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Abstract 

Systems biology is an interdisciplinary field aims to create holistic understanding of the 

biological systems through employing different experimental and computational techniques. 

Proteogenomics is a systems biology approach makes alliance between proteomics and genomics 

to utilize the powerfulness of the modern proteomics techniques, namely mass spectrometry 

(MS)-based shotgun proteomics, in revealing novel genomic information. MS-based shotgun 

proteomic analysis generates MS/MS peptide spectra that hold the peptide fingerprints. To 

identify the peptide sequences corresponds to each MS/MS spectrum, peptide spectra are 

compared against databases of putative protein or nucleotide sequences. Mapping the identified 

peptide sequences to the genomic data reveals valuable information about its genomic origin that 

can lead to improve, correct or confirm the genome annotation. However, peptide sequence 

identification from large-scale proteomic analysis and using large-sized databases remains major 

challenge for proteogenomics, due to the capabilities of the modern high-throughput mass 

spectrometers that can generate millions of spectra and the growing size of protein and genomic 

sequence databases. In this thesis, I present an intensive survey for the efforts done by the 

proteomics and bioinformatics societies in the last decade to facilitate the peptide identification 

process in large-scale studies (chapter 1). Then, I describe the design and development of a novel 

bioinformatics pipeline for large-scale proteogenomics (chapters 2~5). The developed 

bioinformatics pipeline consists of 1.Mass Spectrum Sequential Subtraction (MSSS) method 

(chapter 2), 2.The Rice Proteogenomics Database (OryzaPG-DB v1.0 and v1.1) (chapter 3 and 4, 

respectively), and 3.The ProteoGenomic Features Evaluator (PGFeval) software tool (chapter 5). 

The developed pipeline employed in the analysis of rice proteome and phosphoproteome data 

(61 LC-MS/MS runs) revealing 98 novel genomic feature in 62 rice genes. 
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Survey of bioinformatics methods and algorithms 
facilitate peptide sequence identification from 
databases in large-scale proteogenomics.  

 



2 
 

1.1 Chapter Abstract 

Mass spectrometry-based shotgun proteomics approaches are currently considered as the 

technology-of-choice for large-scale proteogenomics due to high throughput, good availability 

and relative ease of use. Protein mixtures are firstly digested with protease, e.g. trypsin, and the 

resultant peptides are analyzed using liquid chromatography-tandem mass spectrometry. Proteins 

and peptides are identified from the resultant tandem mass spectra by de novo interpretation of 

the spectra or by searching databases of putative sequences. Since this data represents the 

expressed proteins in the sample, it can be used to infer novel proteogenomic features when 

mapped to the genome. However, high-throughput mass spectrometry instruments can readily 

generate hundreds of thousands, perhaps millions, of spectra and the size of genomic databases, 

such as six-frame translated genome databases, is enormous. Therefore, computational demands 

are very high, and there is potential inaccuracy in peptide identification due to the large search 

space. These issues are considered the main challenges that limit the utilization of this approach. 

In this chapter, I highlight the efforts of the proteomics and bioinformatics communities to 

develop methods, algorithms and software tools that facilitate peptide sequence identification 

from databases in large-scale proteogenomic studies.  
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1.2 Introduction 

Proteomics aims to characterize the expressed proteins and the corresponding peptides in a given 

sample, including elucidation of their sequence, structure and function. [1] Thus, proteome level 

investigation represents a rich source of information that complements the traditional genome 

analysis process. It become generally acknowledged that the inclusion of proteome data in the 

genome analysis results in better genome annotation in so-called proteogenomics. [2-5] 

Proteogenomics is the utilization of large-scale proteome data in genome annotation refinement. 

[2] Due to their high throughput and accurate measurement of the peptides, high-throughput 

mass spectrometry-based proteomics methods, such as liquid chromatography–tandem mass 

spectrometry (LC-MS/MS)), can provide a rich source of translational-level expression evidence 

to support the predicted protein-coding genes. This approach seems the best option for 

identification and confirmation of the protein-coding genes, or at least significant portion of them, 

in an independent and unambiguous way. [2] This can be achieved by detecting the naturally 

occurring proteins (proteomics) and mapping them back to the genome sequence (genomics) in a 

systematic analysis, as presented in several recent reports. [6-10] 

For instance, Arabidopsis thaliana is the most studied plant and has the most thoroughly 

sequenced and annotated genome among plants. However, proteogenomics provided significant 

additions and corrections to its genome annotation. [7, 11] A genome-scale proteomics study, 

with intensive sampling of several organs and life stages and over 1,300 MS/MS runs, added 57 

new gene models to the Arabidopsis annotation, providing expression evidence for all of them. 

Moreover, the same study provided functional annotation by flagging the proteins that were 

expressed in one organ only as biomarkers. [7] In another proteogenomics study, nearly 13% of 

the Arabidopsis proteome was deemed incorrect or missing due to incorrect or missing gene 
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models through the identification of 778 new protein-coding genes and correction of 695 gene 

models. [11] These significant improvements in the best annotated plant genome, the 

Arabidopsis genome, demonstrate the value of proteogenomics approaches in improving genome 

annotation and indicate their potential for expanding incompletely annotated genomes. 

The utility of proteogenomics in achieving significant improvements in genome annotation has 

been shown in various eukaryotic and prokaryotic genomes. Several reports have presented 

novel genomic information obtained via large-scale mass spectrometry-based proteogenomics in 

human. Desiere et al. (2005) demonstrated large-scale integration between peptides obtained 

through high-throughput proteomics and the human genome. [12] Power et al. (2009) found 

novel splice isoforms in human platelets by using a proteomics approach to identify the exon-

skipping events. [13] The Caenorhabditis elegans (C. elegans) genome annotation was identified, 

corrected and confirmed using shotgun proteomics by identifying 429 unannotated coding 

sequences (including 33 pseudogenes), 151 errors in gene models and 254 novel gene models. 

[6] The same approach is also applicable to the genomes of major plant crops such as rice [14], 

fungi such as Aspergillus niger (the black mold fungus) [15], parasites such as Plasmodium 

falsiparum (the malaria parasite) and Toxoplasma gondii [16, 17], insects such as Drosophila 

melanogaster [18, 19], nematodes such as Pristionchus pacificus [20] and Archaea such as 

Thermococcus gammatolerans.[21] 

The basic outcome of a proteogenomic analysis is to validate the predicted gene models at the 

translational level, as presented in several reports. [22-24] In addition, proteogenomics has been 

utilized to reveal many other significant genomic features, e.g., finding new gene models [6, 7, 

11, 23], determination of the protein start and termination sites [25-27], finding and verifying 

splice isoforms at the protein level [13, 25, 28] and verifying hypothetical and conserved 
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hypothetical genes/proteins. [25, 29-31] With such efficiency in the improvement of genome 

annotation, proteogenomics represents a promising approach to be applied to newly sequenced 

genomes, as well as for use in the primary annotation of the genome, rather than only to improve 

the annotation at a later stage. [3] 

In addition to finding novel genomic features to refine the genome annotation, proteogenomics 

can be applied in biomarker discovery [7, 32], for identification of antibody targets [33], to 

provide a better understanding of the host-parasite relationship [16, 34, 35] and to understand the 

mechanisms of ecological diversity and environmental adaptation. [3, 36] Further, 

proteogenomic studies have been performed on several genomes of related species to identify 

rare post-translational modifications [37], to investigate adaptive mutation capabilities among 

species [38] and to understand diversity-shaping events between species. [39] Proteogenomics 

also provides novel insight in cancer research, either in finding biomarkers, related somatic 

mutations or diagnosis. [40, 41] 
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1.3 Large-scale proteogenomics workflow 

Usually, large-scale proteome analyses are required for proteogenomics projects. In a typical 

proteogenomics project (Figure 1.1), high-throughput proteomics (usually mass spectrometry-

based) is used to obtain the sequences of the peptides of the sample in question. [5] The peptides 

are obtained through proteolytic digestion of the extracted proteins with proteases such as trypsin 

and Lys-C. The peptides are later pre-fractionated using several fractionation methods, such as 

strong cation exchange-StageTips (SCX-StageTips) [42] and isoelectric focusing (IEF) [43], then 

the fractions are processed and prepared for mass spectrometry (MS/MS) analysis. The MS/MS 

analysis results in thousands or even millions of MS/MS spectra that hold the peptide 

fingerprints. The peptide sequences corresponding to the MS/MS spectra are later identified 

using i) de novo interpretation of the spectra [44] or ii) database search of putative sequences. 

