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Abstract 

The systemic analysis of the molecular level biological information became indispensable with 

the vast amounts of data generated by the advanced experimental techniques and high precision 

measurement tools. Such analysis requires novel multi-disciplinary approaches combining 

computational analysis with wet-bench experimental methods. Among the numerous available 

computational methods, mathematical modeling, simulation and tools of high-throughput data 

analysis provide significant means of novel interpretation of the biological information. Thus, 

science tends to be discovery-driven beside its normal nature as theory-driven. In this thesis, we 

present tow systems biology research projects in the systems immunology and proteomics fields, 

providing an application of systems biology in both theory-driven and discovery-driven science. 

In the systems immunology project, we analyzed the Toll-like receptor 3 signaling pathway, 

which plays crucial role in the body against the viral attached, by developing mathematical 

model simulating its signaling cascades in wildtype and under two knockout conditions. Our 

analysis revealed the existence of missing cellular events prior to the viral dsRNA recognition 

and novel pathway required for the MAP kinases activation (chapter 2). Further, in the 

proteomics project, we performed whole proteome analysis for the undifferentiated cultured cells 

of rice and used the rice protein, gene and transcript databases to identify the rice proteome. The 

resultant proteome information was used to verify the rice genome annotation. Through this 

analysis, we were able to find 210 miss-annotated gene models and provide expression evidence 

for 38 hypothetical (Chapter 3).   

 Key Words: Innate Immunity, Toll-like receptor 3, Computational Analysis, Proteogenomics, 

Genome annotation  
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Chapter 1.Introduction  

 

1.1. Systems Biology: approaching systems-level understanding 

In the last few decades, research in the biological fields had achieved significant advancements 

in technologies and methods, resulted in the accumulation of huge amounts of new biological 

information. Out of many biological fields, molecular biology was one of the fields that received 

greater attention. Molecular biology, the studying of biology in the molecular level, promised 

with new understanding for the biological phenomena by utilizing set of techniques that help in 

characterization, isolation and manipulation of the cell’s and the organism’s components [Alberts 

et al, 2008]. Expression cloning, polymerase chain reaction (PCR), gel electrophoresis, 

macromolecule blotting and DNA micro array are some of the key techniques helped the 

molecular biologists achieve deeper understanding of the characters and functions of the cellular 

individual components. The rapid advancements in the analytical techniques together with the 

huge amounts of acquired information raised the need of novel way of studies that provides 

global understanding of the “system” rather than its individual components. Thus, systems 

biology research appears as a new field of biological research aims to develop a systems-level 

understanding [Kitano 2001].  

The current attempt of achieving systems-level understanding of the biological systems is not the 

first attempt. It was preceded by many precursors since the middle of the 20th century. However, 

the limitations of technologies and the unavailability of the molecular level information made all 

attempts aiming to system-level understanding in the physiological level rather than the 

molecular level [Kitano 2001]. For instance, by 1933 Cannon proposed that the biological 

systems could regulate its internal environment and maintain stable conditions, the process that 
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named “homeostasis” [Cannon 1933]. By the middle of the 20th century, Norbert Wiener 

founded the biological cybernetics [Wiener 1948] and two decades later, Von Bertalanffy 

attempt to form a general theory to the system [Bertalanffy 1968]. Therefore, although systems 

biology is not the first attempt of accruing system-level understanding for biological systems, it 

is the first time to approach system-level understanding through knowledge obtained from 

molecular level and using modern techniques [Kitano 2002].  

Systems biology has a very broad scope; however, the main areas of research in the systems 

biology are i) molecular biology research e.g. genomics, proteomics and recently metabolomics, 

ii) computational studies e.g. bioinformatics, simulation and databases, iii) analysis of systems’ 

dynamics, and iv) development of high-precision measurement techniques [Kitano 2001]. Thus, 

multidisciplinary efforts are required to perform the systems biology research. The understanding 

and characterization of the system’s individual components are not the only aim of the systems 

biology research, but also the description of the relationships/interactions between these 

components. Therefore, it is essential to study the system under different conditions or with 

certain disruptions or stimulations, which consequently leads to gaining the knowledge required 

to control the system. Finally, all these knowledge can be used in system’s design or 

reengineering [Kitano 2007].  

Toward the system-level understanding of the biological systems, four phases of research should 

be accomplished. First phase is the identification of system structure, which should be acquired 

in both physical level (identification of the system’s individual components and topology) and 

regulatory level (system’s components interactions and kinetics). Second phase is the analysis of 

the system’s behavior such as studying the dynamics of the system under different conditions or 

stimulations e.g. understand the response of the system to the external perturbation. Such 



 

3 
 

investigations require integrating wet-bench experiments, computational modeling and 

simulation, and development of sufficient measurement technology .The third phase is system 

control, which comes as a result of the accumulated knowledge from the two preceding phases. 

Controlling cancer development, transforming malfunctioning pathways to health pathways or 

accruing stem cell from a specific cell, are examples of system control. Final phase is system 

design, where the system structure can be modified or reconstructed in order to acquire certain 

properties such as bacterial genome engineering [Kitano 2001, Itaya et al, 2005 and Kitano 

2007].  

Scientific research in general can be driven in many ways. Dominantly, science is hypothesis-

driven where a question is raised and the current available technologies are used to obtain the 

necessary information to find the answer [Veenstra 2006]. However, with the current enormous 

datasets generated using high-throughput technologies such as genome sequencing technologies 

and mass spectrometry, science tend to be also discovery-driven [Allen 2001]. In the discovery-

driven science, also known as data-mining discovery, the information is collected first and then 

novel finding can be formulated form the information analysis [Smalheiser 2002]. Genomics, 

proteomics and metabolomics are examples of discovery-driven research as long as high-

throughput techniques are used. While, computational methods can be employed in both kinds of 

research. Systems biology research scope is broad enough to include both kinds of research. 

Moreover, one research project can combine hypothesis- and discovery-driven approaches 

[Smalheiser 2002, Veenstra 2006 and Kitano 2007].         

In this thesis, we present two systems biology research projects performed in systems 

immunology (chapter 2) and proteomics (chapter 3), providing examples for application of 

hypothesis-driven approach and discovery-driven approach, respectively.   
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1.2. Systems immunology: studying the immune system in an integrative 

perspective  

Immunology is the study of the immune systems in the living organisms. The immune system is 

the set of organs, tissues, cells and molecular mechanisms that defend the body against infections. 

It consists of two distinct systems, the innate system and the adaptive system [Kindt et al, 2006, 

Lee and Kim 2007]. The innate immune response is responsible for the rapid and nonspecific 

detection and clearance of the invading microbes. Therefore, it utilizes set of receptors termed 

pattern recognition receptors (PRR), such as the Toll-like receptors (TLR) family, which 

recognize certain molecular patterns associated with the invading pathogens called pathogen-

associated molecular patterns (PAMPs) [Krishnan 2007, other book]. While, the consequent 

adaptive immune response is slower but more specific and provides the host with memory, 

which allows the adaptive response to be faster and more efficient in the future responses [Kindt 

et al, 2006, Lee and Kim 2007]. The immune system also monitors the environment of the host 

in order to detect any endogenous abnormal self-identity. Thus, the malfunction or dysregulation 

of the immune system leads to serious heals problems such as immune-deficiency and 

autoimmune diseases [Medzhhiov and Janeway 2002, Kindt et al, 2006, Lee and Kim 2007].   

The Toll-like receptors (TLRs) are the best characterized and the most studied family among all 

PRRs. To date 13 members where identified in this family in mammalians [Takeda and Akira 

2005, Lee and Kim 2007 and Krishnan et al, 2007]. The TLRs are type I transmembrane protein 

working as homodimers or heterodimers or with other PRRs to recognize specific PAMPs. The 

PAMPs vary from cell-wall component such as bacterial lipopolysaccarides (LPS), microbial 

protein component such as flagellin or nucleic acids such as viral double-stranded RNA 

(dsRNA) [Lee and Kim 2007]. Some TLRs are located in the cell surface such as TLR1, TLR2, 
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and TLR4, mainly to recognize the bacterial components. While, some other members are 

located on the endocytic compartments, e.g. the endosome, mainly to recognize the viral 

invaders. The TLR3, TLR7, TLR8 and TLR9 are from the second group [Takeda and Akira 2005, 

Lee and Kim 2007 and Krishnan et al, 2007]. Table 1.1 lists the current 13 members of the TLRs 

family and their legends.  

Although, the immune system was deeply studied and its individual components and functions 

are well characterized using an efficient reductionist approaches, the overall functioning 

principles and the regulatory mechanizes cannot be obtained through studying its components as 

individuals. The strong interactions between the system’s components, the pathogen and the 

surrounding conditions require more comprehensive approaches to study the immune system in 

an integrated perspective, which is systems immunology [Benoist et al, 2006]. Systems 

immunology is a recent branch from system biology, aims to provide system-level understanding 

for the immune system. All systems biology tools are applicable in systems immunology studies; 

however, computational modeling and simulations significantly increased our understanding of 

the immune response [Covert et al, 2005, Selvarajoo 2006a, Santos et al, 2007, Selvarajoo et al, 

2008a, and Helmy et al, 2009].      

Chapter 2 describes systems immunology research project, where the experimental observations 

were integrated with computational modeling and simulations to provide better understanding of 

the TLR3 signaling pathway. Using computational models and experimental activation profiles 

of the transcription factor nuclear factor-kappaB (NF-κB) and the map kinases Jun N-

terminal Kinase (JNK) and p38 mitogen-activated protein kinases (p38) in wildtype, TNF 

Receptor Associated Factor (TRAF)-6 and NFRSF1A-associated via death domain (TRADD)-

deficient murine macrophages, we  predicted novel signaling features previously unreported.   
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Table 1.1 the Toll-like receptors and their known legends [Takeda and Akira 2005, Lee and Kim 2007, Krishnan et al, 2007]. 

Name Ligand Source Example 
Natural Synthesized   

TLR1 Bacterial Lipoprotein Pam3CSK4 
(1) Gram- and Gram+ Bacteria Wide range of bacteria. 

TLR2 Complement TLR1 in recognition of triacylated bacterial Lipoproteins and TLR6 in recognition of diacylated bacterial lipoproteins. 

