation distribution is
constant (independent of t), Theorem 2 shows that the
optimal-price process has the same trend as that of
the bid-price process: it moves upward until the
inventory level falls to one and then moves down-
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ward. That is different from the patterns demon-
strated by Xu and Hopp (2009), which show that the
price trends can have either upward or downward
trends under some strong conditions on the customer
valuation process.

Xu and Hopp (2009) impose three sufficient condi-
tions to ensure the upward (or downward) price
trends: (i) 1/h(p) is convex in p, (ii) the failure rate
hi(p) is increasing in p, and (iii) price sensitivity
decreases (or increases) rapidly. Their condition (i) is
the same as our convex Mills ratio condition. As
pointed out by Xu and Hopp (2009) and Xu (2013),
such a condition is satisfied by many common distri-
butions, including uniform, logistic, normal, Weibull,
and gamma with shape parameters no less than one.
Moreover, their condition (ii) implies that H;(p) is also
increasing in p. Because r}(d) = —mH;(lpt(d)),
their condition (ii) further implies the concavity of
r¢(d) but not necessarily vice versa. For example, the
iso-elastic demand function ®;(p) = p~" in Example
2 violates condition (ii) while satisfying the concavity
of the revenue rate function, because H;(p) = p—
p/y; is increasing in p while (p) = y,/p is decreasing
in p. This suggests that our assumption that r(d) is con-
cave is more general than their condition (ii). Lastly,
their condition (iii) is relatively strong: the price sensi-
tivity decreases or increases so rapidly that the opti-
mal-price trend is mainly driven by the trend of
customer price sensitivity. Our result complements
their study of price trends from a bid-price perspective.

2.4. Numerical Study
In the numerical study, we will demonstrate the dif-
ference between the trends of bid price and selling
price, and the effects of the valuation trend, of the
demand/capacity ratio and of the demand and capac-
ity scaling, on the trends of bid price and selling price.

Following Xu and Hopp (2009), we consider the
exponential valuation distribution. Firstly, we con-
sider the setting with T =1, C =25, \(p) = Ae P/,
where A = 100 is the arrival rate, and g, = ¢ is the
mean of the valuation distribution with k € {-1,0,1}.
Note that when k = 0, the mean valuation is constant;
when k = —1 (or k = 1), the mean valuation falls (or
increases) exponentially over time. We treat the con-
stant valuation case as the base case. Secondly, we
change the demand/capacity ratio by varying the
arrival rate in {50,150,200} while keeping the capacity
level at 25. Thirdly, we scale the demand and capacity
by varying the arrival rate and capacity level (A,C) in
{(20,5), (200,50), (1000,250)} while keeping the same
demand/capacity ratio as in the base case.

In the computation, we discretize the time interval
[0,T] into L = 10,000 small intervals with an equal
length 6 = T/L. The time interval is indexed by

j=1,..., L Lett; = (j — 1) x 0 be the beginning of
j-th interval. We first compute the optimal selling
prices and bid prices. Then, we simulate the demand
arrival in each interval (t;_1,t]],j =1, ..., L, by a Ber-
noulli random variable with mean A(t;)é, and the cus-
tomer valuation upon arrival by an exponential
variable with mean y;. We record all the trajectories of
bid prices and selling prices along the simulated sam-
ple paths and then calculate their means.

Figure 1 demonstrates the average sample paths of
bid prices and optimal prices under different valua-
tion trends. Recall that with the exponential valuation
distribution, the optimal price and bid price satisfy
p(t,n) = w, + b(t,n), where b(t,n) = AV(tn), and
hence the optimal-price trends are driven by the valu-
ation trends and bid-price trends simultaneously.
Sub-figure (a) shows that when y; is constant, the
optimal prices and bid prices have the same trends.
As predicted, before the inventory level falls to one,
the bid price and optimal price both move upward;
since the time is close to the end of the horizon after
inventory falls to one, the bid price and optimal price
both move downward. The bid-price trend plays a
dominant role when consumer valuation distribution
is time-invariant. It is also notable that as time goes
by, the average sample path of B(f A1) rises from
about 0.45 to about 0.65 (an increase of about 50%),
which implies that the upward trend of the bid prices
is relatively significant. Sub-figure (b) shows that
when p; decreases rapidly, the optimal price declines,
while the bid-price trend still exhibits the up-then-
down pattern. Sub-figure (c) shows that when g,
increases rapidly, the optimal price increases rapidly
until the inventory level hits one. As in the second
case, the bid-price process exhibits an upward trend,
but then falls quickly after the inventory level hits
one. This shows that the trend of valuation distribu-
tion can be the dominant driver of the optimal-price
process when the mean valuation increases or
decreases rapidly, which is consistent with Xu and
Hopp (2009). These numerical results confirm that the
optimal-price trend is determined by the combined
effect of the trend of valuation distribution and the
up-then-down pattern of the bid-price trend.