[45, 46] 

After obtaining the peptide sequences, proteogenomic analysis is conducted, but the details of 

the analysis are different according to the availability of the genome annotation (newly 

sequenced genome or annotated genome), the genome complexity (prokaryotic or eukaryotic 

genome) and the available informatics tools. However, here we will describe general steps that 

are shared in a wide range of proteogenomics projects. 

If the genome sequence and genome annotation of the organism are available: the peptides are 

mapped to the genome using several computational methods, mostly sequence alignment tools 

such as different types of BLAST. [47-49] Then, the alignment results can be compared with the 

current annotation to confirm and improve the annotated gene models [10, 17, 50] or to perform 

whole genome re-annotation using gene-finding tools that use the peptide information as hints to 

improve the predictive capability, such as AUGUSTUS. [51] 
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If the genome is newly sequenced: the proteome information (peptide sequences) is included in 

the primary genome annotation process. So far, there are two examples of proteogenomics 

integration in the primary annotation of a newly sequenced genome, the Mycoplasma mobile 

genome annotation [23] and the Deinococcus deserti genome annotation. [3] 

One of the key points in the workflow is to identify the amino acid sequences corresponding to 

the MS/MS spectra accurately and efficiently, since the accuracy of the remaining steps is highly 

dependent on these sequences. Although database searching is considered the most reliable 

approach to identify peptide sequences from MS/MS spectra, and is the most widely used, it 

represents a bottleneck in large-scale proteogenomics, especially when large databases are 

employed. [52] Most proteogenomic studies have used the six-frame translation of the genome 

database for peptide sequence identification. Searching large-scale MS/MS data against such 

database is not a trivial task due to the enormous size of both the MS/MS data set and the 

database, and the linear relationship between search time and database size. [53] Thus, the 

computational demands for such search are in some cases so high as to be unaffordable. For 

example, 260 days of CPU time was required to run over 4,000 X!Tandem [54, 55] searches 

against the Shewanella genome database [56], even though a PRISM computing cluster with 32 

processing nodes was used. [57] 
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Figure1.1 Simplified representation of large-scale proteogenomics workflow. Proteins are 

extracted from the sample and digested using suitable protease(s), e.g. trypsin, then the resultant 

peptides are pre-fractionated. The fractions are then processed and submitted to LC-MS/MS. The 

obtained MS/MS spectra are searched against putative sequence databases using search engines 

such as Mascot and SEQUEST to identify peptide sequences. The sequences are later mapped to 

the genome to confirm or update the genome annotation. 
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1.4 The need for faster database searching methods 

Several database searching programs and algorithms are currently available, including 

SEQUEST [58], Mascot [59], X!Tandem [54, 55] and several other tools and algorithms, 

including pFind [60], OMSSA [61], PepSplice [62], Phenyx [63], PEAKS (SPIDER) [64] 

SpectrumMill (Agilent Technologies, CA), ProteinPilot (AB-Sciex, CA) and Crux. [65] These 

programs use different approaches to facilitate the peptide sequences identification from 

databases. However, these tools seem to be insufficient for proteogenomics application for the 

following reasons: 

 

1. The continuous expansion of the protein databases: for instance, the protein sequences in the 

IPI.Human database increased by ~30% from IPI.Human V3.22 to IPI.Human V3.49 [66], while 

the size of the NCBInr protein sequence database doubled in about 18 months. [52] 

 

2. Using the six-frame translation of the genome database and the genome-translated proteins: 

these genomic databases are more suitable for proteogenomics and recent advances in genome 

sequencing techniques have made such databases easily available. However, the size of the six-

frame translation or the EST library that results from such database limits its utility. For example, 

the six-frame translation of the human genome database is over 6 Gbp and the EST library that 

results from its translation contains over 8 million protein sequences (over 100 times more than 

the human proteome). [66] 

 

3. The inclusion of chemical and post-translational modifications (PTMs): these modifications 

produce more peptides. For example, Zhou et al. (2010) showed that the inclusion of three 
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variable post-translational modifications and up to two missed cleavage sites increased the 

number of peptides by ~38-fold, compared with the number that would result from fully specific 

digestion of the IPI.Human database. [52] 

 

4. Using semi-specific or non-specific digestion: in these cases, the number of peptides to be 

considered is increased by 10 to over 100 fold, respectively, comparing with specific digestion. 

For instance, the fully non-specific digestion of the IPI.Human database V3.65 [67] resulted in a 

170-fold increase in the non-redundant peptides, compared with fully specific digestion. [52] 

 

5. The continuous development in mass spectrometry instruments: this has resulted in a 

remarkable increase in the generation rate of tandem mass spectra. An LTQ mass spectrometer 

from Thermo Fisher Scientific, for instance, can generate over 430,000 spectra per day while an 

LTQ Velos instrument, the newest LTQ model, can generate double this amount per day. [52, 

66] 

 

6. The steady development of computer hardware: this still remains a step behind the 

development of mass spectrometry and genome sequencing techniques. We can see a common 

pattern in the development of the pioneering database-searching programs, in that they follow the 

computer hardware development and try to make use of newly presented features to speed up 

database search. [45] For instance, the original implementation of SEQUEST performed the 

analysis sequentially, but was not multi-threaded and could not take advantage of multi-core 

CPUs. [58] However, in later versions, SEQUEST was developed to be able to include 

modifications [68], search EST databases [69], and search high-energy CID data [70]; in parallel 
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to these proteomics-related updates, a cluster version was introduced to make use of multi-

core/multi-computer systems. [45] Mascot and X!Tandem are multi-threaded and can take 

advantage of multiple CPUs with multiple cores in the same machine. Further, they both have 

cluster versions that can make use of multiple computers to perform the database search. [45] 

However, all these computational and hardware developments have failed to keep pace with the 

rapid developments of the analytical instruments. 
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1.5 Method development to speed up database searching 

The need for continuous method development to improve the efficiency of peptide identification 

at reasonable computational cost is driven by the factors mentioned above. Thus, researchers in 

the proteomics and bioinformatics communities have developed several methods to facilitate the 

searching process. However, four aspects should be taken into consideration while developing 

new methods. 1) Significant reduction of the search time and computational demand is needed, 

since this is the main aim of developing improved methods. 2) The capability for identifying 

peptides should be similar to or better than that of the current methods. 3) The accuracy should 

not be affected, unless it is improved. 4) The method should be flexible and have the ability to be 

integrated in different analysis workflows. [52] 

In this survey, we review the efforts of scientists to speed up peptide identification from large 

databases during the last decade. Since the identification process involves three main players, the 

database, the searching algorithm and the experimental proteome data, methods are usually 

focused on one of these players to speed up the search process. A wide range of methods has 

been proposed, including database preprocessing (indexing, reduction or splitting), developing 

faster search algorithms, reducing the number of spectra to be searched, using hybrid methods 

that combine de novo spectra interpretation with database searching and even directly involving 

computer hardware and low-level programming. Within the scope and space of this review, we 

present several methods from each category, trying to cover all approaches. 
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1.5.1 Database preprocessing methods 

Methods in this category are mainly concerned with preprocessing the databases in order to 

restrict the peptide search space. Restricting the search space leads to a reduction of the search 

time and the required resources to perform the search. Database preprocessing methods can be 

categorized into three sub-categories based on the type of preprocessing. 
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1.5.1.1 Database indexing 

Database indexing, also known as peptide indexing, is one of the most widely used methods to 

facilitate peptide identification. [66] Several search engines use database indexing approaches, 

such as SEQUEST [58], pFind [60] and Crux. [65] Through the normal peptide identification 

process, the database is preprocessed by performing in silico digestion of the entire database 

contents and the resultant in silico peptides are then matched to the spectra. [71] However, the 

digested proteins produce redundant peptides which increase the total number of peptides and 

result in redundant matching and scoring. Recently, it was shown that redundant peptides 

represent about 50% of the total peptides. [66] Therefore, database indexing methods remove the 

redundancy and index the peptides with their mass. Then, for a given spectrum with precursor 

ion mass m and  precursor   ion   tolerance  ∆,   the   searching   program   selects   from   index  peptides  

within the range [m-∆ ~ m+∆].  Thus,  indexing  allows  the  program  to  avoid  the  one-against-all 

comparison, thereby reducing search time and computational resources. [71] Database indexing 

methods can be divided into three main models. 

 

1. Off-line indexing 

In this approach, the digestion and indexing are performed once and the index is saved to the 

disk. The search program only needs to load the index from the disk and start searching. 