TLR3 Viral dsRNA (double-stranded RNA) Poly I:C  Virus SARS, Influenza and Hepatitis C 

TLR4 LPS (Lipopolysaccharide) - Gram-Negative Bacteria  Escherichia coli and Salmonella 

TLR5 Flagellin(2) - Gram-Negative Bacteria (Flagella) Helicobacter pylori, S. typhimurium 

TLR6 Diacyl lipoproteins MALP-2 (3) Bacterial lipoproteins  Mycoplasma fermentans(4) 

TLR7 Viral ssRNA (single-stranded RNA) poly-uridine (polyU) Virus  HIV-1 

TLR8 Viral  ssRNA (single-stranded RNA) poly-uridine (polyU) Virus HIV-1 

TLR9 unmethylated CpG containing DNA Synthetic CpG ODN (5) Bacterial DNA Different types of bacteria 

TLR10(6) Unknown  

TLR11(7) Profilin-Like protine - Protozoan parasite Toxoplasma gondii Toxoplasma gondii(8) 

TLR12(7) Unknown 

TLR13(7) Unknown 
	
  

(1) An analog of the immunologically active N-Terminal of the bacterial lipoprotein. 
(2) A protein found in the flagella of Gram-Negative Bacteria. 
(3) Well-defined diacylated lipoproteins isolated from Mycoplasma fermentans.  
(4) Possible cofactor contributes to the variation in the time from infection with HIV to the development of AIDS symptoms. 
(5) A synthetic ologodeoxynucleotides (ODN) containing unmethylated deoxycytosine-deoxyguanosine (CpG) motifs. 
(6) Does not exist in mouse. 
(8) A protozoan parasite, the causative agent of toxoplasmosis disease. 
 (7) Does not exist in human.  
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1.3. Proteogenomics: Utilizing proteomics in genome annotation 

The recent advancements in genome sequencing resulted in enormous growth in sequenced 

genomes [Wright et al, 2009]. On May 2009, the genome online database 

(http://genomesonline.org/) announced the publication of the 1000th completed genome out of 

4852 running genome sequencing projects. However, the genome sequence alone is not 

sufficient to elucidate the biological functions [Ansong et al, 2008a]. Thus, the primary task in 

any newly sequenced genomes is to attach biological meaning to the sequence; this process is 

known as genome annotation. The genome annotation usually performed before the genome is 

deposited in a database or published in a research article. The annotation unite, also known as 

gene model, is the description of an individual gene and its corresponding transcript and protein 

products [Koonin and Galperin 2003]. Therefore, annotating the sequenced genome can be 

performed in two levels i) structural level, identifying the gene structure, and ii) functional level, 

identifying the biological function of the gene product [Koonin and Galperin 2003, Merrihew et 

al, 2008].       

To perform genome annotation, genome sequencing projects usually relay on transcription 

evidence such as expressed sequence tags (EST), and variety of in silico tools for gene finding 

and protein prediction [Wright et al, 2009, Castellana et al, 2008, Stanke et al, 2008]. Both, 

transcription evidence and in silico prediction, have limitations in genome annotation. Although, 

cDNA and EST can provide evidence for expression of a predicted gene, they still relay on the 

un-translated mRNA. Thus, they cannot confirm the expression in the protein level [Wright et al, 

2009]. While, the in silico tools for gene finding and protein prediction vary in their algorithms 

and accuracy [Coghlan et al, 2008, Guigó et al, 2006]. Thus, the predicted gene models are 

usually large and sometimes highly redundant. Moreover, the models are suffering from errors in 
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reading frames and exon definition [Wright et al, 2009, Castellana et al, 2008]. These limitations 

indicated the need of another source of information that helps in correction and confirmation of 

the predicted gene models.           

Proteomics study the details of the expressed proteins and their corresponding peptides in a given 

sample, including function, structure and sequence [Tyers and Mann 2003]. Thus, the proteome 

level information can be the desired source of information that complements the traditional 

genome analysis process. Recently, it became well acknowledged that the inclusion of the 

proteome data in the genome analysis, results in better genome annotation this new trend called 

proteogenomics [Desiere et al, 2005, Castellana et al, 2008, Baerenfaller et al, 2008, Power et al, 

2009, Wright et al, 2009, Lasonder et al, 2002, Merrihew et al, 2008]. Proteogenomics can be 

defined as, the utilization of large-scale proteome data in genome annotation refinement. Liquid 

chromatography-mass spectrometry (LC-MS/MS)-based proteomic approaches directly measure 

the peptides resulted from the expressed proteins and therefore, allow the 

confirmation/correction of the expressed coding regions in the genomic sequence [Koonin and 

Galperin 2003, Ansong et al, 2008a].      

Recent reports show the usefulness of proteogenomics in improving the genome annotation. For 

instance, Arabidopsis thaliana is the most studied plant and the best sequenced and annotated 

plant genome. However, proteogenomics provided significant additions and corrections to its 

genome annotation [Castellana et al, 2008, Baerenfaller et al, 2008]. A genome-scale proteomics 

study added 57 new gene models to Arabidopsis annotation, providing expression evidence for 

all of them. Moreover, the same study presented functional annotation by flagging the proteins 

that expressed in one organ only as biomarkers [Baerenfaller et al, 2008]. In another 

proteogenomics study, nearly 13 % of the Arabidopsis proteome were deemed incorrect or 
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missing due to incorrect or missing gene models through finding 778 new protein-coding genes 

and correcting 695 gene models [Castellana et al, 2008]. These significant improvements in the 

best annotated plant genome “Arabidopsis genome” indicate the efficacy of the proteogeomics 

approaches in improving the genome annotation and promise with significant findings in the 

incomplete annotated plant genomes, such as rice. 

The utility of proteogenomeics in achieving significant improvements in genome annotation had 

been shown in different organisms as well. In human, Desiere et al, demonstrated large scale 

integration between high-throughput proteomics and the human genome [Desiere et al, 2005]. 

While, Power et al, found novel splice isoforms in human platelets using proteomics approach to 

identify the exon skip events [Power et al, 2009]. The Caenorhabditis elegans (C. elegans) 

genome annotation was identified, corrected and confirmed using shotgun proteomics by 

identifying 429 unannotated coding sequences (including 33 pseudogenes), 151 errors in gene 

models and 254 novel gene models [Merrihew et al, 2008]. The same approach is applicable also 

in genomes of fungi and parasites, the Aspergillus niger (the black mold fungus) and 

Plasmodium falsiparum (the malaria parasite) genome annotations were improved using 

proteogenomic approaches as well [Wright et al, 2009, Lasonder et al, 2002].  

Chapter 3 describes proteogenomics research project, where we performed MS-based shotgun 

analysis of digested peptides from undifferentiated cultured rice cells. The resultant MS/MS data 

was compared with the protein, gene and transcript databases of the institute of genome research 

(TIGR) and then, further processed using bioinformatics tools. Our analysis pointed 210 miss-

annotated gene models and provided expression evidence for 38 hypothetical proteins. This work 

reinforce the importance of including the proteome level information in the genome annotation 

process.  



 

10 
 

Chapter 2.Computational analysis of Toll-like Receptor 3 signaling in 
macrophages 

 

2.1. Introduction 

Toll-Like Receptors (TLRs) play a major role in innate immunity, the first line of mammalian 

defense against invading pathogens and crucial for antigen-specific acquired immunity 

development [Takeda and Akira 2005, Akira and Takeda 2004]. Upon the recognition of 

pathogen-associated molecular patterns (PAMPs), such as bacterial lipopolysaccharide (LPS) 

and viral dsRNA, the 13 currently known TLRs trigger predominantly the activation of MAP 

kinases and several key transcription factors including nuclear factor-κB (NF-κB), activator 

protein (AP)-1 and interferon regulatory factor (IRF)- 3 and 7. This results in the induction of 

numerous proinflammatory cytokines and type I interferons [Krishnan et al, 2007, Lee and Kim 

2007, Boehme and Compton 2004]. The dysregulation of TLR signaling, therefore, has been 

attributed to the pathogenesis of major pro-inflammatory illnesses such as the autoimmune 

diseases [Hulejove et al, 2007, Bash 2005].  

TLR3, one of the 4 known intracellular members of TLR family, recognizes dsRNA and poly 

(I:C) [[Krishnan et al, 2007, Boehme and Compton 2004, Matsumoto et al, 2004] triggers an 

innate response independent of the adaptor protein Myeloid Differentiation factor 88 (MyD88), 

which is required for all other TLRs [Matsumoto et al, 2004, Johnson et al, 2008]. The 

specificity of TLR3 response is possibly due to the occurrence of an alanine residue in a critical 

region of its cytoplasmic domain unlike the proline residue utilized by MyD88 found in other 

TLRs [Boehme and Compton 2004]. Thus, TLR3 initiates its response depending only on the 

adaptor protein TIR domain-containing adapter-including interferon-β (TRIF) [Akira and Takeda 
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2004, Matsumoto et al, 2003]. The recruitment of TRIF mediates the signaling process through 

the activation of key transcription factors NF-κB, AP-1, IRF-3 and 7 [Krishnan et al, 2007, 

Boehme and Compton 2004, Matsumoto et al, 2004]. Although the signaling molecules and their 

cascades have been broadly investigated, the dynamic outcome of signal transduction between 

wildtype and genetic mutations still remains poorly understood.  

Here, we began the investigation of TLR3 pathway by literature/database curation of the 

signaling topology in murine macrophages. Next, we analyzed the temporal experimental data of 

wildtype, TNF Receptor Associated Factor (TRAF)-6 and NFRSF1A-associated via death 

domain (TRADD)-deficient murine macrophages with poly (I:C) stimulation [Gohda et al, 2004, 

Pobezinskya et al, 2008] by developing a computational TLR3 model based on perturbation-

response approach. This approach does not require the detailed reaction kinetics of each reaction 

in the signaling topology (as in bottom-up approaches), but rather, considers the activation of 

signaling molecules as linear response events [Selvarajoo et al, 2009]. Similar modeling 

approaches have been previously used to infer important biological network features; inferring 

feedback control of IKK activity in tumour-necrosis factor (TNF) stimulation [Werner et al, 

2005], uncovering switching behaviour of MAPK signaling between epidermal growth factor 

(EGF) and neuronal growth factor (NGF) stimuli [Santos et al, 2007], detecting connectivities of 

reaction molecules [Vance et al, 2002], predicting missing molecules in TLR4 signaling 

[Selvarajoo 2006a] and signaling flux redistribution (SFR) at pathway junctions [Selvarajoo et al, 

2008a]. 

Our TLR3 model simulations were compared with temporal experimental data of NF-κB, JNK 

and p38 in three experimental conditions; wildtype, TRAF6-deficient and TRADD-deficient 

macrophages. Collectively, the results suggest i) the existence of novel intermediary steps (e.g. 
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missing cellular processes, proteins or phosphorylation states) between extracellular poly (I:C) 

stimulation and intracellular TLR3 binding, and ii) the presence of a novel pathway which is 

essential for JNK and p38 activation.  