Figure 2 demonstrates the bid-price trends and
optimal-price trends with different demand/capacity
ratios. If the capacity level is 25, a higher demand/
capacity ratio corresponds to a scenario with a rela-
tively higher demand. The three sub-figures plus the
base case show that the higher the demand/capacity
ratio the more significant the up-then-down trends
for both bid price and optimal price. Sub-figure (a)
shows that when there is ample capacity (e.g., for this
case, the average optimal price is around 1.03, the
likelihood of a purchase upon a customer’s arrival is
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Figure 1  Bid Prices Vs. Optimal Prices: Effect of Valuation Trend
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0.357 and it is expected to have a leftover of 7.15
units), the bid-price and optimal-price trends can be
quite flat. In other words, they behave like martin-
gales. However, when the capacity is stringent in
which case RM is most interesting to be applied to,
see sub-figures (b) and (c), the up-then-down pattern
is more significant, with a moderate upward trend of
the bid-price process in the early selling horizon.
Figure 3 shows the effect of the demand and capac-
ity scaling on the the bid-price and optimal-price
trends. It is clear that the arrival rates and capacity
levels of the base case and of the cases in sub-figures
(b) and (c) are respectively, 5, 10, and 50 times of
those of the case in sub-figure (a). We can observe
that the higher the arrival rate and the capacity, the
flatter the optimal-price and bid-price trends, though
the downward trend at the end of the selling horizon
is still very significant. Ignoring the downward
trends after the inventory levels fall to one, the bid-
price processes and optimal-price processes behave
like martingales when the arrival rates and capacity
levels are high. Our observations are consistent with
the finding of Akan and Ata (2009). They argue that

(b) p+ decreases rapidly (K =—1)

(€) p+ increases rapidly (K =1)

the fluid model can be a good approximation of the
RM problems when arrival rate and capacity are both
very large, and they show that the optimal bid-price
processes are martingales in the stochastic fluid mod-
els. Note that in the fluid models there is no such
“last unit” of inventory; that may explain why there
is no such downward trend as we observe at the end
of the selling season. See Online Appendix B for
more discussions on the fact that the bid-price pro-
cess in a fluid approximation model becomes a mar-
tingale.

3. Network Revenue Management

We extend results to the network RM. Consider an
airline network that consists of I legs, indexed by
i=1,...,1, and | origin—destination itineraries,
indexed by j =1, ..., ], and that can be treated as a
multi-product system where each product corre-
sponds to an itinerary and each resource corresponds
to a leg. The initial capacity of the resource i is C;.
Define the vector C = (Ci, ..., C;) € Z,, where

7. 2{x € Z|x>0}. Let Q = [g;], g; € {0,1}, denote

Figure 2 Bid Prices Vs. Optimal Prices: Effect of Demand/Capacity Ratio
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Figure 3 Bid Prices Vs. Optimal Prices: Effect of Demand and Capacity Scaling
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the bill of resource matrix, where product j requires
gij units of capacity of resource i. Assume that Q has
no zero columns; that is, each product consists of at
least one unit from one of I resources. The j-th column
of Q, Qj, is the incidence vector for itinerary j. At any
time t € [0,T], let N;(t) be the remaining inventory
level of resource i. Let N(t) = (Ni(t), ..., Ni(t))'. The
state of the network is denoted by a vector
n = (n,...,n) €Z.. Note that the inventory level
of a product is equal to the minimum level of the
inventories of all the resources that are built into this
product.

The demands arrive as a J-variate Poisson process
defined on a measurable space (Q,F) with the
intensity A{(t) for itinerary j, j =1, ..., ], where u is
an admissible policy in an admissible policy set .
Let A“(t) = (A¥(t), ..., A}‘(t))/, where A}‘(t) is the
total number of sales of product j up to time t.
Assume that, for any given u, A/(t) is independent

of A"(t). The unit revenue from a sale of product j
at time t wunder policy u is denoted by
pi(t=) € ppp) Let p"(t) = (i), - pj(H). A
product is said to be out-of-stock if the inventory
level of any resource of the product is out-of-stock.
As in the single-product case, we assume that the
price and sales process of a product stops when it is
out-of-stock, and the price and accumulate sales of
this product are equal to the values right before it is
out-of-stock. The firm’s expected revenue maximiza-
tion problem is expressed as

el

subject to fOT QdA"(s) < C.