Obviously, this reduces the search time and the required processing power. However, the index 

is static and any change in the search parameters, e.g. modifications, requires reconstruction of 

the index. [52] 
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2. On-line indexing 

In on-line indexing, the index is created on-the-fly after the input of the search parameters. This 

dynamic indexing overcomes the disadvantage of off-line indexing, but it requires a longer time, 

since the search program needs to construct the index ahead of each search. Further, if the 

spectra are submitted in batches, a new index is constructed each time, even though the searching 

parameters are the same, and this redundancy increases search time and required processing 

power [66]. 

 

3. Hybrid indexing 

There is a hybrid method that combines off-line and on-line indexing, that is used by pFind [60]. 

pFind constructs an off-line index for the digested peptides and an on-line index for modified 

peptides. The construction of the on-line index with pFind was shown to take only 5% of the 

total identification time. [66] Recently, Li et al. (2010) performed systematic investigation of all 

the peptide sequence identification steps performed by the first generation of search engines 

(engines that perform direct mapping of the MS/MS spectra to peptides without any 

interpretation of the spectra), such as SEQUEST, Mascot, X!Tandem and pFind. These steps 

include the in silico digestion of the proteins, peptide modification, peptide-precursor matching 

and fragment ion-peak matching. They were able to get a 5-fold increase in the identification 

speed compared to SEQUEST 2.7 by constructing two indexes: i) peptide index and ii) precursor 

and fragment ion index. SEQUEST was used for the comparison of index structure, construction 

and querying, since Mascot and X!Tandem do not use database indexing, while the efficiency 

was compared among the three of them. The new approach was implemented using pFind. The 



16 
 

first index, the peptide index, speed up the identification by 2~3 times, while the other index, 

precursor and fragment ion index, added another two times. [66] 

 

1.5.1.2 Database reduction 

One of the most widely used methods to reduce the peptide identification time is database 

reduction. In these methods, a certain part of the database (that contains certain genomic features 

such as exons or open reading frames (ORFs)) is used for the identification, while the remaining 

portion is omitted. Database reduction methods significantly reduce the size of the database and, 

consequently, the search time. However, notable features that may be included in the omitted 

portion of the databases are lost. Several implementations of this approach have been presented 

in recent proteogenomic projects. 

 

1. Exon graph 

Exon graph methods aim to construct a compact representation of the database while covering all 

splice variants in all genes. Tanner et al. (2007) used exons and introns derived from GeneID and 

ESTmapper and since the putative exons and Expressed Sequence Tags (EST) predicted by gene 

prediction algorithms are from different lengths with overlaps, they compared them and merged 

them into larger intervals. If the interval overlaps an intron, the interval is split into two sub-

intervals at the junction point. Then, edges are added between the adjacent intervals. 

Polymorphism was also incorporated in the graph by adding an interval for each allele if the 

interval contains a single-nucleotide polymorphism (SNP). To remove nodes corresponding to 

wrong mappings of reading frames, nodes and edges that are not part of a coding sequence of 

length 50 or more were removed. Thus, each exon graph node has a protein sequence and 
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possibly an untranslated prefix or suffix. The final exon graph database size was significantly 

reduced from the original two billion amino acid residues (EST database) and 630 million 

residues (GeneID predicted exons) to 134 million residues. Searching the exon graph database 

using 18.5 million MS/MS spectra, the authors were able to validate exons and introns, confirm 

hypothetical proteins and discover alternative splicing events and extensions in known genes. 

[25] 

Castellana et al. (2008) used the exon graph method to create an exon splice-graph database for 

Arabidopsis. The exon splice-graph database together with the six-frame translation of the 

Arabidopsis genome database and the annotated protein database (TAIR7 database) were used to 

identify 18,024 novel peptides from 21 million MS/MS spectra obtained from Arabidopsis 

proteins. The novel peptides were used to refine the Arabidopsis genome annotation, yielding 

778 new protein-coding genes and updating 695 known gene models. [11] 

 

2. Sophisticated sequence database comparison strategy to search EST databases 

Aiming to identify peptides from alternative splicing isoforms and coding SNP proteins, 

Edwards (2007) suggested searching the ESTs. However, the enormous size of the EST database 

makes this proposal computationally infeasible. Edwards developed a sophisticated sequence 

database comparison strategy that resulted in a 35-fold reduction of the database size, making the 

identification of high-throughput MS/MS data from the EST database possible. This strategy 

requires the EST sequence to be mapped to the vicinity of a known gene, while the peptides are 

required to be contained in a 30-amino-acid ORF. Further, all peptides should be confirmed by at 

least two ESTs and the peptide sequence representation should avoid repetition. Applying this 

strategy to the human EST database reduced its size to less than 3% of the six-frame translation 
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of the human genome database, thereby making this search possible using standard methods. The 

search time for the same MS/MS dataset and the same engine (Mascot) against the six-frame 

translation of the human genome database requires 22 hours, while this was reduced to 15 min 

with the reduced EST database. Furthermore, the results were similar, with some noticeable 

improvements in the second search. [53] 

 

3. Metric embedding and fast near-neighbor search approach 

To avoid the one-against-all comparison that is used by most search engines, such as SEQUEST 

and Mascot, Dutta and Chen (2007) developed a novel method to preprocess the databases and 

create a limited subset of candidate peptides for a given query spectrum. This was achieved 

through designing a set of hash functions, where a random spectrum is used for the construction 

of the hash function and the normalized shared peak count score between the random spectrum 

and the hypothetical spectrum of a peptide is used as a peptide value. High–dimensional metric 

space (Euclidian space) and set of hash functions, constructed using random vectors, called 

locality-sensitive hashing (LSH), were used to implement the preprocessing, filtration and 

mapping. The method showed good accuracy: more than 95.6% of the spectra were filtered 

without missing any correct sequence. The filtration percentage reached 99.6% with minor loss 

of correct sequences (0.19%). The speed was increased 111 times in the case of 99.6% filtration, 

representing a remarkable speeding-up capability of this method. Further, the authors 

demonstrated additional applications for this method, such as accurate and efficient clustering of 

the MS/MS spectra. [71] 
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4. SkipE 

The SkipE method was developed to identify novel alternative splicing isoforms through 

identifying exon-skipping events, which are considered the most common form of alternative 

splicing. An exon-skipping event can be identified from peptides spanning the exon-exon 

junction of non-contiguous exons. The SkipE database was constructed through the creation of a 

list of all theoretical non-contiguous junction peptides from the human genome database based 

on the full-length transcript. Only the junction peptides were kept, while the preceding and 

following sequences were removed based on the last and first tryptic site upstream and 

downstream from the junction, respectively. Finally, duplications were removed, leaving only 

~300,000 peptides, which is a suitable size for searching with standard methods. The MS/MS 

data of human platelets was used against the SkipE database and the International Protein Index 

Database (IPI.Human) [67], yielding 89 genes with alternative splicing isoforms; many of them 

were confirmed at the mRNA level using RT-PCR and sequencing of the products. [13] 

 

5. Exon-exon junction database 

Mo et al. (2008) presented the Exon-Exon junction method, which is similar to the SkipE 

method, to identify peptides spanning the exon-exon junctions. The identification of these 

peptides from the genome database is not possible, since the exon-exon junctions are separated 

by introns. Thus, Mo et al. (2008) used the Ensemble core database and its APIs and wrote 

scripts using perl, Bioperl and mySQL to construct a database of all putative exon-exon junction 

proteins covering all possible combinations of exons for each gene. The duplications and the 

previously described exon-exon junction events were removed, resulting in a final database with 
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873,024 entries and total size of 132 Mb. Using the MS/MS dataset of the human liver and two 

search engines (SEQUEST and X!Tandem), they were able to identify 488 non-redundant 

putative exon-skipping events. [28] 
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1.5.1.3 Database splitting 

A simple and straightforward approach that allows searching the whole of large databases, 

including all features without reduction, is the database splitting approach. In this approach, a 

large database, such as a six-frame translation of the human genome database, is simply split into 

a set of smaller databases (e.g. one database per chromosome), resulting in 24 separate databases 

in the case of the human genome, for instance. Then, the MS/MS data is searched against each 

database separately. Clearly, this consumes more time and resources. However, it is the only 

method that allows searching large dataset of peptide spectra against the whole of a large-sized 

database with reasonable computational resources and without prior reduction of the database or 

interpretation of the MS/MS spectra. Database splitting has been used to find novel genomic 

features in several proteogenomics projects. 