 2.2. Results and Discussion 

2.2.1 Determination of the TLR3 signaling topology in macrophages 

TLR3 is expressed in several cell types including macrophages, murine embryonic fibroblasts 

(MEFs) and dendritic cells (DCs), however, it was not found in B Cells, T Cells and NK cells 

[Matsumoto et al, 2004, Cario et al, 2000, Muzio et al, 2000, Visintin et al, 2001, Matsumoto et 

al, 2003]. Moreover, the experimental observations of TLR3 signaling under various genetic 

knock-outs show controversial roles of certain molecules in different cell types. For instance, 

Gohda et al. showed that TRAF6 is dispensable for TLR3 induced NF-κB in poly (I:C) 

stimulated macrophages [Gohda et al. 2004], while Jiang et al. showed the requirement of 

TRAF6 to NF-κB activation in MEFs [Jiang et al, 2004].  Also, for NF-κB and MAP kinases 

activation, TRADD is not critical in macrophages, whereas, it is important for MEFs 

[Pobezinskya et al, 2008, Ermolaeva et al, 2004]. These data indicate that there is no common 

topology for TLR3 signaling and, therefore, we cannot combine data obtained from different cell 

types to create unified TLR3 signaling topology. Instead, independent cell type analysis should 

be performed.     

Here, we investigate the signaling topology for murine macrophages only. It is known that TRIF 

interacts with TLR3 at the TIR domain and TRAF6 binds to the N-terminal of TRIF [Matsumoto 

et al, 2004, Gohda et al, 2004, Sato et al, 2003]. However, we found, in murine macrophages, 

the role of TRAF6 in TLR3 signaling is dispensable [Gohda et al, 2004]; the temporal 
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experimental profiles of MAP kinases (JNK and p38) and NF-κB activation to poly (I:C) 

stimulation in TRAF6 KO were only slightly reduced compared with wildtype levels (Figure 

2.1A-C WT and TRAF6 KO). 
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Figure 2.1 NF-κB, JNK and p38 experimental activation profiles. A), B) and C) show 

experimental activation profiles of NF-κB, JNK and p38, respectively in (WT) (black), TRAF6 

KO (green), TRADD KO (orange) obtained from [Gohda et al, 2004, Pobezinskya et al, 2008]. 

The activation levels were quantified from the western blots using ImageJ 

[http://rsbweb.nih.gov/ij/]. The x-axis represents the time in minutes and the y-axis represents the 

relative activation profile. Note: As TRADD KO data is unavailable at 10 min (earliest at 15 

min), we could not observe delayed activation of as noted for WT and TRAF6 KO. Therefore, 

we used dotted line to connect 0 min and 15 min time points.     
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Recently, TRADD has been shown to be involved in the TLR3 signaling [Pobezinskya et al, 

2008, Ermolaeva et al, 2004, Chen et al, 2003]. TRADD-deficient macrophages showed 

downregulation of MAP Kinases and a slight upregulation of NF-κB activation (Figure 2.1A-C 

TRADD KO) [Pobezinskya et al, 2008]. RIP1, which binds to TRIF at C-terminal (RHIM 

domain), interacted with TRADD through death domain (DD) suggesting TRADD’s possible 

involvement in RIP1 ubiquitination [Pobezinskya et al, 2008]. Since RIP1 is required for TRIF-

dependent signaling in response to poly (I:C) stimulation [Cusson-Hermance et al, 2005], 

TRADD is likely involved in NF-κB activation via RIP1. Putting together, we created a 

macrophage TLR3 signaling topology (Figure 2.2A). 

 

2.2.2. The prediction of missing intermediate cellular processes in poly (I:C) stimulated 

macrophages  

So far, we have built the signaling topology for TLR3 pathways in macrophages. Next, to 

understand the complex dynamic interplay of the various intracellular signaling molecules in the 

regulation of NF-κB, JNK and p38 in poly (I:C) stimulation, we developed a computational 

model of the TLR3 signaling (see Materials and Methods). Each signaling response (i.e., the rate 

of activation of each signaling molecule) in the model is represented by XJX
δ

δ
=

dt
d

, where δX 

is relative activated concentration of signaling molecules and the parameters (elements of J) are 

chosen to fit the semi-quantitative experimental profiles (e.g, western blots, EMSA, etc.) of NF-

κB, JNK and p38 of wildtype macrophages stimulated with poly (I:C) (Figure 2.1A-C WT). As 

mentioned earlier, TRAF6 KO does not noticeably affect NF-κB, JNK or p38 activation 

compared to wildtype (Figure 2.1A-C). Hence, in the model, we used a low parameter value 
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between TRIF and TRAF6 to limit the response flux propagation through TRAF6 such that the 

removal of TRAF6 in the model will only slightly affect its downstream reactions (see Materials 

and Methods for details).  

We, next, simulated activation of NF-κB, JNK and p38 in wildtype. Our results show the time to 

reach peak values were 15-20 min earlier than in actual experiments (Figure 2.2B-D). Clearly, 

this model could not explain the delayed experimental activation of NF-κB, JNK and p38. We 

can consider time delay processes of signaling events are due to missing molecules/complex 

formation or spatial movement of molecules [Selvarajoo et al, 2009]. The deterministic kinetic 

evolution equation used in our model, non-linear F in general (Eq.1, Materials and Methods), 

can include such information by setting total derivative of time to partial derivative in time and 

space. In other words, Jacobian matrix J can contain temporal and spatial information of the 

network process. Since we are not performing spatial simulation, time delay response can be 

lumped as missing molecules/processes in the network. For example, using a TLR4 model, we 

previously predicted the delayed activation of TRIF-dependent pathways by using a number of 

additional response reactions representing missing signaling features (molecules/processes, 

spatial movements or complex formation) in the original network [Selvarajoo 2006a]. Our result 

was later substantiated by McGettick et al., 2006 [McGettrick et al, 2006] who demonstrated two 

novel signaling molecules (PKCε and TRAM) act upstream of TRIF and, recently, by Kagan et 

al., 2008 [Kagan et al, 2008] who discovered that the internalization of TLR4 into the endosome 

is required prior to TRIF-dependent pathway activation. Thus, the delayed activation of NF-κB 

and MAP Kinases in poly (I:C) stimulation could also be due to missing molecules or cellular 

processes.  
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Figure 2.2 Analysis of TLR3 pathway in macrophages. A) Schematic representation of the 

determined TLR3 pathway topology in macrophages. dsRNA or poly (I:C) stimulated TLR3 

triggers TRIF dependant response by the recruitment of TRIF to the cytoplasmic domain of the 

receptor which then allows RIP1, TRAF6, TBK1 and TRAF3 to bind with TRIF. This results in 

the activation of MAP kinases (MKK1/2, MKK3/6 and MKK4/7) and IκB kinase complex; 

MKK1/2, MKK3/6 and MKK4/7 activate ERK, JNK and p38, respectively and IκBα 

degradation releases NF-κB. TBK1 phosphorylates IRF-3 and 7. ERK, JNK and p38 translocate 

to the nucleus and activate the transcription factor AP-1, and NF-κB, IRF-3 and IRF-7 

translocate to the nucleus. AP-1 and NF-κB bind to the promoter regions of cytokine genes such 

as Tnf and Il6 while IRF-3, IRF-7 together with NF-κB bind to the promoter region of 

chemokine genes such as Cxcl10 and Ccl5 and induce their transcription. Protein-protein 

interactions between molecules at the two signaling branches analyzed are highlighted in brown 

and blue. The dotted lines indicate weak activation (see maintext). B), C) and D) show 

simulations of NF-κB, JNK and p38 activation, respectively, in wildtype (WT). The x-axis 

represents the time in minutes and the y-axis represents the relative activation profile. 
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To investigate and locate the likely position of the necessary missing intermediary steps in the 

TLR3 pathway predicted by the model, we further surveyed the literature. TRIF directly bind to 

the TIR domain of TLR3 and does not require TRAM for its activation [Kagan et al, 2008]. Thus, 

it is unlikely that missing intermediary steps exist between TLR3 and TRIF. Furthermore, TLR3 

KO and TRIF KO both showed similar response; abolished activation of NF-κB and MAP 

Kinases [Yamamoto et al, 2003].  These data led us to hypothesize the missing intermediary 

steps (e.g. signaling molecules or processes) are upstream of TLR3 and we updated our model to 

begin simulation not from TLR3, but rather from poly (I:C) downwards (Figure 2.3A). We also 

represented each new uncharacterized molecule/process as a signaling intermediate in our model. 

To obtain the delayed activation of NF-κB and MAP kinases in accordance with experimental 

data of wildtype, that is, null activation till 10 min, peak values around 30 min and reduced 

activation after 60 min for all molecules (Figure 2.1A-C), we were required to add three 

intermediary steps (signaling intermediates) (Figure 2.3B-D WT). Having less or more 

intermediary steps resulted in peak value reaching faster or slower than experimental peak, 

respectively (data not shown).  

While preparing this manuscript, Liu et al. demonstrated that TLR3-ectodomains dimerizes 

before signal propagation [Liu et al, 2008]. Our prediction of novel intermediary steps in 

upstream of TLR3 activation indicates that TLR3-ectodomains dimerization could be one of the 

missing intermediary steps. The other intermediary steps could indicate the endocytosis of poly 

(I:C) and its subsequent transport mechanisms to be recognized by TLR3.  
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Figure 2.3 Prediction of missing steps prior to poly (I:C)/TLR3 binding. A) Schematic 

representation of TLR3 model after adding three signaling intermediates upstream of TLR3 

representing uncharacterized cellular processes (blue) and TLR3-ectodomain dimerization (red 

dotted) (see maintext). Note: from our model, it is not possible to equate the three intermediary 

steps to represent exactly three actual biological events, since spatial transport processes might 

be one of candidates for the time delay. B), C) and D) show simulations of NF-κB, JNK and p38 

activation, respectively, in the wildtype (WT) (black), TRAF6 KO (green), TRADD KO (orange). 

The x-axis represents the time in minutes and the y-axis represents the relative activation profile.  
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 2.2.3. The existence of missing pathway for MAP Kinases activation in poly (I:C) 

stimulation 

To further test the predictive capability of our model, we simulated TRAF6 KO and TRADD KO 

(see Materials and Methods). We wondered whether the same TLR3 model could successfully 

simulate the activation of NF-κB, JNK and p38 in all three conditions: wildtype, TRAF6 KO and 

TRADD KO. To create KO condition from wildtype model, we set the reactions of the KO 

molecule null, while all other model parameters retain their original wildtype values.  