Let u* be an optimal policy. Given the inventory
levels n at time ¢, the expected revenue over period
[t, T] under the optimal policy is

—YdAY(s )}

0.6
Elapsed time t

() K =0,A=200,C =50

Elapsed time t

(c) K=0,A=1000,C =250

=] e

Note that V(T,n) = 0 for any n and V(t,0) = 0 for any
t, where 0 can be a vector with an appropriate
dimension and all its elements being zero.

Define A;V(t,n) = V(t,n) — V(t,n —¢;) as the bid
price (shadow price) of the inventory of i-th resource
at time f, where ¢; is an I-dimensional unit vector with
1 as the i-th element. Let ), = inf{t € [0, T|| max; K¥(t)
= m} be the earliest time that the maximum inven-
tory level of all products that contain resource i falls
tom( < C;), where

Ki(t) = {ronink{Nk(f) g =1}

A1

ifqijZL
ifq,-j:O'

Note that K’ (t) is the maximum available inventory
level of product j that contains resource i. As each
product may consist of several resources, the effec-
tiveness of the inventory of a resource depends on
the inventories of all other resources that can be
combined into a product. Note that Ki(t) > 1
implies that N;(t) > 1, but not vice versa. The term
max; K (t) represents the effective inventory level of
resource i at time ¢, that is, the maximum amount of
inventories at a product level that resource i can
contribute to. If max;K’(t) = 0 and Ni(t) > 0, then
V(t,N(t)) = V(t,N(t) — e), that is, A;V(t,N(t)) = 0.

Given the inventory process N(t), the bid-price pro-
cess of the i-th resource is defined as

BI(H)EAV(t A Th—, N(tATh—)).

THEOREM 3  (BD-PRICE TRENDS OF A RESOURCE.). Given
the inventory vector n at time t, for any t < s < T, the
bid-price process for resource i has the following trends:

(i) if max (Ki(t) > 1, then B(t) < E[Bi(s A t))|F4;
(ii) if maxj:] Kii(t) = 1, then Bi(t) > E[B'(s)|.F4].
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Like Theorem 1, Theorem 3 shows that the bid price
of a resource has an upward trend before the effective
inventory level of this resource falls to one and that it
then continues on a downward trend. This indicates
that the up-then-down pattern of bid-price trends is a
general property in RM problems. It is known that the
desired structural properties of value functions, such
as concavity, supermodularity, or submodularity, do
not necessarily hold for general network RM models.
From this perspective, our results shed new light on
the network RM problem.

To see the implications of the bid-price trends for
the optimal-price processes, we consider a simple set-
ting where the demand processes and the consumer
valuations for all the products are independent of

each other. Let CD]f be the consumer valuation distribu-
tion for product j and assume that the corresponding

revenue rate function rJ,(d) = (@) 7'(d)d is concave in
d.Forany t < T and n > Q, the optimal price p;(t,n)
for product j is obtained by solving the problem

max {®](p)lp; — (V(t,m) — V(En— Q)] ()

pi€ly bl

Let %), be the earliest time that the inventory level
of product j (defined as the minimum inventory
level of all its resources) falls to m. We extend the
bid price concept from a resource to a product.
The bid price of a product measures the opportu-
nity cost of selling one unit of the product, which
serves as a cost base for optimal product pricing.
Define the bid-price process for product j's inven-
tories as

Bf(t)év(tA%{)—,N(t/\f{)—)) - v(mf{)—,N(tM{,—) —Qf).

As in Theorem 3, we can characterize the bid-price
trends for a product. The proof replicates that of The-
orem 3 and is therefore omitted.

THeOREM 4  (Bip-PrICE TRENDs OF A ProDUCT). Assuime
that the demand processes for different products are inde-
pendent of each other. Given the inventory vector n at
time t, the product j’s optimal bid-price process has the
following trends:

(i) if t<4%|, then for any t<s<T, Bi(t)<
E[B/(s A 2))|F1];

(ii) if > #, then for any t<s<T, Bi(t)>
E[BI(s)| 7).