To identify novel ORFs, Fermin et al. (2006) developed an approach based on creating a library 

of all possible ORFs in the human genome. The sequences of the ORFs in the library were 

obtained through complete six-frame translation of each chromosome of the human genome. The 

final library contained 217,305,234 putative ORFs, increasing the database size by an order of 

magnitude. Although the authors used a cluster of 106 nodes to perform X!Tandem searches, it 

was not possible to use it as one unit, especially after adding a decoy version of the database to 

calculate the false-positive rate (FPR). Therefore, they split the database per chromosome, 

creating 24 databases, and searched them one by one using the MS/MS data from the Human 

Proteome Organization Plasma Proteome Project (HUPO PPP). Using this approach, followed by 

several steps of analysis and confirmation, they were able to identify 282 significant ORFs using 

2,314 peptides, of which 627 were novel. [72] 
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In a recent project, Bitton et al. (2010) compared proteome data obtained from human breast 

epithelial cell lines against the six-frame translation of the human genome database with a 

concatenated reverse database for false-positive rate (FPR) calculation. Since the decoy database 

is equivalent in size to the target database [73], it was again not possible to search the whole 

database as one unit. Therefore, they used an approach similar to the method described by 

Fermin et al. (2006). The database was split by chromosome into 23 databases, each of which 

contains target and decoy versions, and the search was performed against each database 

separately. In this work, Bitton et al. were able to identify 346 putative novel peptides; of which 

two correspond to novel isoforms, while the remainder correspond to novel loci, and many of 

them were confirmed using several methods. [74] 
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1.5.2 Methods based on new search algorithms 

Methods in this category are based on developing novel database-searching algorithms that speed 

up the search process. 

 

1. GENQUEST 

Sevinsky et al. (2008) developed the GENQUEST method, which made searching the human 

whole genome possible with common desktop computers. In GENQUEST, six-frame translation 

and in silico trypsin digestion for the whole genome database are performed and the molecular 

weight (MW) and the peptide isoelectric focusing value (pI) are calculated for each peptide 

(forward and reverse) with MW between 800 and 3000. The resultant library of peptides was 

called the human genome peptide database (HGPdb). Next, to make the search possible with 

common desktop computers, narrow-range peptide fasta files were created for SEQUEST search 

by sorting the peptides into files based on the pI, with each fasta file representing 0.01 pI. When 

the pI range is determined, the files in this range are concatenated, indexed (using BioWorks 

Browser – Thermo Fisher Scientific) and searched. This significantly reduces the size of the 

database to be searched. Using GENQUEST, almost all exonic peptides identified from the 

protein database were identified from the genome database and 540 peptides were uniquely 

identified from the genome database. The whole analysis was done in a common desktop 

computer with a Pentium 4 2.8 GHz processor and 3 GB RAM. [75] 

 

2. InsPecT 

Identification of posttranslational modifications (PTMs) is crucial for understanding cellular 

regulation processes. However, PTMs identification from databases that contain all possible 

mutations (modifications) using the normal search tools is computationally demanding. In order 
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to accurately identify posttranslational modifications with reasonable cost, Tanner et al. (2005) 

developed InsPecT. InsPecT identifies PTMs from MS/MS data and genomic databases using 

database filters. The basic principle in InsPecT is to filter the databases aggressively and 

accurately, using the given spectrum and to return a small fraction that contains the candidate 

peptides able to produce the given spectrum with high probability. This allows applying more 

sophisticated and intensive analysis to the remaining fraction of the databases by considering a 

rich set of PTMs for each peptide. Further, the reduction of the number of candidates reduces the 

probability of false positives and high score achievement by chance. Four datasets were used to 

evaluate the performance of InsPecT, resulting in the identification of number of novel PTMs in 

the employed datasets, including phosphopeptides. In addition, InsPecT was two orders of 

magnitude faster than SEQUEST and significantly faster than X!Tandem on a complex mixture. 

[76] 

 

3. ABLCP 

Zhou et al. (2010) presented the new Algorithm Based on Longest Common Prefix (ABLCP) 

method for speeding up database search by efficient organization of the database. ABLCP uses 

an on-line digestion method to create an index of all peptides, then removes duplicates, and uses 

methods to ensure that no candidate peptides are missed. Thus, the identification time was 

noticeably improved using ABLCP, compared with methods that use peptide indexing, while 

accuracy was not affected. Further, the time and disk space required for index creation were less 

than those required by pFind [60] (pFind was chosen because it had been proven to have better 

performance than SEQUEST, Mascot and X!Tandem [66]) in the case of a normal database. 

ABLCP performance was compared with other approaches that use either peptide indexing or no 
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special data structures, and all the analysis was done using affordable computational resources 

(desktop PC with 2 CPUs each with 2 1.6 GHz cores and 4 GB RAM). However, ABLCP is 

implemented on pFind and designed to work with protein sequence databases, not genomic 

sequence databases. [52] 

 

4. PepSplice 

The PepSplice search algorithm, presented by Roos et al. (2007), uses cache-optimization and 

restriction of combined search spaces to speed up large-scale peptide identification tasks. The 

algorithm is a cache-aware algorithm, since it was designed to take into account the different 

storage levels with different speed and  size   (CPU,  RAM,  hard  disk…).  The  search  spaces   that  

can be combined and searched using PepSplice are the non-tryptic peptides, whole genome, 

several posttranslational modifications, un-annotated point mutations and un-annotated splice 

sites. However, PepSplice allows restricting the number of variations that can co-occur per 

peptide. Then, the search is carried out by the CPU as a single job, and the final result merges all 

results from all combined search spaces. The cache-optimization and restriction of combined 

search spaces improved the search speed to reach the theoretical hardware limit. The authors 

demonstrated outstanding performance of PepSplice by searching over 1.4 million spectra 

obtained from Arabidopsis culture cell against the Arabidopsis protein database and the 

Arabidopsis genome database, considering a variety of search spaces simultaneously (such as 

semi- and non-tryptic peptides, various posttranslational modifications, point mutations and a 

huge number of potential splice sites). Interestingly, the search was carried out with single CPU 

with a throughput of 8 spectra per second, a speed that exceeds the measurement speed of most 
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recent mass spectrometers (for instance, the throughput of the current LTQ instruments is 2 

spectra per second). [62] 

 

5. Integrating the peptide sequences with the human genome 

Desiere et al. (2005) described a pipeline for mapping peptides obtained from large-scale 

MS/MS analysis to the genome and built an expandable resource for integrating peptide data 

obtained from different proteomics experiments without searching the genome database. This 

strategy depends on searching several protein databases to obtain the peptide sequences 

correspond to the peptide spectra, then using several computational steps to map these peptides 

to the genome to confirm the expression of the proteins and the corresponding genes. They 

applied this pipeline to the human and Drosophila melanogaster genomes, resulting in validation 

rates of 27% (9,747 proteins and 3,107 genes) and 14% (6,423 proteins and 1,876 genes) in 

human and Drosophila, respectively. [12] 
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1.5.3 Hybrid methods 

Methods in this category combine spectral de novo interpretation and database searching 

approaches in order to retain the advantages of both approaches, while overcoming the 

limitations. 

 

1. PepLine 

Ferro et al. (2008) presented a data processing pipeline, PepLine, which automates the process of 

mapping large-scale MS/MS spectra datasets derived from tryptic peptides to the genomic 

sequence without preprocessing of the database, allowing the identification of novel genomic 

features and refinement of the genome annotation. However, since direct mapping to the genome 

requires identification of the peptide sequence corresponds to the spectrum, a process that is 

computationally expensive with large-scale datasets if database search methods are employed, 

PepLine uses peptide sequence tags (PSTs) to perform spectrum interpretation. The data is 

processed using three sequential modules optimized for working with large-scale datasets. The 

first module, Taggor, interprets the MS/MS spectra and generates the PSTs, the second module, 

PMMatch, maps the PSTs to the genome sequence, while the third module, PMClust, clusters 

closely located genomic hits. The pipeline performance was tested against database searching 

programs using a standard proteins dataset and an Arabidopsis thaliana envelop chloroplast 

sample, and it shows outstanding performance with large-scale datasets and genomes. Further, it 

allows for accurate identification of the exon-intron boundaries, which make it suitable for 

eukaryotic genomes. However, it should be noted that the current Taggor module of PepLine is 

specially designed to handle quadrupole time-of-flight (QTOF) MS/MS data. Nevertheless, the 

PepLine modularity makes it possible to use another program instead of Taggor when using 

MS/MS from an ion-trap-like instrument, then the analysis can be continued using PepLine. [77] 
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2. Lookup Peaks 

Lookup Peaks is another hybrid method that uses partial de novo analysis then database search. It 

applies a small de novo interpretation to the spectrum to identify the b- and y-ion peaks (the 

lookup peaks). The lookup peaks are used to extract candidate peptides from the database. The 

limited number of candidate peptides, compared with the total number of peptides in the whole 

database, makes the identification computationally affordable. Further, the authors developed a 

software tool, ByOnic, that implements the Lookup Peaks method. The method performance and 

sensitivity were assessed using several datasets and performance was better than that of sequence 

tagging methods, Mascot, SEQUEST and X!Tandem, at both the peptide and protein levels. 