The TRAF6 KO simulations matched the experimental data, i.e., the removal of TRAF6 only 

slightly downregulated NF-κB, JNK and p38 activation (Figure 2.3B-D TRAF6 KO). For 

TRADD KO, NF-κB activation was slightly increased in experiments (Figure 2.1A). This result 

was recapitulated by our model which suggests the enhancement of NF-κB activation in TRADD 

KO is due to signaling flux redistribution [Selvarajoo et al, 2008a] (Figure 2.3B TRADD KO). 

However, in contrasts to experimental results, which showed only a small downregulation, 

simulations of JNK and p38 showed almost abolished activation (Figure 2.3C-D TRADD KO). 

Thus, our simulation failure suggests, in actual cells, a novel pathway might exist that 

compensate the loss of MAP Kinases activation in TRADD KO. 

Macrophages with TRIF mutation treated with poly (I:C) showed abolishment of MAP kinase 

ERK activation [Hoebe et al, 2009] and all MAP kinases showed similar kinetics in wildtype and 

TRAF6 KO [Gohda et al, 2004]. Thus, we added a pathway from TRIF to MAP kinases into our 

model (Figure 2.4A and Table 2.1) and adjusted the parameter values between TRIF to RIP1, 

TRADD and the novel pathway to fit wildtype NF-κB, JNK and p38 activation. We re-
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performed the simulations of TRAF6 KO and TRADD KO. The final model simulations 

matched experimental outcome for all three conditions (Figure 2.4B-D).  

To investigate other possible pathways for JNK and p38 activation in poly (I:C) stimulation, 

reports indicate two other receptors known to recognize dsRNA; the retinoic-acid-inducible 

protein (RIG)-I and melanoma-differentiation-associated gene (MDA) 5 and, therefore, might be 

potential candidates [Pindado et al, 2007, Kato et al, 2007, Takeuchi and Akira 2008]. However, 

firstly, RIG-I is unable to recognize poly (I:C) [Pindado et al, 2007, Takeuchi and Akira 2008] 

and secondly, MDA5 signaling pathway is unknown to trigger MAP kinases [Takeuchi and 

Akira 2008]. Furthermore, TRIF mutation showed abolishment of ERK activation [Hoebe et al, 

2009, Kato et al, 2007] and all MAP kinases seem to possess similar kinetics in poly (I:C) 

stimulation [Gohda et al, 2004]. Taken together, these data suggest the predicted pathway for 

JNK and p38 activation is through TRIF and not by RIG-1 or MDA5.  

To find the possible candidates to be involved in the novel pathway, we again surveyed the 

literature. The TRAF family members, six to-date, are well-known to bind to the TIR domain of 

TRIF with their C-terminal [Lamkanfi et al, 2005, Oganesysn et al, 2006, Su et al, 2006, Miggin 

and O’Neill 2006], while two members of the RIP family, RIP1 and RIP3, are found to interact 

with TRIF through the RHIM domain found in RIP1, RIP3 and TRIF [Meylan et al, 2004, 

Meylan et al, 2005]. RIP1, TRAF6 and TRAF3 already exist in the current TLR3 signaling, 

while TRAF1 was recently found to inhibit the TRIF-mediated signaling [Su et al, 2006, Miggin 

and O’Neill 2006]. Thus, we suggest that RIP3, TRAF2, TRAF4 or TRAF5 may be part of the 

novel pathway activating JNK and p38.             
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Figure 2.4 A novel pathway is crucial for MAP kinases activation in poly (I:C) stimulated 

macrophages. A) Schematic representation of the final TLR3 model after adding novel pathway 

(blue) from TRIF activates MAP kinases. B), C) and D) show simulations of NF-κB, JNK and 

p38 activation, respectively, of the final macrophages TLR3 model with novel pathway, in 

wildtype (WT) (black), TRAF6 KO (green) and TRADD KO (orange). The x-axis represents the 

time in minutes and the y-axis represents the relative activation profile.  
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In summary, the analysis of the poly (I:C) stimulation in macrophages reveals the involvement of 

uncharacterized missing intermediary steps prior to TLR3 activation and the existence of a key 

pathway from TRIF to JNK and p38, but not NF-κB activation. Although further experimental 

validation is required to identify the uncharacterized processes and molecules nevertheless, we 

show that the simple mass-action linear response can represent activation dynamics of the TLR3 

signaling, and can be used to predict novel features of complicated immune pathways.   
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2.3. Materials and Methods 

2.3.1. Development of in silico TLR3 model using perturbation-response approach 

The basic principle behind our perturbation-response approach is to induce a controlled 

perturbation of a certain (input) reaction molecule of a system, which is kept at steady-state, and 

monitor the response of the concentration/activation levels of other molecules (output) of the 

system. By finding a relationship between the input perturbation (e.g. poly (I:C) stimulation) and 

output response (e.g. JNK, NF-κB activation), the mechanistic properties of the system such as 

network topology can be uncovered (e.g. novel TRIF-MAP Kinases pathway) without knowing 

each individual’s detailed kinetics.  

To illustrate our approach, let us perturb a stable biological network consisting of n molecules 

from reference (stable) steady-state. The deterministic kinetic evolution equation is  

 ( ) niXXXF
dt
dX

ni
i ,..,1 ,,..,, 21 == , [1] 

where the corresponding vector form of Eq. 1 is ( )XFX
=

dt
d . F is a vector of any non-linear 

function of the molecules vectors X = (X1, X2, .., Xn), which represents activated concentration 

levels of signaling molecules (for example through phosphorylation, binding concentration of 

transcription factors to promoter regions etc.). The response to perturbation can be written by X 

= X0 + δX, where X0 is reference steady-state vector and δX is relative response from the steady-

states (δXt=0 = 0). 

The use of small perturbation around steady-state leads to important simplification to the 

evolution equation, which can be highly non-linear (Eq. 1), resulting in the approximation of the 
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first-order term. In vector form, ( ) X
X
XX

0XX

δ
δ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
≅

=

F
dt
d , noting that zeroth order term F(X0) = 

0 at the steady-state X0 and the Jacobian matrix or linear stability matrix, J = ( )
0XXX

X
=∂

∂F
. The 

elements of J are chosen by fitting δX with corresponding experimental profiles and knowing the 

network topology (e.g., activation causality).  Hence, the amount of response (flux propagated) 

along a signaling pathway can be determined using the law of mass flow conservation with first 

order mass-action kinetics, XJX
δ

δ
=

dt
d  (Table 2.1) [Selvarajoo et al, 2009, Selvarajoo et al, 

2008a, Selvarajoo and Tsuchiya 2007]. We considered all signaling response to be linear and 

sequential up to 90 min after poly (I:C) stimulation (equation [2]) as apparent from the 

formation-depletion activation profiles (see Experiments, and Results and Discussion). Although 

there will not be any issue for parameter sensitivity in our system because of linear events, 

multiple solutions of parameter space, Js, can occur [Selvarajoo et al, 2009]. To overcome this, 

we compare our (wildtype) model with two other (TRAF6 KO and TRADD KO) experimental 

conditions (see Verification of Model Parameters). 

 

2.3.2. Modeling strategy 

We first curated the murine macrophage TLR3 signaling topology from current 

literature/database sources and by checking with relevant experimental data (Figure 2.5, step 1 

and see Results and Discussion) [Gohda et al, 2004, Pobezinskya et al, 2008, Yamamoto et al, 

2003, Meylan et al, 2005, Kanehisha and Gato 2000]. Next, using the topology, we developed a 

dynamic model of TLR3 signaling on the E-Cell simulation platform [Takahashi et al,2003] to 
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simulate the dynamics of NF-κB and JNK activation (Figure 2.5, step 2). The parameters of our 

model (elements of Jacobian matrix J) were estimated by fitting the simulation profiles of NF-κB, 

JNK and p38 with corresponding activation profiles semi-quantified from immunoblots, obtained 

from wildtype macrophages [Gohda et al, 2004] (Figure 2.5, step 3) (Note that our model works 

quantitatively if appropriate data is available). If the model successfully fits the wildtype profile 

of NF-κB and JNK, we accept the model and call it the Reference Model (Figure 2.5, step 4). 

Otherwise, if the model fails, we adjust the parameters values or model topology until the model 

is able to simultaneously fit the experimental profiles of NF-κB, JNK and p38 reasonably (Figure 

2.5, step 5). 

The model simulation results were deemed acceptable by comparing the simulation profile with 

the experimentally semi-quantitative profile based on three criteria; i) time of activation onset, ii) 

time to reach peak, and iii) decay profile (Figure 2.5 insert). For example, JNK experimental 

profile shows null activation until 10 min, peak activation at 30 min and decaying trend until 90 

min (Figure 2.1B, WT). In our first simulation of JNK (Figure 2.2C, WT), the time of activation 

onset was almost instantaneous, peak at around 10 min, and complete decay after 60 min. This 

simulation, therefore, is considered BAD based on the three criteria which poorly matched 

(Figure 2.5 insert, upper panel). On the other hand, after modifying the signaling topology by 

adding novel intermediary steps, the simulation improved on all three criteria and considered 

GOOD (Figure 2.3C, WT, and Figure 2.5 insert, lower panel).                
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Figure 2.5 The modeling strategy. See maintext for details.  
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2.3.3. Verification of Model Parameters 

There can be several parameter spaces for Jacobian matrix, Js, which could fit wildtype semi-

quantitative activation profiles of NF-κB, JNK and p38. To reduce the parameter spaces, we 

performed an iterative two-mode process of model “creation” and “testing”; “Creation” is to 

develop and fit our model with published available semi-quantitative profiles of NF-κB and 

MAP kinases activity in wildtype (Figure 2.5 step 4).“Testing” is to optimize reaction networks 

and parameter values, obtained from step 4, by simulating the knockout (KO) conditions 

(TRAF6 KO and TRADD KO) and comparing the results with their respective experimental 

profiles of NF-κB and MAP kinases activation [Gohda et al, 2004, Pobezinskya et al, 2008]. 