Define the optimal-price process of product j as

Then under the same assumption as in Theorem 2
for the valuation distribution of each product, we
can have the same characterization for the optimal-
price trends as that of Theorem 2. That is, when the
hazard rate for product j, denoted by h]t, increases in
t, the optimal-price process for product j has an
upward trend before the inventory level of the prod-
uct falls to one (i.e., t < f’l); when h]f decreases in t,
the optimal-price process for product j has a down-
ward trend after the inventory level of the product
falls to one.

4. Concluding Remarks

Bid price is one of the fundamental driving forces for
determining the optimal decisions in dynamic pricing
and revenue management models. Our study reveals
a general pattern of bid-price processes: an optimal
bid-price process has an upward trend before the
inventory level falls to one and then has a downward
trend. The optimal-price trends are then driven by the
bid-price trends and customer valuation trends. In
the following, we briefly summarize several exten-
sions. The detailed analysis is provided in the Online
Appendix.

Heuristic bid-price trends. Gallego and van Ryzin
(1994) analyze a fixed-price heuristic based on the
deterministic fluid approximation model and show
that the heuristic policy is asymptotically optimal
when the volumes of expected sales and capacity are
sufficiently large. It is natural to ask whether the bid-
price processes under the heuristic also have the same
trends as they do under optimal policies. Employing
the same approach to the optimal bid-prices, we iden-
tify some sufficient conditions under which the bid-
price processes and optimal-price processes under the
fluid heuristics have either an upward or a down-
ward trend before the inventory level falls to one.
That is, the heuristic bid prices may move in either
the same direction as the optimal bid prices or the
opposite direction. This provides some structural
insights into the design of the heuristics: when the
heuristic bid price moves in an opposite direction to
the optimal bid price and the gap between them
becomes larger as time goes by, one may need to dou-
ble check the heuristic policy to make sure it can
indeed perform well.

Fluid approximation from a martingale perspective.
Note that both Xu and Hopp (2006) and Akan and
Ata (2009) show that the optimal bid-price processes
are martingales in stochastic fluid models (which
serve as approximations of the standard RM models),
while we show that in the standard RM models the
optimal bid-price processes may have different trends
before and after inventory levels fall to one. We pro-
vide further analysis to bridge this gap. We find that
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it may be the discreteness in the arrival process that
drives the non-martingale structure of the bid-price
processes. As pointed out by Akan and Ata (2009),
when the volume and capacity are sufficiently large,
the RM systems can be approximated by fluid models
and the bid-price processes can therefore also be
viewed approximately as martingales.

Capacity rationing. Our analysis also applies to
capacity rationing models, also called quantity-based
RM models (see, e.g., Feng and Xiao 2001), in which
customers are segmented into several distinct fare
classes with predetermined prices. As in the analysis
for the dynamic pricing models in network settings,
the analysis for the capacity rationing models can also
be readily extended to network settings.

Bid-price trends under dynamic price competition. We
also try to extend our analysis to competitive dynamic
pricing models (see, e.g., Gallego and Hu 2014). We
show that when there is only one unit of inventory left
for a firm in an oligopolistic market, in equilibrium,
the bid-price process of the firm has a downward
trend. Furthermore, for a duopoly with linear
demand functions, the equilibrium price process of
each firm also has a downward trend when both firms
have a single unit of inventory. Sweeting (2012) has
conducted an interesting empirical study of the
dynamic pricing behavior of the secondary markets
for Major League Baseball tickets where sellers are
small and most sellers offer a single unit. He finds
that the sellers cut their prices dramatically, by 40%
or more, as an event approaches. He argues that the
simple dynamic pricing models (without explicitly
addressing the customer’s strategic behavior) predict
the seller’s behavior pretty accurately. Our work pro-
vides a rigorous analysis and theoretical justification
for his empirical findings.

The above discussions show that the up-then-down
bid-price trends are indeed a general property in RM
models. Our work is a complement to that of Xu and
Hopp (2009), who characterize the optimal-price
trends and to Akan and Ata (2009) who show that the
bid-price processes in stochastic fluid models are mar-
tingales. These findings enhance our understanding
on how RM systems work. But we must acknowledge
that knowing the bid-price trends or price trends does
not directly help compute the optimal policies or
design effective heuristics.
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Appendix: Technical Proofs

Proor oF THeorem 1. We first prove the first asser-
tion. Note that d(t,n) denotes the optimal demand
rate when the inventory level is n at t. From the HJB
Equation (1), for any n >2 and 0 <f < T, we have
the following equations.

o:%VUmyamatmww@n»—AWhML(AU

0z%V@n—D+Aﬂ@n—DW@@n—U)

—AV(t,n—1)]> %V(t, n—1)+ Ad(t,n) [y (d(t,n))
—AV(t,n —1)],

(A2)

where the inequality is due to the sub-optimality of
d(t,n) when the inventory level is n — 1 at ¢.