ByOnic was able to find low-concentration spiked human peptides in a mouse blood plasma 

sample, while other tools missed these peptides. [78] 

 

3. Spectral Dictionaries 

Spectral Dictionaries is a hybrid method that combines de novo interpretation of the MS/MS 

spectrum and database search, but in a novel way. Hybrid methods, in general, are based on the 

sequence tagging approach that was proposed in 1994 by Mann and Wilm (1994). [79] In these 

methods, small fractions of the peptide sequence (usually limited to a length of three) are 

inferred from the spectrum and these tags are later used to search the database. Spectral 

Dictionaries goes a step further by generating all possible full-length peptide reconstructs and 

insures that one of the generated reconstructs is correct. Although the idea is not new [80], it was 

implemented once with a software tool based on a slow searching approach [81] that limited its 

usability with large-scale datasets. Kim et al. (2009) presented a new implementation with 

superior performance when using datasets of over 20,000 peptides. The new implementation 
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makes searching the six-frame translation of the human genome possible with a large-scale 

proteome dataset for proteogenomics, and it can also be modified to search for mutations and 

polymorphisms by using error-tolerant pattern matching when searching the database. [82] 

 

4. GenomicPeptideFinder (GPF) 

As mentioned in the previous section, exon-exon junction peptides, also known as intron-split 

peptides, cannot be identified from the genome database, though it has been estimated that these 

peptides represent 20~25% of the total tryptic peptides deduced from the genome [83]. These 

peptides help in the correct determination of the exon-intron boundaries and, consequently, in 

accurate annotation of the protein-coding regions. Therefore, methods like SkipE [13] and the 

exon-exon junction database [28] were developed to identify such peptides using in silico intron-

split peptides databases. However, Allmer et al. (2004) presented a novel method to identify 

intron-split peptides directly from the genome database by developing the 

GenomicPeptideFinder (GPF) algorithm. GPF uses de novo amino acid sequence prediction to 

infer the peptide sequence information together with the molecular weight (MW) of the 

precursor ion. A short fragment of the predicted peptide sequence is aligned with the six-frame 

translation of the genome and the MW of the precursor ion is used to assemble the full peptide 

using the sequence as a matrix. To speed up the search process, GPF performs two types of 

search, one using a long stretch of the peptide sequence (five amino acids) and the second using 

a shorter stretch (three amino acids). However, the second search is invoked only if the first 

resulted in matches with the genomic data. Next, GPF triggers four sequential processes aiming 

to identify peptides that match the search criteria and the resultant peptides are saved in a 

database of potential intron-split peptides. Finally, normal peptide identification tools such as 
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Mascot or SEQUEST can be used to search the original spectra against the intron-split peptides 

database for the actual identification of the correct peptides. [84] 

 

5. Fast Spectra Profile Comparison 

Aiming to speed up peptide sequence identification from large databases, Liu et al. (2005) 

proposed the Fast Spectra Profile Comparison method. Like GPF, this method speeds up the 

search by reducing the number of peptides to be searched with normal peptide identification 

tools such as Mascot or SEQUEST. However, the main principle here is to perform coarse 

comparison between the experimental spectrum and the theoretical spectra in order to exclude 

peptides with spectra showing little similarity to the experimental spectra. The peptides that pass 

the comparison are subjected to preliminary evaluation and finally sorted in ascending order and 

saved to a database of candidate peptides. The next step is similar to GPF, where Mascot or 

SEQUEST is used to search the constructed database, which is significantly smaller than the 

original. For the evaluation of the method, three datasets from three different sources, with 

different accuracy, and obtained with different instruments were used. The positive peptides 

(correct matches) of each dataset were already known. Applying the methods to the three 

datasets, the positive peptides were ranked in the top 10%, limiting the second stage, 

Mascot/SEQUEST search, to a very small number of candidates. Further, the identification time 

was two times faster, on average, than the control. [85] 
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1.5.4 Methods involving computer hardware 

Methods in this section use an extraordinary approach to speed up the search process, such as 

embedding the search program in the computer hardware. Such approaches improve performance 

significantly, but have the drawback of limiting the usability of the method due to the 

requirement of particular hardware or infrastructure, for instance. 

 

1. SEQUEST Sorcerer 

A unique speeding-up approach was implemented in Sorcerer. Sorcerer is an implementation of 

SEQUEST in firmware (embedded software that runs directly on the hardware) with a web-

based interface that is similar to the Mascot interface. This makes the search extremely fast 

compared with other search programs, including the normal SEQUEST itself. Further, it reduces 

the required informatics skills, administrative tasks and power consumption. However, it suffers 

from the major technical limitation with large databases that requires consideration of six-frame 

translation, such as EST and genomic sequence databases, since Sorcerer uses indexed databases 

[45]. Recently, Sorcerer became available in two versions, Sorcerer 2 and Sorcerer Enterprise. 

Sorcerer 2 is designed for laboratories with frequent high-throughput requirement, and can 

handle data from modern instruments at up to 30,000 spectra/hour. Sorcerer Enterprise is 

designed for laboratories with intensive high-throughput needs, e.g., more than one high-

throughput mass spectrometer or multiple core facilities. The Enterprise version is 2.5-fold faster 

than the normal version and can even scale up an additional 10 times [www.sagenresearch.com]. 
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1.5.5 Spectrum reduction method 

Spectrum reduction is a well known approach that is optionally used by several search engines to 

reduce the number of spectra to be processed. In this approach, a quality threshold can be set to 

exclude all spectra below it, since these spectra are considered of low quality. [45] We can call 

this type of reduction positive reduction, as it reduces the effort that could be wasted in 

processing such low-quality spectra. Therefore, any reduction of high-quality spectra can be 

considered negative reduction. Although positive reduction reduces the number of spectra to be 

processed, the number of remaining spectra is still high, especially when using recent high-

accuracy mass spectrometers. The method presented in this category proposes a novel approach 

to reduce the number of spectra, while avoiding negative reduction. 

 

1. Mass Spectrum Sequential Subtraction (MSSS) 

Mass Spectrum Sequential Subtraction (MSSS) is a bioinformatics method developed especially 

to facilitate the comparison of large-scale MS/MS data with large databases. MSSS uses a novel 

subtraction method to identify large numbers of spectra from sequence databases within a 

reasonable time and with affordable computational demands (see chapter 2). The basic idea of 

MSSS is to compare the whole large-scale data with a reference database, usually a protein 

database, then to subtract all spectra corresponding to the identified peptides and to create new 

files containing the unidentified spectra. Next, the new files can be compared with the large 

database or with another reference database to subtract more spectra. With the described 

subtraction approach, MSSS reduces the number of high-quality spectra to be processed while 

avoiding negative reduction. This approach should reduce the search time and save 

computational resources. In addition, it can be used to find modifications and mutations by using 
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databases of normal proteins and mutated or modified proteins, by performing subtraction after 

searching the database of normal proteins. [86] 

In a recent preliminary study, MSSS was used to identify modifications and disease-related 

mutations using four databases from normal individuals (protein, cDNA, transcript and genome 

databases) and one cancer patient database to identify a list of candidate onco-peptides, including 

phosphopeptides [40]. This tool promises to have further applications in cancer, such as 

identifying cancer-related mutations, new drug targets and new biomarkers. 
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1.6 Chapter Conclusion 

Proteogenomics is an emerging research approach that utilizes current advances in proteomics 

and genomics, as well as creating its own tools and technologies. Among several challenges 

facing proteogenomics, the process of comparing large-scale MS/MS data with large databases 

remains the major obstacle to full utilization of recent high-throughput proteomics techniques. 