Each KO model was generated from the wildtype model by setting the parameters involving the 

KO molecule null. If our KO simulation does not compare well with experiments, we re-tune the 

model parameters till the model simulations fit the activation profiles of both wildtype and 

TRAF6 KO (Figure 2.5 step 6). If unsuccessful, we modify the topology so that a better fit can 

be obtained, for example, adding novel signaling intermediates to obtain the delayed activation 

[Selvarajoo 2006a] or crosstalk mechanism to provide an alternative source of  activation in the 

KO condition [Selvarajoo and Tsuchiya 2007, Selvarajoo et al, 2008b, Selvarajoo 2006b] 

(Figure 2.5 step 4, see Results and Discussion). To avoid false prediction, we further check 

comparing the model simulation against TRADD KO. When the model fails at these steps, it 

implies that either J (parameter space) is not correct or the represented topology is insufficient. 

We repeat the procedure of modifying parameter values and topology until we obtained 

reasonable predictions for all 3 conditions (wildtype, TRAF6 KO and TRADD KO) at 6 time 

points (0, 10, 20, 30, 60 and 90 min). At this point, we accepted the model and called it the 

Robust Model (Figure 2.5 step 7). Therefore, using steps 1-7, we were able to identify missing or 
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incorrect feature(s) of the TLR3 pathways. The final (robust) TLR3 model’s equations and 

parameter values can be found in Table 2.1.  

 

2.3.4. Final TLR3 Response Model  

Our final model consists of 34 molecules with 40 reactions and parameters developed after 

comparing with dynamics of 3 molecules (NF-κB, JNK and p38) at 6 time points (0, 10, 20, 30, 

60 and 90min) for 3 conditions (wildtype, TRAF6 KO and TRADD KO) (Table 2.1). 

 

2.3.5. Experiments on macrophages 

We utilized our published time-course experimental data of NF-κB, JNK and p38 of wildtype 

(model creation) and TRAF6-deficient (model testing) macrophages with 10 µg/ml poly (I:C) 

stimulation [Gohda et al, 2004]. For further model testing, we utilized published experimental 

profile of NF-κB, JNK and p38 of TRADD-deficient macrophages with similar poly (I:C) 

stimulation [Pobezinskya et al, 2008]. The activation levels of NF-κB, JNK and p38 (Figure 

2.1A-C) were quantified from the western blots using ImageJ (http://rsbweb.nih.gov/ij/).  
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Table 2.1 The final in silico TLR3 model reactions and parameter values. 

No Reaction Formula Parameter value (1/s) Remarks 

1 IM1 →IM2 k1*IM1 k1=0.002  

2 IM2 →IM3 k2*IM2 k2=0.002 Novel intermediates acting upstream of TLR3 representing uncharacterized cellular 

events. 3 IM3 →TLR3 k3*IM3 k3=0.002  

4 TLR3→TRIF k4*TLR3 k4= 0.001 TLR3 recruits TRIF. 

5 TRIF→TRAF6 k5* TRIF k5=0.002 TRAF6 binds to TRIF. 

6 TRIF→ IM4 k6*TRIF k6=0.004 TRIF activates JNK through Novel pathway 

7 TRIF→RIP1 k7*TRIF k7=0.007 RIP1 binds to TRIF. 

8 TRIF→TRADD k8*TRIF k8=0.002 TRADD binds to TRIF. 

9 TRIF →TRAF3 k9* TRIF k9=0. 01 TRAF3 binds to TRIF. 

10 TRAF6→ TAB/TAK k10*TARF6 k10=0.04 TRAF6 binds to TAB/TAK complex. 

11 RIP1→ IKK k11*RIP1 k11=0.04 RIP1 activated IKK complex. 

12 TRADD→ RIP1  k12*TRADD k12=0.0001 RIP1 ubiquitination through TRADD. 

13 TRADD → MKKK k13*TRADD k13=0.04 TRADD activates JNK and p38 corresponding MKKK. 

14 MKKK → MKK3/6 k14*MKKK k14=0.04 MKKK activates JNK through activation of MKK3/6. 

15 MKKK → MKK4/7 k15*MKKK k15=0.04 MKKK activates p38 through activation of MKK4/7. 

16 TAB/TAK →MKK4/7 k16* TAB/TAK k16=0.03  

17 TAB/TAK →MKK3/6 k17*TAB/TAK k17= 0.007 Activation of MAP kinases and IKK via TAB/TAK complex. 

18 TAB/TAK →IKK k18* TAB/TAK k18=0.9  

19 IM4→ MKK3/6 k19* IM4 k19=0.04 The novel pathway activates JNK. 

20 IM4→ MKK4/7 k20* IM4 k20=0.04 The novel pathway activates p38. 

21 IKK → NF-κB/IκB k21*IKK k21=0.00167 Phosphorylation of IκBα/NF-қB via IKK complex. 

22 IKK →p105/Tp12 k22*IKK k22=0.0009 Activation of ERK via IKK. 

23 p105/Tp12→MKK1/2 k23* p105/Tp12 k23=0.003  
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24 NF-κB/IκB →NF-κBc k24* NF-κB/IκB k24=0.0333 Release of NF-κB after IκB phosphorylation. 

25 NF-κBc → NF-κBn k25* NF-κBc k25=1.0 NF-κB translocate to the nucleus. 

26 NF-κBn → NF-κBdeg k26* NF-κBn k26=0.99 NF-κB degradation. 

27 MKK1/2→ERKc k27*MKK1/2 k27=0.0167 Activation of ERK via MKK1/2. 

28 ERKc→ERKn k28* ERKc k28=0.99 ERK translocate to the nucleus. 

29 ERKn→AP-1 k29* ERKn k29=0.99 ERK activates AP1. 

30 MKK3/6→ JNKc k30*MKK3/6 k30=0.4 Activation of JNK via MKK3/6. 

31 JNKc→ JNKn k31*JNKc k31=1.0 JNK translocate to the nucleus. 

32 JNKn→AP-1 k32* JNKn k32=0.99 JNK activates AP1. 

33 MKK4/7↔ p38c k33*MKK4/7 k33=0.4 Activation of p38 via MKK4/7. 

34 p38c → p38n k34* p38c k34= 1.0 p38 translocates to the nucleus. 

35 p38n→ AP-1 k35* p38n k35=0.99 p38 activates AP1. 

36 AP1→AP-1deg k36* AP1 k36= 0.085 AP1 degradation. 

37 TRAF3→TBK1 k37*TRAF3 k37=0.0001 TRAF3-TBK1 interaction. 

38 TBK1→ IRF-3/7c k38*TBK1 k38= 0.333 IRF3/7 binds TBK1. 

39 IRF-3/7c→ IRF-3/7n k39*IRF-3/7c k39= 0.000167 IRF3/7 translocate to the nucleus. 

40 IRF-3/7n → IRF-

3/7deg 

k40*IRF-3/7n k40=0.0001  IRF3/7 degradation. 
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Chapter 3.Exploiting proteogenomics for improving Oryzae sativa genome 
annotation 

 

3.1. Introduction 

The recent advancements in the experimental techniques resulted in generation of vast amounts 

of biological data that require special analysis and mining, which therefore, made science more 

information-driven [Fujishima 2009]. These accumulated amounts of data from different fields, 

such as genomics and proteomics, require systematic analysis to interpret data from different 

biological layers in order to reach the system-level understanding of biological systems [Kitano 

2007]. To perform the required systematic analysis, new experimental technologies and 

computational tools were developed, such as annotation pipelines for prokaryotic genomes 

[Peterson et al, 2001, Meyer et al, 2003, Van Domselaar et al, 2005] and for eukaryotic genomes 

[Guigo et al, 2006, Allen et al, 2004, Nielsen et al, 2005], gene-finding tools [Delcher et al, 1999, 

Salzberg et al, 1998, Badger et al, 1999, Altschul, et al, 1997, Altschul, et al, 1999, Gish and 

States 1993], protein-prediction programs [Tatusov et al, 1997, Nakai et al, 1999, Haft et al, 

2001, Bateman et al, 2004, Hulo et al, 2004], and data visualization tools [Stein et al, 2002, 

lewis et al, 2002]. However, the data analysis and mining still facing challenges such as data size, 

differences in data formats and software/algorithms accuracy [Hamady et al, 2005, Gupta et al, 

2008, Ansong et al, 2008a]. 

Among the numerous high throughput experimental methods, the genome sequencing represents 

a special turning point in the understanding of the biological systems, in general and the genetic 

blueprints of the organisms, in particular [Ansong et al, 2008a, Tanner et al, 2007]. Since the 

year 1995, over 1000 completely sequenced genomes were published and around 4000 other 
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genome sequencing projects are currently ongoing [GOLD DB http://genomesonline.org/]. In 

spite of these great efforts in genome sequencing, the biological significance of the sequenced 

genome cannot be achieved unless the protein-coding genes and their products are accurately 

identified. Thus, the genome annotation starts to attract the scientists’ attention [Koonin and 

Galperin 2003, Ansong et al, 2008a]. The genome annotation is the gene structure and function 

determination process, and it usually takes place after the genome sequencing and before data 

deposition to the database or databank [Koonin and Galperin 2003].  

In addition to the huge size of data to be analyzed, the annotation process is facing many other 

challenges [Tanner et al, 2007]. In a typical genome annotation work, experimental and 

computational methods are integrated together to perform the annotation [Koonin and Galperin 

2003, Wright et al, 2009, Castellana et al, 2008, Power  et al, 2009]. Thus, the genome 

annotation is highly dependent on the transcription evidence provided by the experiments and the 

algorithms implemented in the computational tools [Ansong et al, 2008a]. However, most of the 

sequenced genomes are lacking the rich transcriptional evidence, similar to the cDNA library 

available for the human genome for instance. Even though this information is available it can 

provide evidence for expression in the transcription level but it cannot confirm the translation 

into a protein [Ansong et al, 2008a, Castellana et al, 2008, Baerenfaller et al, 2008]. Therefore, 

the annotation is highly reliant on de novo annotations of protein-coding genes performed using 

gene prediction programs [Koonin and Galperin 2003, Ansong et al, 2008a]. In the other hand 

side, the gene/protein prediction tools had proven their usefulness and utility in the annotation 

process however, the prediction accuracy vary from tool/algorithm to another and from organism 

to another according to differences in genome complexity [Ansong et al, 2008aCoghlan et al, 

2008, Guigó et al, 2006]. For instance, in the human genome and Arabidopsis genome, the 
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prediction accuracy was 50% and about 66%, respectively, indicating the need to validate the 

predicted genes/proteins [Guigó et al, 2006, Allen et al, 2004].                   