Subtracting Equation (A2) from Equation (A1)
yields the following inequality.

0< %AV(t, n) + Add(t,n)[AV(t,n — 1) — AV (t,n)].
(A3)

Following the derivation of the proof of Theorem
1 of Chapter VII of Brémaud (1981) (in particular,
equation (2.16)), for the inventory process N(s) when
s < 11, one can decompose the expected value func-
tion V(s,N(s)) at the jumps of the point process N(t)
to derive the following integral expression.

VEN(E) = VIO.NO) + [ T LV(EN()de

- AVENE)ENE) B8

= Aed(E,N(E))dE),
where

OVt )+ At m) [V (En — 1) — V(Em)].

LV (t,n)= 5

Note that Equation (A4) is slightly different from
the corresponding equation in Brémaud (1981),
which is due to the fact that N(#) is an inventory
process in our model.

Then for any 0 <s; < s, < 11, we have

V(Sz7 N(Sz)) — V(S1,N(S1))
2 AV(&, N(E) (AN(E)

— A(&d(&N(

S2
S1

- / “even@ue- [

AN
~
~

[
AN
~
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Similarly, we have
V(s2,N(s2) = 1) = V{s1,N(s1) —1)
/1 LV(EN(E) —1)dé— / *AV(EN(E-) —1)AN()
A(EN(E) — 1)dE).
(A6)

Subtracting Equation (A6) from Equation (A5)
yields

AV(Sz,N(Sz)) —

{LV(EN(9) -

S1

_ / " AV(EN(E-)EN(E) — AQEN(E))

AV(s1,N(s1))
LV(EN(E) —1)}de

+ / AV(EN(E—) = 1)(AN(E) — A(E)d(EN(E) — 1)dE)

> — [T AVENE)ENE - AN

51

N / " AV(EN(E=) = 1)(dN(E) — AO)(EN(E) —1)dE),
(A7)

where the inequality is due to inequality (A3).

Note that AV(EN(E-)) and AV(EN(E—)—1) are
both bounded Fi-predictable processes, and N(t) is
an integral stochastic point process with F; intensity
Aud(t,N(t)). It follows from Dynkin’s Lemma (see, e.-
g., Rogers and Williams 1987) and the optional sam-
pling theorem of martmgale (see, e.g., Karatzas and
Shreve 1988) that N(t A1) — [ Aud(EN(E-))dé
is a martingale. In addition, it satisfies E[N (tA11)]
= E[f;"" Aud(&,N(E~))dE]. Then, following the argu-
ments of Brémaud (1981) (see, in particular, equa-
tion (2.3) on page 24 and equation (2.18) on page
204), we have

E{ / " AV(EN(E-)(dN(Q)
- A(f)d(f,N@»d«:)m} _o,
and

E[ / " AVEEN(ES) — 1)EN(E)
51 (A9)

— A)(EN(E) - 1>d¢>|ft} —0.

By integration on both sides of the inequality (A7)
and applying Equations of (A8) and (A9), we have

E[AV(s1,N(s1))|F4] < E[AV (52, N(s2))| Fil,
which implies that E[AV(sA1,N(s A11))|F:] s
increasing in s for any t <s < T. The first assertion
holds.

We next prove the second assertion. When n =1,

the HJB Equation (1) implies that for 0 <t < T,
0
0= §V(1‘7 n) + Ad(t,n) [y (d(t,n))

V() = V() — Ad(

m)V(t,n).  (A10)

Then, similar to the arguments made for the first
assertion, for any si,s; such that 11 <t <51 <5, < 19,
that is, N(t) = 1, we have

V(s2,N(s2)) —
/ LV(EN(E))déE

V(S1,N(S1)) =

_/S V(& N(E=))(AN(E) — A(E)d(E,N(&))de)

< - [T VENEDENE - AdENE)C)
(A11)

where the inequality is due to the inequality (A10).
Similar to the preceding analysis for the first asser-
tion, we have

E{ /SZV(E,N(f—))(dN(f) Acd(¢,N())de)|F:| = 0.
(A12)

By integration on both sides of the inequality (A11)
and applying Equation (Al2), we have
E[V(s1,N(s1))|F:] > E[V(s2,N(s2))|F¢]. Note that V(t,
N@#) =0 as t > 1. We have that E[V(s,N(s))|F]
decreases in s € (t,T]. The desired result holds.