Various methods have been developed to facilitate this comparison, including developing new 

algorithms, methods for reducing the database size or reducing the number of spectra to be 

processed, and methods involving computer hardware to speed up the search process. However, 

despite these great efforts, most of the developed methods still suffer from problems such as 

having been tailored to solve certain problem(s), to work with data from certain instruments, to 

be applicable only with protein sequence databases, or to require special hardware infrastructure. 

Further, some methods are implemented to work with particular search engine(s), while others 

have not yet been implemented in any publicly available commercial or open-source tool. 

Therefore, there is still room for new methods, or improvements of the current methods, that 

would be more generalized, flexible and easy to integrate into existing data-processing workflow. 
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Chapter 2 
 

 

Developing the bioinformatics pipeline (1) Mass 
Spectrum Sequential Subtraction (MSSS) Method. 

 



36 
 

2.1 Chapter Abstract 

In this chapter, I describe the development of the novel bioinformatics method Mass Spectrum 

Sequential Subtraction (MSSS) to search large peptide spectra datasets produced by liquid 

chromatography-mass spectrometry (LC-MS/MS) against protein and large-sized nucleotide 

sequence databases. The main principle in MSSS is to search the peptide spectra set against the 

protein database, followed by removal of the spectra corresponding to the identified peptides to 

create a smaller set of the remaining peptide spectra for searching against the nucleotide 

sequences database. Therefore, we reduce the number of spectra to be searched to limit the 

peptide search space. Comparing MSSS and conventional search approach using a dataset of 27 

LC-MS/MS runs of rice culture cells indicated that MSSS reduced the search queries to 50% and 

the search time to 75% on average. In addition, MSSS had no effect on the identification false-

positive rate (FPR) or the novel peptide sequences identification ability. We used MSSS to 

analyze another dataset of 34 LC-MS/MS runs, resulting in identifying additional 74 novel 

peptides. Proteogenomic analysis with these additional peptides yielded 47 new genomic features 

in 24 rice genes plus 24 intergenic peptides. These results demonstrate the utility of MSSS in 

searching large databases with large MS/MS datasets for proteogenomics.  
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2.2 Introduction 

Recent advances in genome sequencing have resulted in an enormous expansion of sequenced 

genomes. The genome online database (http://genomesonline.org/) currently exceeds 18,040 

completed and ongoing genome-sequencing projects (June 2012). However, the genome 

sequence alone is not sufficient to elucidate biological functions and, therefore, the primary task 

in connection with any newly sequenced genome is to annotate the genomic sequence in order to 

attach biological meaning to it. [2, 15] The genome annotation has two levels: i) the structural 

level, identifying the gene structure, and ii) the functional level, identifying the biological or 

biochemical function of the gene product.[6, 87] 

To perform genome annotation, genome sequencing projects usually relay on transcriptional 

evidence, such as expressed sequence tags (EST), and a variety of de novo tools for gene finding 

and protein prediction.[11, 15, 51] Although cDNA and EST can provide evidence for 

expression of a predicted gene, they still rely on the untranslated mRNA. Thus, they cannot 

confirm expression at the protein level.[15] Consequently, though the de novo tools for gene 

finding and protein prediction vary in their algorithms and accuracy, they predict large numbers 

of gene models that suffer from errors in reading frames and exon definition, and are sometimes 

highly redundant.[2, 26, 88-90] These limitations indicated the need of another source of 

information to help correct and confirm the predicted gene models.           

Shotgun proteomics approaches using liquid chromatography-tandem mass spectrometry (LC-

MS/MS) directly measure the protease-digested peptides derived from the expressed proteins and 

therefore, allows confirmation/correction of the expressed coding regions.[2, 87] Typically, the 

MS/MS spectra are searched against a reference protein database to identify peptides and 

proteins using algorithms such as Mascot [59], SEQUEST [58], X!Tandem [55], PepSplice [62] 
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and pFind, [60, 91, 92] which identify the peptides and their parent proteins. This limits the 

identification to the sequences available in the employed database. Thus, the incompleteness of 

the protein databases causes many high-quality spectra to remain unidentified due to the absence 

of the corresponding amino acid sequence, and limits the identification to known and predicted 

proteins.[7, 13, 28, 74]  

Searching the MS/MS spectra against the genomic database is a well-known approach that 

permits wider identification of peptide sequences, as the database will include almost all possible 

sequences generated by the organism.[2, 69, 93] Since the drafting of the human and Arabidopsis 

genomes, this approach has been widely employed in finding novel genomic features using 

MS/MS data.[7, 83, 93, 94]  In early work, the number of MS/MS spectra in the sample 

employed for searching against the whole genome database was limited. For instance, the whole 

draft of the human genome (3.3 Gbp) was searched using a test sample containing a total of 169 

MS/MS spectra from 22 proteins [83], which made identification possible even with limited 

computational resources. However, searching large-scale MS/MS datasets against the genome 

database remains a major challenge due to the enormous size of the MS/MS data and the 

databases, and due to the linear relationship between search time and database size.[53]  

For instance, the human proteome database is about 25 Mbp, while the six-frame translation of 

the genome database is about 6 Gbp.[30] The six-frame translated genome database of rice is 

over 25 times the size of the rice protein database (Figure 2.1). Further, in the different updates 

of the genomic databases, the database size remains almost the same, e.g., the first draft of the 

human genome database and the current version (HG19) are 3.3 and 3.12 Gbp, respectively. 

Thus, the principal factor that affects the search time and the required computing resources will 

be the number of MS/MS spectra to be identified. With large numbers of MS/MS spectra and 
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large numbers of database searches, the time required to perform the search can be very long. For 

example, 260 days of CPU time was required to run 4,261 X!Tandem searches against the 

Shewanella genome, even though a PRISM computing cluster with 32 processing nodes was 

used.[56, 57] Thus, several methods have been developed to facilitate this kind of search. [95] 

Sevinsky et al. (2008) made it possible to search the whole human genome using common 

desktop computers though the GENQUEST method, which utilizes isoelectric focusing of 

peptides and accurate peptide mass to reduce the search space.[75] Bitton et al. (2010) developed 

an integrated method to search the whole human six-frame-translated genome database by 

splitting the database per chromosome, creating 23 target and decoy databases, then eliminating 

non-matching peptides; this significantly reduced the search space. [74] 

Edwards (2007) successfully reduced the human EST database by 35-fold by means of a 

sophisticated database compression strategy requiring the EST to be mapped to the vicinity of a 

known gene, and the peptide to be contained in a 30-amino-acid open reading frame (ORF), in 

which the peptide sequence is confirmed by at least two ESTs,, followed by elimination of 

peptide sequence repetition. This makes search against the human ESTs database possible with 

affordable computational resources.[53] The exon-graph method, proposed by Tanner and 

colleagues, was successfully used to identify novel genomic features in human and 

Arabidopsis.[11, 25] Mo et al. (2008) and Power et al. (2009) presented methods to identify 

peptides that overlap the exon-exon junction or exon-skipping events in human, respectively, by 

creating databases containing only the features that they are targeting.[13, 28] Fermin and 

colleagues identified 282 significant ORFs in human by creating an ORFs library for all possible 

reading frames of the human genome after splitting the genome per chromosome.[72]  
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Figure 2.1 Comparison of different rice databases in terms of file size and number of 
residues.  
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Further, in order to speed up tandem mass spectra identification, some search engines, such as 

SEQUEST, pFind and Crux, [58, 60, 65] use peptide indexing.[66] To create a peptide index, the 

proteins are digested in silico and information such as mass, length and position are calculated 

for each peptide. The list is filtered later to remove redundancy and the final list is saved to disk, 

from which the engine can load it and match it with the spectra.[95] However, there are several 

drawbacks, such as the time required to construct the index and the need to re-construct the 

whole index if there is any change in the searching parameters. Further, for non-specific 

digestion, the time required for constructing the index can be increased by 100-fold. [66]          

Although these efforts have made it possible to search a large-sized database using MS/MS 

spectra, all of the procedures are dependent on either preprocessing of the database before 

searching or searching only a selected portion of the database which contains certain features. 

The preprocessing, such as splitting the database per chromosome, increases the overall 

processing time and effort, while searching against only certain features such as ESTs or exons 

causes loss of a significant part of the genomic information included in the omitted portion. 

Therefore, a new bioinformatics method that allows searching large datasets of MS/MS spectra 

of peptides against large databases, with reasonable computational cost and search time, is 

required.    