By the direct measuring of the peptides, LC-MS/MS-based proteomics can provide translation-

level expression evidence for the predicted protein-coding genes, in the so-called 

proteogenomics approach. Proteogenomics is the utilization of large-scale proteome data in 

genome annotation refinement [Ansong et al, 2008a]. This approach seems the best option for 

identification and confirmation of the protein-coding genes, or at least significant portion of them, 

in an independent and unambiguous way.  This can be achieved through the detection of the 

naturally occurring proteins (proteomics) and mapping them back to the genome sequence 

(genomics), in a systematic analysis [Desiere et al, 2005, Castellana et al, 2008, Baerenfaller et 

al, 2008, Power et al, 2009, Wright et al, 2009, Lasonder et al, 2002, Merrihew et al, 2008, 

Ansong et al, 2008a]. In addition to the validation of the predicted gene models in the translation 

level [Jaff et al, 2004, Jaff et al, 2005, Wang et al, 2005a, Wright et al, 2009], proteogenomics 

can be utilized to reveal other significant genomic features such as finding new gene models 

[Jaff et al, 2004b, Castellana et al, 2008, Baerenfaller et al, 2008, Merrihew et al, 2008], 

determination of the protein start and termination sites [Tanner et al, 2007, Nielsen et al, 2005, 

Mattow et al, 2007], finding and verifying splice isoforms in protein level [Tanner et al, 2007, 

Power et al, 2009] and verification of hypothetical and conserved hypothetical genes/proteins 

[Koller et al, 2004,  Hixson et al, 2006, Tanner et al, 2007, Ansong et al, 2008b]. With the above 

mentioned efficiency in the improvement of genome annotation, proteogenomics represents a 

promising approach to be applied in the completed and newly sequenced genomes. 

The rice (Oryza sativa) is well known as one of the most important crops as almost half of the 

world population are estimated to be relaying, totally or partially, on it. Moreover, rice 
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considered one of the model organisms because of its relatively small genome (12 chromosomes 

and ~370 Mbp) [Sasaki 1999, Wang et al, 2005]. Although, the rice whole genome sequence and 

annotation were published and updated several times (6 builds to date), there are no attempt to 

include the whole proteome data in genome annotation [Itoh et al, 2007, Lin et al, 2008, Ouyang 

et al, 2007, Yuan et al, 2005]. Here, we followed systems biology approach, integrating 

experimental data and bioinformatics tools, to improve the rice genome annotation using whole 

proteome data. We performed 27 runs of mass spectrometry shotgun analysis (LC-MS/MS) on 

digested peptides extracted from undifferentiated cultured cells in our lab. The proteins were 

extracted then digested in-gel and in-solution. The resultant peptide were pre-fractionated using 

different pre-fractionation methods, strong cation exchange (SCX) [Wu et al, 2003] and iso-

electric focusing (IEF) [Cargile et al, 2004] to broaden our coverage range. Next, Mascot 

[Perkins et al, 1999] search against the TIGR database [Ouyang et al, 2007] was used to perform 

proteins/peptides identification. Through those steps, 5,989 proteins were identified including 

69,876 peptides. Then, Mascot was used to search the remaining unidentified spectra against the 

gene database and transcript database available from TIGR DB. This identification resulted in 

577 and 1347 peptides identified from the gene and the transcript databases, respectively. These 

numbers were reduced through the peptide’s score, identification confidence and minimum 

length (see results and discussion). Thus, we finally got 177 and 697 peptides form the genes and 

mRNA respectively, indicating existence of miss-annotated gene models. The identified peptides 

were mapped to the corresponding transcripts and genes resulting in 137 peptides aligned to 

regions previously considered non-coding regions and 333 intron-spanning peptides. Through 

this analysis, 210 gene models deemed miss-annotated.  In addition, we provided expression 

evidence for 38 hypothetical and conserved hypothetical proteins 9 of them contain unique 



 

36 
 

peptides. Our work demonstrates the potential of including proteome level information in 

genome annotation and supports the inclusion of proteomics module in the genome sequencing 

projects.       
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3.2. Results and Discussion  

3.2.1. Mass spectrometry-based proteomics of rice cultured cells 

The utility of cultured cells in the proteome-wide studies was confirmed, for instance, 

Baerenfaller et al demonstrated the cultured cells proteome covered ~70% of the differentiated 

organs proteome in Arabidopsis thaliana, using extensive sampling from different organs and 

life stages and performing 1,354 MS runs [Baerenfaller et al, 2008]. Thus, we started our study 

by extracting the proteins from undifferentiated cultured cells and then, the extracted proteins 

were digested in-gel and in-solution. To achieve broad peptides coverage, the resultant peptides 

were then pre-fractionated using two pre-fractionation methods, SCX [Wu et al, 2003] and IEF 

[Cargile et al, 2004] and then, 27 LC-MS/MS runs were performed. Figure 3.1 shows an 

overview of the workflow.  

The obtained mass spectra were compared against the rice protein database of the institute of 

genome research (TIGR) [Ouyang et al, 2007] using Mascot 2.2 [Perkins et al, 1999]. A total of 

69,876 peptides were identified with identification confidence 95% contains 27,966 unique 

peptides sequences. The identified peptides were mapped to 5,989 distinct proteins (Figure 3.2). 

The contribution of the in-gel extracted samples to the final identification looks significantly 

greater than the in-solution digested samples (Figure 3.2). However, the in-solution portions in 

the figures represent the proteins and peptides identified uniquely in the in-solution samples. 

While, the in-gel portion represents the proteins and peptides identified in the in-gel samples and 

those were identified in both digestion methods.             
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Figure 3.1 The analysis workflow. The extracted proteins from the cultured cell were digested and 27 LC-MS/MS runs were performed using the 

resultant peptides. The mass spectra were compared against the protein database then the unidentified spectra were extracted and compared against gene 

and transcript databases using Mascot. The identified proteins were analyzed to confirm hypothetical proteins, and the novel peptides were used in gene 

models correction. 
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Figure 3.2 Proteome coverage and sample assessment. A), B) and C) represent the identified proteins, 

total peptides and unique peptides, respectively in the in-solution digestion (red) and in-gel digestion 

(blue). Note: the in-gel digestion contains the peptides identified in the in-gel digestion and in both 

digestion methods.     
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3.2.2. Determination of the shortest accepted peptide’s length 

The accuracy of the database search and the identification results are crucial for the conclusions 

of any proteomics study [Hamady et al, 2005]. Thus, numerous methods were developed to 

insure the production of confident identification, accurate database search results and reduced 

false discovery rate (FDR) such as average peptide scoring (APS) and reverse database searching 

[Shadforth et al, 2005, Tanner et al, 2005, Choi and Nesvizhskii 2008]. Although, some peptides 

identification algorithms, such as Inspect [Tanner et al, 2005, Tanner et al, 2007], generate 

peptides starting from three amino acids, the peptide’s length still remains one of the false 

positives sources [Tanner et al, 2007]. Peptides with very short length can be mapped to large 

number of proteins because the short peptide can match similar sequence in a longer peptide. 

Therefore, the sample with relatively big amount of short peptides will result in higher rate of 

false positives. 

In order to avoid such kind of false positives and increase the accuracy of our identification, we 

performed an in silico study to determine the shortest accepted peptide’s length in our analysis. 

Firstly, we determined the observation range of our machine to know the range of the observable 

peptides, using the calculated molecular weight and calculated m/z in our Mascot identification 

results. Peptides with molecular weight between 600D and 4000D are within our observation 

range. Peptides with molecular weight less than 600D or greater than 4000D are unobservable. 

Next, we created an in silico tryptic digested peptides for the entire database and calculated the 

molecular weight of each peptide. The peptides with molecular weights with our observable 

range were kept while peptides outside our observation range were disregarded. Samples of 

10,000 peptides from each length were created and compared with the whole proteins in the 

database to calculate the average hits per length. Our aim is the determination of the cutoff point 
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were the length of the peptide has no effect in the average hits. Our results show the average hits 

number is decreasing when the peptide’s length increases from four amino acids to six amino 

acids (Figure 3.3.A). Starting from seven amino acids onward, the average hits per length is 

almost the same (Figure 3.3.A).  

On the light of this result, we accept peptides with seven or more amino acids and disregard 

other peptides. Moreover, we discard proteins identified using short peptides only (less than 

seven amino acids). Thus, we filtered our identified proteins and peptides based on this rule to 

minimize the false positives and increase the accuracy of our identification. The filtration 

resulted in overall average of 4.9% decrees in our identified proteins and peptides (Figure 3.3.B). 

Table 3.1 list the numbers of identified proteins, peptides and unique peptides before and after 

filtration and the discarded numbers and their percentages. 

            



 

42 
 

  

 

 

Figure 3.3 Filtration of the identified proteins and peptides based on peptide’s length. A) Samples of 

10,000 in silico tryptic digested peptides were compared against the whole protein database to determine 

the shortest accepted peptide’s length. B) Filtration results show average of 4.9% reduction in the 

identified proteins and peptides.   
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Table 3.1 Final numbers of identified proteins and peptides after filtration. 

 

 

  

 Total Filtered Reduction Reduction% 

Proteins 5,989 5,596 393 6.56% 

Total Peptides 69,876 67,384 2,492 3.56% 

Unique Peptides 27,666 26,401 1,265 4.57% 
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3.2.3. Novel peptides identification using gene and transcript databases 

So far, our identification results indicate the efficiency of our MS analysis and the sufficient 

coverage of proteins and peptides. In order to utilize this data in the identification of novel 

peptides, we used the gene (cDNA) database and transcript (un-spliced mRNA) database 

available through TIGR rice database [Ouyang et al, 2007]. The idea behind using these two 

databases is that they represent the transcripts and its corresponding spliced model(s). Thus, the 

identification from both of them should be theoretically similar. Any discrepancy in the peptides 

identified from them will indicate either new splicing isoform or miss-annotated gene model 

[Power et al, 2009].  

Both the gene database and the transcript database are nucleotide sequences database. Searching 

the nucleotide sequences database is a challenge because of the enormous database size 

especially with the translated frames and expensive computational processing, which is 

unaffordable or inapplicable in certain point [Hamady et al, 2005, Ansong et al, 2008a]. For 

example, the human proteome database size is about 25 Mb residues while the 6-fram translation 

of the human genome is about 6Gb residues [Hixson et al, 2006]. Moreover, the larger the 

database sizes the higher false discovery rate, which will require extra analysis to reduce the 

false discoveries [Ansong et al, 2008a]. Thus, the best way to overcome this challenge, with the 

currently available computational resources and informatics tools, has to be reduction or 

restriction of the peptides search space [Tanner et al, 2007, Ansong et al, 2008a]. Therefore, 

methods were developed to reduce the required search time and computational processing cost 

by limiting the peptide search space to certain genomic features. For instance, the exon-graph 

database method, which reduced the human genome database size to 134 Mb and resulted in 

faster and higher sensitivity search [Tanner et al, 2007]. While, the GENQUEST technique 
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utilizes the isoelectric focusing and accurate mass to reduce the peptide search space [Sevinsky 

et al, 2008].  