REMARK 1 (AN ALTERNATIVE PROOF USING MARTINGALE
ARGUMENTS). The bid-price trends can also be proved
using Martingale arguments similar to that of Xu and
Hopp (2009). Note that [;"" LV (& N(&))d¢ is well
defined. It follows from Dymnkin’s Lemma (Rogers and
Williams  1987) and optional sampling theorem  of
martmgale (Karatzas and Shreve 1988) that AV(s A 1y,
N(s A1) — [IHLV(E N(©) - LV(E N(E)— 1)}
is an Fi-martingale. Then by inequality (A3) for any
t <t we know that E[AV(sAt1, N(sAt))|Fs is
increasing in s. The downward trend can also be proved
similarly.
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ProoF oF LEmma 1. We first claim that H(p) is
strictly increasing in p for any f. In fact, we have

Hp) =2+ 2 pz¢) and

where ,(-) = ®;'(-). Then, the strict concavity of
ri(d) implies that #/(d) < 0 and hence H,(p) is strictly
increasing in p. O

Proor oF THEOREM 2.  We first show that the convex-
ity of m; implies the convexity of H;!. In fact, we
have

Hy (H; ' (x))
T3

N _
) = = i Ty

Since my(p) = 1/h(p) is convex in p, H;(p) is con-
cave and increasing in p, which implies that H;!(x)
is increasing and convex in x. Clearly, ¢,(x) =
H;'(x V B,) must also be increasing and convex in x.

When #;(p) increases in t for any p, we know that
H;(p) increases in t for any p and so are H;!(x),B,
and ¢,(x) for any x. Then, for any 0 <t <s < T, N(#)
> 2, we have

E[P(s A11)|Ft] = E[ps(AV(s A 11, N(s A 11))) | F4]
> ¢ Y(E[AV(s A 11, N(s A 11))|F4])
> ¢, (AV(E,N(1)))
> ¢, (AV(1,N(1)) = P(#).

where the first inequality is by Jensen’s inequality,
and the second is by Theorem 1 part (i) and the
third is by the monotonicity of ¢; ! in t.

When I (p) decreases in t for any p, we know that
Hi(p) and H;!(p) must decrease in t for any p. For
N(@) =1, the bid price AV(s,N(s)) = V(s,N(s)) is a
decreasing process, that is, AV(t,N())>AV(s,N(s)) for

all the realizations of N(s) at s>t. Then,
P(t) = o '(AV(£,N(t))) > o' (AV(s,N(s))) = P(s).
Thus, P(t) > E[P(s)|F¢]. O

PrOOF OF THEOREM 3. First, if max/_, K¥(t) > 1, then
we have n; > 2 and the HJB equations:

J
0= TVt + Y N nptm)

=1

+V(t,n— Q) —V(tn),
]
0= %V(t,n —e)+ Z)\j(t,n —e)[pj(t,n —e)
+V(t,n— i_Qj)_V(tvn_ei)]
,gt +Z/\ (t,n)[p;(t, n)
+V(t,n—ei—Q])—V(t,n—e,-)]7

where pj(t,n) is the optimal pricing decision at (t,n)
and \i(t,n) is the corresponding demand rate, and
in particular, when n; = 0, for j such that g; = 1,
)\j(t,i’l) = 0.

A subtraction yields

) ] '
0< S AV(Em)+ ]; At ) [AV(En — Q) (A13)

— AV(t,n).

For convenience, define the operator £; such that

tn+ZAtn

—V(t,n).

Note that N(t) = (Ni(t), Na(t), ..., Ni(t))" is an I-
dimensional stochastic process with F; intensity

Sl A(ENW)Q. Clearly, [ LV(EN(@)dE s
well defined. Analogous to Remark 1, it follows from
Dynkin’s Lemma (Rogers and Williams 1987) and
optional sampling theorem of martingale (Karatzas

and Shreve 1988) that A;V(sAti,N(sAt))) — SM1 Z
A(EN(E)LV(EN(E)) - LiV(EN(E) - Q)d¢ is an Fy-

martingale. Then, inequality euqation (16) implies
that B'(s) = AV (s A1}, N(sA1})) is a submartingale.
Second, if max] _, Ki(t) = 1, then the inventory
levels of products involving resource i are at most
one. It is clear that for any t > 7}, the bid price B ()
declines over time and the de51red result holds. [

LiV(t,n) = (t,n — Q)
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