In this work, I propose a novel bioinformatics approach, Mass Spectrum Sequential Subtraction 

(MSSS), which facilitates the identification of novel peptide sequences from large-scale MS/MS 

peptide spectra datasets and protein sequence and genomic databases. In MSSS, we search the 

MS/MS spectra against a reference database, e.g. a database containing putative protein 

sequences, then remove the spectra corresponding to all identified peptides, creating a new file 

that contains only the unidentified spectra. Then, we use the new file to search a nucleotide 
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sequence database to identify novel peptides, which cannot be derived from any annotated 

protein.  

The spectra subtraction approach is well known approach that is optionally used by several 

database searching tools to exclude the low-quality spectra or as step in complex process aims to 

reduce the number of the unassigned spectra. [45, 96] Further, Mascot allows successive rounds 

of searching the unassigned spectra against different databases with different search parameters. 

[59] However, we adopted this approach in MSSS to increase the novel peptides identification 

for applications in proteogenomics. MSSS avoids the redundancy when searching the same 

MS/MS dataset against several databases and works an integrated step that is independent from 

the employed search engine or bioinformatics pipeline, so that, it can be integrated within any 

existing proteomics data-analysis pipeline. Following this approach, we can reduce the number 

of spectra to be compared with the database instead of reducing the database size, and 

consequently reduce the number of the queries to be performed by the search engine, thereby 

reducing the search time and computational demand. 

  



43 
 

2.3 Results and Discussion   

2.3.1 Assessment of the MSSS approach  

For evaluating the MSSS approach shown in Figure 2.2A, our published data from shotgun MS-

based proteome analyses of rice cultured cells was employed, as a typical testing dataset. [14] 

The dataset consisting of 152,908 MS/MS spectra were searched against the rice protein, cDNA, 

transcript and genome databases of Michigan State University (MSU), formerly known as the 

database of The Institute of Genome Research (TIGR),[97] using Mascot 2.3.[59] The four 

databases and the searching order were carefully selected to provide a novel outcome from each 

database. The protein database was used as the reference database, since it contains all annotated 

proteins and peptide sequences. While the content of the cDNA database corresponds to the 

protein database content, it allows searching different frame translations of the nucleotide 

sequence (frame translation is implicitly done by Mascot). The transcript database includes the 

introns, so we can identify intronic and exon-intron spanning peptides. Finally, the genome 

database includes the intergenic regions. Thus, each of the four databases offers the possibility of 

identifying unique features. 

Four points should be taken into consideration during the assessment of any new method that 

aims to speed up the peptide sequence identification process 1) improvement of identification 

time, as the main purpose of the method, 2) the peptide sequence identification capability should 

be similar to that of the current methods, 3) the accuracy should not be impaired, and 4) the 

method should be flexible and easy to integrate into current data analysis workflows.[66]  

In order to assess the performance of MSSS, its performance was compared with that of the 

normal peptide identification approach in three respects: 1) the search time required for the 

identification, 2) the peptide identification capability and 3) the false-positive rate (FPR) of the 
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identification. The fourth feature, flexibility, is already present since MSSS is an intermediate 

step that can be easily integrated into any workflow that supports the MGF file format. Figure 

2.2C illustrates the two approaches. We compared the two approaches with four different peptide 

acceptance criteria based on the identity score of the peptides (Table 2.1), to find the most 

suitable condition for MSSS.  
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Figure 2.2 MSSS method. A) Flowchart of the data analysis in the MSSS method. B) 

Advantages of applying MSSS in the peptide identification process (increased peptide search 

space, decreased search time and decreased overall data processing requirement). C) Comparison 

between MSSS and the normal approach. In this figure, I use three databases for demonstration, 

while in the actual work we used four databases in the same sequence as shown in B. 
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Table 2.1 Peptide acceptance criteria used in the MSSS evaluation  

Criteria Identification Confidence p value Description 

C1 95% P<= 0.05 Mascot score confidence >=95% 

C2 99% P<= 0.01 Mascot score confidence >=99% 

C3 99.9% P<= 0.001 Mascot score confidence >=99.9% 

C4 99.99% P<= 0.0001 Mascot score confidence >=99.99% 
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Since the main goal of this method is to provide a new strategy that makes peptide identification 

from large-scale MS/MS datasets with large-sized databases affordable (i.e, with reasonable 

computational demands and in a shorter time), it is indispensable to demonstrate the influence of 

the MSSS approach on the size of MS/MS data files and the number of MS/MS spectra to be 

identified, since these are the two key factors that determine the time and computational 

resources required for searching a database.  

In contrast to the normal approach, in MSSS the file size is reduced after each search due to 

subtraction of the identified spectra. This is reflected in the number of MS/MS spectra per file 

and, therefore, the number of search queries to be performed by the search engine. In MSSS, the 

total file size was reduced by 50% on average due to the sequential subtraction of the identified 

MS/MS spectra after each database search (Figure 2.3A). The reduction in size was proportional 

to the number of MS/MS spectra remaining in the files, which was reduced by 45% on average 

(Figure 2.3B).  This means that the total number of search queries to be performed by Mascot 

was reduced by 45%, resulting in a decrease of search time and required computational resources 

by 25% on average (Figure 2.3C).  

The second comparison between MSSS and the normal approach is the peptide identification 

capability for i) total non-redundant peptides and ii) novel non-redundant peptides. We defined a 

non-redundant peptide as a unique combination of sequence plus modifications. Therefore, total 

peptides are all peptides identified from the four databases and novel peptides are peptides that 

cannot be derived from any annotated protein (peptides identified from the cDNA, transcript and 

genome databases). Both total and novel non-redundant peptides identified through MSSS were 

the same as those identified through the normal approach with various peptide-acceptance 

criteria (Figure 2.4, Figure 2.5A-B).  
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Figure 2.3 MSSS facilitates the identification of peptides from a large-scale MS/MS peptide 
spectra dataset and large-sized databases. A) MS/MS data file size, B) the number of MS/MS 

spectra (or the number of search queries performed by Mascot) and C) the search time required 

for peptide identification was reduced significantly after applying MSSS. 
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Figure 2.4 Identification of novel non-redundant peptide sequences by MSSS and the normal approach. (C1, C2 and C4 

acceptance criteria) 
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Figure 2.5 Assessment of MSSS performance. A) Total non-redundant peptides identification 

in MSSS and the normal approach. B) Novel non-redundant peptide sequences identification in 

MSSS versus the normal approach in C3 (99.9% peptide acceptance criteria). C) FPR (%) in 

MSSS versus the normal approach. C1~C4 represent the four different peptide acceptance 

criteria (Table 2.1). 
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Further, we compared the sources of novel peptide identifications at each acceptance level in 

MSSS and the normal approach to evaluate the contribution of each database. In all cases, the 

contribution of each database to the novel peptides was similar in both methods (Figure 2.6). 

Furthermore, we compared the overlap between the peptides identified in both approaches and 

we found the same matches in all cases. These results demonstrate that the peptide identification 

capabilities of MSSS and the normal approach are comparable, regardless of the selected 

peptide-acceptance criteria.  

Finally, we compared MSSS and the normal approach in terms of the false-positive rate (FPR) of 

peptide identification (see Materials and Methods). Since a decoy database is equal in size to the 

target database, it was practically not possible to append a decoy version to the genome database, 

due to its large size (Figure 2.1). Therefore, FPR was calculated for the protein, cDNA and 

transcript databases only (see Materials and Methods). For the protein database and cDNA 

database identifications, the false-positive rate was the same in MSSS and in the normal 

approach with all four peptide acceptance criteria (Figure 2.5C). In the case of the transcript 

database identification, the false-positive rate was slightly increased in MSSS. However, this 

increase in FPR was negligible with the third and fourth criteria (Figure 2.5C), which were the 

two criteria with acceptable FPR (FPR (%) <=1%). Thus, MSSS has a slight effect on the FPR at 

lower peptide score confidence, but has a negligible effect on the FPR at higher peptide score 

confidence.  

The assessment of MSSS performance thus indicates that MSSS is comparable with the normal 

identification approach in terms of FPR and peptide identification. However, MSSS offers 

advantages in terms of reducing the search time (comparing with the normal approach and using 

the same computational resources), avoids redundant identification of the same spectra when 
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searching multiple databases and facilitating peptide identification from large-scale MS/MS 

datasets and large-sized databases. Further, MSSS is an intermediate step that can easily be 

integrated in any existing proteomics data-analysis pipeline that supports MGF file format.  