To reduce our peptide search space while we are searching the gene and transcript database, we 

followed different approach unlike the currently available. In the developed approaches, the 

reduction of the search space was achieved by reducing the database size or changing the format 

of the data by calculating properties that facilitate the search speed and sensitivity [Tanner et al, 

2007, Sevinsky et al, 2008]. While, in our approach we reduced the query size (the MS spectra) 

which reduced the search time and the processing cost. After searching the protein database, we 

compared the peptide identification result with the MS spectra data (see materials and methods). 

All the MS spectra that were used in the peptides identification were excluded and new files, 

containing the unidentified MS spectra only, were constructed. This resulted in reduction of the 

MS spectra to be compared with the gene and transcript databases and guarantee the 

identification of unidentified peptides only. Thus, we do not expect any overlap between 

peptides identified from protein database and gene/transcript identified ones.  

After construction of our new files, that contains the unidentified MS spectra only, we performed 

benchmarking check to our method. Sample from the new files and their corresponding original 

files that contain all the MS spectra were compared with the protein database using Mascot. As 

expected, we did not get any peptide identifications from the new files indicating the complete 

exclusion of all identified MS spectra. Moreover, the search time required for the new files was 

relatively shorter (data not shown). Figure 3.4 shows schematic representation of this method. 
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Figure 3.4 Schematic representation of our database search optimization method. The MS 

spectra were compared against the protein database then the unidentified spectra were extracted and 

compared with the gene and transcript databases. 
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The comparison of the new files against the gene and the transcript databases resulted in total of 

577 and 1347 peptides identified from the gene and transcript database, respectively. These 

numbers were reduced to 177 and 697, respectively, through three layers of filtrations based on i) 

the peptide’s score, ii) the peptide’s identification confidence (99% or more)  and iii) the 

peptide’s minimum length as described above (Figure 3.5). 
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Figure 3.5 Novel peptides identified from gene and transcript databases search. All peptides 

identified from the gene and transcript databases (blue) were filtered based on peptide’s score, 

identification confidence and minimum length. The remaining deemed significant (red). 
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3.2.4. Novel peptides alignment to the genes and transcripts reveals new genomic features    

The novel peptides identified from the gene and transcript databases were analyzed to find the 

miss-annotated gene models. Using the gene database identification result, the gene database and 

the transcript database, we created list of identified peptides, the genes from which they were 

identified and the transcripts correspond to those genes. Similarly, we created the same list for 

the transcript database identification result. The two lists were used to perform sequence 

alignment for the peptides and its corresponding gene and transcript using 

Basic Local Alignment Search Tool (BLAST) [Altschul et al, 1990]. The alignments were 

performed using local version of NCBI BLAST (blasr2seq) [Tatusova et al, 1999] and perl script 

(Figure 3.6).  

The BLAST hit tables of each gene model alignment (peptide against transcript and gene against 

transcript) were then analyzed using perl program developed for this analysis. The program 

compares the peptide alignment to the transcript with the gene alignment to the same transcript. 

Thus, the expected results of this comparison are i) the peptide is from an intronic region, ii) the 

peptide is intron spanning, or iii) the peptide is from a protein-coding region. Each of the three 

types indicate novel finding. The intronic peptides possibly indicate new coding region or new 

exon [Ansong et al, 2008, Jaffe et al, 2004a, Jaffe et al, 2004b]. While, the intron spanning 

peptides can be used in the exon-intron boundaries correction [Ansong et al, 2008]. The peptides 

from known coding regions can be either from miss-annotated protein or from new splice 

isoform [Ansong et al, 2008, Power et al, 2009]. However, the confirmation of the last type 

requires the inclusion of the protein in the alignment (Figure 3.6). 
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Figure 3.6 The analysis of the novel peptides identified from the gene and transcript 

databases. A schematic representation of peptides alignments to the corresponding genes and 

transcripts. The final step explains the new genomic features we could find through this analysis.      
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The novel peptides identified from the gene and transcript databases had been analyzed 

independently. The analysis of transcript database identified peptides resulted in 104 peptides 

from intronic regions, 237 intron spanning peptides and 375 peptides from protein coding 

regions. Comparing the intronic region and intron spanning peptides clusters, interestingly, 19 

peptides were found in both clusters (Figure 3.7.A). This is possibly because of the fact that the 

identified peptide can be mapped to more than one database entry (protein, gene or transcript) 

due to the exon sharing between proteins or multiple occurrence of the peptide in the database 

[Tanner et al, 2007]. Thus, the alignment result can differ from one gene model to another for the 

same peptide. The 322 peptides in the intronic and intron spanning cluster are corresponding to 

173 miss-annotated gene models. The miss-annotated gene models also were clustered in three 

clusters according to the type of miss-annotation i) miss annotated/new coding-region, ii) intron-

exon boundary miss-annotation and, iii) models that contains both types of miss-annotations 

(Figure 3.7.B). 

Similarly, the gene database identified peptides had been analyzed revealing 34 peptides from 

intronic regions, 97 intron spanning peptides, one peptide only in both clusters and 46 peptides 

from protein coding regions (Figure 3.8.A). Total of 54 gene models were deemed miss-

annotated using 131 peptides in the intronic and intron spanning clusters (Figure 3.8.B). 

Comparing the results of the tow analysis, 451 peptides were used to detect miss-annotated 

features in the current gene models, new or miss-annotated coding regions (137 peptides) and 

incorrect intron/exon boundaries (333 peptides) (Figure 3.9.A). While, the comparison between 

the miss-annotated gene models revealed by the two analysis shows 17 gene model shared 

between both analyses with total of 210 gene models deemed miss-annotated (Figure 3.9.B). 

Further analysis is required to re-annotate the miss-annotated gene models.         
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Figure 3.7 Alignment results of peptides identified from the transcript database. A) Shows 

322 intronic and intron spanning peptides resulted from the peptides alignments to the 

corresponding genes and transcripts. B) Shows clustering of the total 173 miss-annotated gene 

models.  
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Figure 3.8 Alignment results of peptides identified from the gene database. A) 129 intronic 

and intron spanning peptides resulted from the peptides alignments to the corresponding genes 

and transcripts. B) Shows clustering of the total 54 miss-annotated gene models.      
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Figure 3.9 Totals of novel peptides and miss-annotated gene models reveled by our analysis. 

A) Shows total of novel peptides per cluster. B) Shows total of miss-annotated gene models.      
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3.2.5. Confirmation of hypothetical proteins 

Since the primary genome annotation is a computational step that involves prediction tools and 

algorithms, the predicted genes/proteins represent around 30~50% of the protein-coding genes in 

any database. Generally, there are two types of hypothetical proteins, the hypothetical proteins 

and the conserved hypothetical proteins. The hypothetical proteins are computationally predicted 

proteins without any known homologs. The conserved hypothetical proteins are, predicted 

homologous of another hypothetical proteins in a closely related organisms. [Ansong et al, 

2008a]. Although, the prediction of the protein-coding genes structure is based on the putative 

start, putative end and upstream promoter region, they still highly erroneous and require 

experimental validation [Ansong et al, 2008a, Tanner et al, 2007]. 

Proteogenomics approach provides an effective way of validating those predicted genes at the 

translation level through direct measuring the peptides in the LC-MS/MS proteomics [Ansong et 

al, 2008a]. The utility of this approach was demonstrated in many prokaryotic genomes such as 

Salmonella typhi [Ansong et al, 2008b], Salmonellosis typhimurium [Adkins et al, 2006], 

Deinococcus radiodurans [lipton et al, 2002] and others [Kolker et al, 2004, Kolker et al, 2005, 

Hixson et al, 2006, Elias et al, 2005]. Later, the same approach was used in higher organisms 

with complex eukaryotic genomes such as the human genome where 224 hypothetical genes 

were confirmed using proteogenomics approach [Tanner et al, 2007].    

The TIGR rice protein database contains 11,950 hypothetical and conserved hypothetical 

proteins [Ouyang et al, 2007]. From our protein database identification result, 333 peptides from 

230 proteins annotated as hypothetical proteins were identified, 167 hypothetical proteins and 63 

conserved hypothetical proteins. The peptides were filtered based on the same three criteria 
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mentioned above (see results and discussions), resulting in 38 proteins identified from significant 

hits.   

Since the identified peptide can be assigned to more than one protein due to exon sharing 

between proteins or multiple occurrence of the peptides within the database [Perkins et al, 1999, 

Tanner et al, 2007], we filtered the peptides of the 38 proteins selecting those peptides that were 

identified in the hypothetical peptides only. We excluded any peptide that matched any other 

non-hypothetical protein. In addition, we requires more than one peptide with identification 

confidence more than or equals to 95% or one peptide with identification confidence more than 

or equals to 99%. The result shows 9 proteins identified from 41 highly significant and uniquely 

matched peptides. Thus, our work provides the first expression evidence of those proteins in the 

translation level. Tables 3.2 and 3.3 list the details of the confirmed hypothetical proteins and 

proteins contains unique peptides, respectively.  
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Table 3.2 Hypothetical and conserved hypothetical proteins confirmed in this analysis. 

Protein Description 

LOC_Os10g31864.1|12010.m65456| conserved hypothetical protein  

LOC_Os01g42990.1|12001.m10562| conserved hypothetical protein  

LOC_Os01g11970.1|12001.m07813| conserved hypothetical protein  

LOC_Os02g40490.1|12002.m09135| conserved hypothetical protein  

LOC_Os01g26832.1|12001.m09121| conserved hypothetical protein  

LOC_Os11g01880.1|12011.m80134| conserved hypothetical protein  

LOC_Os12g38650.1|12012.m07650| conserved hypothetical protein  

LOC_Os05g45910.1|12005.m08716| conserved hypothetical protein  

LOC_Os03g11130.1|12003.m06564| conserved hypothetical protein  

LOC_Os03g60976.1|12003.m10984| conserved hypothetical protein  

LOC_Os11g45410.1|12011.m08373| conserved hypothetical protein  

LOC_Os04g04030.1|12004.m05710| conserved hypothetical protein  

LOC_Os01g08490.1|12001.m07474| conserved hypothetical protein  

LOC_Os12g35910.1|12012.m07384| conserved hypothetical protein  

LOC_Os09g39970.1|12009.m06934| conserved hypothetical protein  

LOC_Os02g21320.1|12002.m07372| conserved hypothetical protein  

LOC_Os01g70280.1|12001.m13076| hypothetical protein  

LOC_Os02g05350.1|12002.m05883| hypothetical protein  

LOC_Os02g18780.1|12002.m07121| hypothetical protein  

LOC_Os01g58300.1|12001.m11974| hypothetical protein  

LOC_Os09g37870.1|12009.m06734| hypothetical protein  

LOC_Os07g15590.1|12007.m06003| hypothetical protein  

LOC_Os06g44630.1|12006.m08990| hypothetical protein  

LOC_Os01g19500.1|12001.m08487| hypothetical protein  

LOC_Os03g24150.1|12003.m07761| hypothetical protein  

LOC_Os03g46900.1|12003.m09705| hypothetical protein  

LOC_Os03g25410.1|12003.m07888| hypothetical protein  

LOC_Os11g03450.1|12011.m04540| hypothetical protein  

LOC_Os11g07410.1|12011.m04937| hypothetical protein  

LOC_Os04g17690.1|12004.m06935| hypothetical protein  

LOC_Os03g25374.1|12003.m07883| hypothetical protein  

LOC_Os01g28850.1|12001.m09325| hypothetical protein  
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Continued Table 3.2    

LOC_Os11g25600.1|12011.m06481| hypothetical protein  

LOC_Os02g16770.1|12002.m06920| hypothetical protein  

LOC_Os11g06330.1|12011.m04830| hypothetical protein  

LOC_Os07g39500.1|12007.m08192| hypothetical protein  

LOC_Os12g06750.1|12012.m04665| hypothetical protein  
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Table 3.3 Hypothetical and conserved hypothetical proteins contain unique peptides. 

Protein Protein description No. of peptides 

LOC_Os01g11970.1|12001.m07813 Conserved hypothetical protein  3 

LOC_Os01g26832.1|12001.m09121 Conserved hypothetical protein  2 

LOC_Os01g42990.1|12001.m10562 Conserved hypothetical protein  5 

LOC_Os02g40490.1|12002.m09135 Conserved hypothetical protein  3 

LOC_Os05g45910.1|12005.m08716 Conserved hypothetical protein  3 

LOC_Os10g31864.1|12010.m65456 Conserved hypothetical protein  22 

LOC_Os11g01880.1|12011.m80134 Conserved hypothetical protein  1 

LOC_Os12g38650.1|12012.m07650 Conserved hypothetical protein  1 

LOC_Os01g70280.1|12001.m13076 Hypothetical 1 
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3.3. Materials and Methods 

3.3.1. Plant material  

The rice (Oryza sativa L. cv. Nipponnbare) cell line [Desaki et al, 2006] was kindly provided by 

Prof. Naoto Shibuya (Meiji University), while the cell culture was performed by Dr. Hirofumi 

Nakagami (RIKEN Plant Science Center) as previously reported [Sugiyama et al, 2008].  

3.3.2. Protein extraction 
3.3.2.1. In-gel extraction 

Rice cultured cells (~180 mg) were frozen in liquid nitrogen and then disrupted with a Multi-

beads shocker (MB400U; Yasui Kikai). The SDS-PAGE was performed on the disrupted cells 

with electrophoresis conditions 25mA for 60 min * 20µl in 10 lanes. The gel was later stained 

with negative gel stain MS kit (Wako, Osaka, Japan). Then, the gel was sliced into 10 slices and 

each slice sliced again in small cubes (1mm3 cubes). Next, the sample was reduced with 

dithiothreitol, alkylated with iodoacetamide, and digested with trypsin digestion as described 

[Ishihama et al, 2006]. These digested samples were desalted using StageTips with C18 Empore 

disk membranes (3 M) [Rappsilber et al, 2003]. The whole sample was prepared for the LC-

MS/MS analysis.	
  

3.3.2.2 In-solution extraction 

Rice cultured cells (~100 mg) were frozen in liquid nitrogen and then disrupted with a Multi-

beads shocker (MB400U; Yasui Kikai). The disrupted cells were suspended in 0.1M Tris–HCl 

(pH 9.0). The sample was transferred to the homogenizer and homogenized. Then, the 

homogenate was reduced with dithiothreitol, alkylated with iodoacetamide, and digested with 

Lys-C, followed by dilution and trypsin digestion as described [Saito et al, 2006]. These digested 

samples were desalted using StageTips with C18 Empore disk membranes (3 M) [Rappsilber et 
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al, 2003]. The peptide concentration of the eluates was adjusted to 1.0 mg/ml with 0.1% TFA 

and 80% acetonitrile. 

 
3.3.3. Peptide pre-fractionation 
3.3.3.1. SCX 

According to the StageTip fractionation protocol [Rappsilber et al, 2007], pre-fractionation using 

StageTips with a strong cation exchange (SCX) disk was performed for the digested peptides. 

The SCX-StageTips [Ishihama et al, 2006] were used, and 20-500 mM ammonium acetate 

solutions containing 15% acetonitrile were used for peptides elution, resulting in five fractions. 

All eluted fractions, including the flow-through fraction, were desalted using means of C18-

StageTips.  

3.3.3.2. IEF 

Another sample from the digested peptides was pre-fractionated using IEF pre-fractionation 

method by the ZOOM® IEF Fractionator (Invitrogen) according to the manufacturer’s protocol. 

Total of 890 µg of digested peptides were loaded into the ZOOM® IEF Fractionator, 178 

µg/chamber, and fractionated at room temperature under standard focusing conditions (100 V for 

20 min, 200 V for 80 min, and 600 V for 80 min), resulting in five IEF fractions, enriched in 

peptides with pI values of 3–4.6, 4.6–5.4, 5.4–6.2, 6.2–7, and 7–10. 

3.3.4. NanoLC-MS/MS analysis 

Total of 27 samples were analyzed using an LTQ-Orbitrap XL (Thermo Fisher Scientific, 

Bremen, Germany) with a nanoLC interface (Nikkyo Technos, Tokyo, Japan), Dionex 

Ultimate3000 pump with FLM-3000 flow manager (Germering, Germany), and HTC-PAL 

autosampler (CTC Analytics, Zwingen, Switzerland). A self-pulled needle (150 mm length, 100 

µm i.d., 6 µm opening) packed with ReproSil-Pur C18-AQ materials (3 µm, Dr. Maisch, 
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Ammerbuch, Germany) was used as an analytical column with “stone-arch” frit. The injection 

volume was 5 µL, and the flow rate was 500 nL/min. The mobile phases consisted of (A) 0.5% 

acetic acid and (B) 0.5% acetic acid and 80% acetonitrile. A three-step linear gradient of 5-10% 

B in 5 min, 10-40% B in 60 min, 40-100% B in 5 min, and 100% B for 10 min was employed 

throughout this study. A spray voltage of 2400 V was applied. The MS scan range was m/z 300-

1500. The top 10 precursor ions were selected in MS scan for subsequent MS/MS scans by ion 

trapping in the automated gain control (AGC) mode; AGC values of 5.00 ×105 and 1.00 × 104 

were set for full MS and MS/MS, respectively. Our system was described previously at 

Sugiyama et al, and Iwazaki et al [Sugiyama et al, 2008 and Iwazaki et al, 2009].  

 

3.3.5. Database search 

Peptides and proteins were identified by Mascot v2.2 (Matrix Science, London, U.K.) [Perkins et 

al, 1999] against the TIGR protein database [Ouyang et al, 2007], with a precursor mass 

tolerance of 3 ppm for the in-gel digested samples and 20 ppm for the in-solution ones, and strict 

specificity allowing for 1 missed cleavage only. Peptides were rejected if the Mascot score was 

below the 95% confidence limit based on the “identity” score of each peptide, and a minimum of 

two peptides meeting the criteria was required for protein identification. To increase the 

identification accuracy and peptide’s specificity, we accepted peptides with at least seven amino 

acids as described above (see results and discussion).   

 

3.3.6. Bioinformatics analysis  

The m/z values of the isotope peaks in the raw data files were converted to the corresponding 

monoisotopic peaks when the isotope peaks were selected as the precursor ions using and in-

house perl script called “mgf creator”. The extraction of the unidentified MS spectra was 
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performed using another perl script called “unidentified spectra extractor (UiSE)” which requires 

the high performance calculation server at the Institute for Advanced biosciences (Keio 

University – Japan) to perform the comparison between all MS spectra and the identification 

results to create new files contains the unidentified MS spectra only. The in silico trypsin 

digestion was performed using perl script provided by Mio Iwazaki (Keio University – Japan). 

Sequence alignment was performed using local version of NCBI BLAST (blast2seq) windows 

version [Altschul et al, 1990, Tatusova et al, 1999] and perl script. We used the default 

parameters of BLAST except the gapped parameter, we used “gapped = F”. The BLAST hit 

tables were analyzed using perl scripts.    
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Appendix  

Abbreviations 

AP -1 Activator Protein-1  

APS  Average Peptide Scoring  

BLAST  Basic Local Alignment Search Tool  

DCs  Dendritic Cells  

DD  Death Domain  

dsRNA  double-stranded RNA  

EGF  Epidermal Growth Factor  

ERK  Extracellular Signal-Regulated Kinase  

EST  Expressed Sequence Tags  

FDR  False Discovery Rate  

IEF  Iso-Electric Focusing  

IRF  Interferon Regulatory Factor  

JNK  Jun N-terminal Kinase  

KO  knockout  

LC-MS/MS  Liquid Chromatography-Mass Spectrometry  

LPS  lipopolysaccarides  

MAPK   Mitogen-activated protein kinases 

MDA   Melanoma-Differentiation-Associated gene  

MEFs   Murine Embryonic Fibroblasts  

MyD88  Myeloid Differentiation factor 88  
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NF-κB  Nuclear Factor-kappaB  

NGF  Neuronal Growth Factor  

p38  Mitogen-Activated Protein kinases 38 

PAMP Pathogen-Associated Molecular Pattern 

PCR  Polymerase Chain Reaction  

Poly (I:C) Polyinosine-polycytidylic acid  

PRR  pattern recognition receptors  

RIG -I Retinoic-Acid-Inducible Protein -I 

SCX  Strong Cation Exchange  

SFR  Signaling Flux Redistribution  

TIGR DB  The Institute Of Genome Research Database  

TLR  Toll-like Receptors  

TNF  Tumour-Necrosis Factor  

TRADD  NFRSF1A-associated via death domain  

TRAF  TNF Receptor Associated Factor  

TRIF  TIR domain-containing adapter-including interferon-β  

WT  Wildtype   

 

 