 

2.3.2 Application of the MSSS approach on phosphopeptide-enriched rice samples   

Next, we applied MSSS to another dataset of phosphopeptide-enriched rice samples (with total 

of 185,126 spectra). [98] The dataset of phosphopeptide-enriched samples was shown to extend 

the peptides coverage in proteogenomic application. [11] These MS/MS spectra from 34 rice 

phosphoproteomic samples were searched against the same set of databases used in the above 

section (protein, cDNA, transcript and genome databases of MSU v6.1) using the MSSS 

approach. The MSSS search resulted in 5,175, 237, 27 and 31 non-redundant peptides from the 

protein, cDNA, transcript and genome databases, respectively, when we employed the third 

criterion of Table 2.1 for peptide identification. Note that the FPR(%) for identified non-

redundant phosphopeptides was less than 0.1% (~ 0.08%) as was the case of the first test dataset, 

since we used more stringent filer with the phosphoproteomic samples (see Materials and 

Methods). The identified peptides were compared with all peptides of the rice proteogenomics 

database (OryzaPG-DB) [14] to exclude the peptides that already exist in the database. The 

comparison resulted in 3,095, 48, 6 and 26 non-redundant peptides identified from the protein, 

cDNA, transcript and genome databases, respectively, and not existing in OryzaPG-DB.     

The 80 novel peptides identified from the cDNA, transcript and genome databases are a useful 

source of new genomic information, which can be used to refine the genome annotation by 

applying proteogenomic approaches.[2] Since we used very strict peptide acceptance criteria 

(99.9%), all peptides passed the statistical quality filters such as score, e.value and delta score. In 
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order to further confirm the identified spectra, the spectral quality was manually verified in terms 

of peak annotation and identified b and y ions. As a result, the total of 74 novel peptides (42, 6, 

and 26 peptides from the cDNA, transcript and genome databases, respectively) were accepted. 

The final dataset was processed using the following steps to find new genomic features that 

would help in the genome annotation refinement (Figure 2.7A). 
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Figure 2.6 Comparison of the sources of the novel peptide sequences identified in this study. 
The left line shows peptides identified from each database with the normal approach. The right 

line shows peptides identified from each database with MSSS.  
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Figure 2.7 Proteogenomic analyses performed using the novel peptides identified. A) 

Flowchart of the proteogenomic analysis. B) Novel peptides per category. (*) PGMT stands for 

the proteogenomic mapping tool.[99] 
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The peptides identified from the cDNA and transcript databases are from 39 genes (see Materials 

and Methods). Thus, we aligned each peptide to the corresponding unspliced genomic mRNA 

(transcript). Peptides identified from the genome database were mapped to the genome directly 

using the proteogenomic mapping tool [99] and the mapping coordinates (start and end) were 

compared with the gene coordinates to map the peptides identified from the genome database to 

known genes. The mapping resulted in 24 peptides mapped to intergenic regions; the remaining 

peptides were mapped to known genes (Tables 2.2 and 2.3). Peptides mapped to intergenic 

regions can potentially point to new unannotated genes or coding regions.[72, 100] 

Peptides mapped to known genes can be either from known coding regions, such as exons, or 

from novel regions, such as introns or untranslated regions (UTR). Peptides mapped to known 

coding regions are confirmatory peptides, that can be used to validate the current annotation, 

while peptides mapped to novel regions can be used to improve the current annotation by adding 

novel gene features, novel alternative splicing isoforms or new genes.[5] To assess the novelty of 

each peptide, we used an updated version of our novelty assessment algorithm previously 

implemented in the ProteoGenomics Features Evaluator (PGFeval) software tool (Chapter 

3).[14] The novelty categories of the newer version include intronic, acceptor spanning, donor 

spanning,  exonic  and  3’UTR,  5’UTR.   

The proteogenomic analysis revealed 47 novel genomic features in 24 genes 22 of them not 

existing in OryzaPG-DB (Figure 2.8). The majority of the novel features were intronic peptides 

(34) and UTR peptides (9) (Figure 2.7B) (Tables 2.2 and 2.3). Figure 2.9 shows an example of 

an intronic peptide with its MS/MS spectra. Table 2.4 shows the comparison between the output 

of this study and the currently available in OryzaPG-DB. 
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Figure 2.8 Comparison between the output of this study and the OryzaPG-DB content (see 
chapter 4). A) Genes with novel peptides, including peptides mapped to known coding regions. 

B) Genes to be updated, with peptides mapped to novel regions. (*) Numbers of genes with 

novel peptides/features in this study resulted from a proteogenomic analysis using peptides 

identified solely in the rice phosphoproteome after excluding all peptides shared with OryzaPG-

DB. Note: the output of this study is currently included in OryzaPG-DB (v1.1).    
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Figure 2.9 Example of a novel peptide with MS/MS spectra. The peptide was identified from the cDNA database and mapped 

using PGFeval [14] to an intronic region  on   its   genomic  mRNA.  The  peptide’s  amino  acid   sequence  and  spectra   are   shown   in   the  

upper right panel while the matched ions are shown in the upper left panel.   
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These results demonstrate the utility of MSSS as a novel method to maximize the utility of the 

MS/MS spectra in proteogenomic studies. For instance, in the above-mentioned Arabidopsis 

study,[7] 1,354 MS/MS runs were performed and identified using 261 novel peptides, while in 

our MSSS study we have 34 nano LC-MS/MS runs (~0.025% of the Arabidopsis study MS/MS 

runs) and identified 74 novel peptides (~0.3% of the Arabidopsis study novel peptides), although 

we have to consider that different MS instruments used in the two studies (ion trap in the 

previous study and ion trap-orbitrap in our study).  

In addition to its utility as demonstrated above, MSSS can be used to find mutated or abnormal 

peptides related to diseases that cause somatic mutations, such as cancer.[40] For example, the 

cancer   proteome   can   be   compared   against   the   “normal”   protein   database,   then   the   genome  

database using MSSS. Next, the remaining spectra can be compared against a cancer-driven 

database, e.g., the cancer transcriptome database. In this case, the identified peptides will be 

related to the disease condition, e.g., mutations caused by the disease, and, therefore, should be 

useful to find new biomarkers or new drug targets.  
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2.4 Materials and Methods 

2.4.1 Datasets for method development and application 

Our published dataset from 27 LC-MS/MS analyses of rice cultured cells[14] was used for the 

method development, while another published dataset from 34 LC-MS/MS analyses of 

phosphopeptide-enriched rice tryptic peptides [98] was used for the proteogenomic application 

of the method. 

2.4.2 Database search 

Peptides and proteins were identified by Mascot v2.3 (Matrix Science, London, U.K.) [59] 

against the Michigan State University (MSU) rice protein, cDNA, transcript (unspliced genomic 

mRNA) and genome databases.[97, 101] Mascot identification parameters were; 

carbamidomethyl (C) as a fixed modification and acetyl (protein N-term), Gln->pyro-Glu (N-

term Q), Glu->pyro-Glu (N-term E) and oxidation (M) as partial modifications for the method 

development dataset. Phosphorylation (S, T and Y) as additional partial modifications were 

employed for the application dataset.  The product ion mass tolerance was 0.80 Da, while the 

precursor ion mass tolerance was 3 ppm and strict trypsin specificity was employed, allowing for 

2 missed cleavages only. In all Mascot searches, peptides were rejected if the Mascot score was 

below the 95%, 99%, 99.9% or 99.99% confidence limit based on the identity score of each 

peptide (Table 2.1) (see Results and Discussion). To increase the identification accuracy and 

peptide specificity, we accepted peptides with at least seven amino acids[93] and rejected the 

peptide if the delta score between the first and second hits was less than 10. For the 

phosphopeptides identification, we require at least three successive y- or b- ions with a further 

two or more y-, b-, and/or precursor-origin neutral loss ions to be observed. In cases where 

different identification results were obtained from two databases for the same spectrum, i.e., one 
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from the protein database and the second from the cDNA, transcript or genome database, we 

selected the hit with higher significance (smaller e.value).   

2.4.3 Mass Spectrum Sequential Subtraction (MSSS) 

After obtaining the MS/MS spectra by means of the Materials and Methods described above, we 

converted the raw data files to Mascot Generic Format (MGF) (Figure2.2A step 2). Next, we 

performed Mascot search against the protein database (reference database) (Figure 2.2A step 3), 

then we compared the identification results with the original MGF files, as each identified 

peptide corresponds to certain MS/MS spectra. To automate this step, we created an in-house 

web-based tool written in PHP that performs the comparison, subtracts the identified MS/MS 

spectra and creates new MGF files containing only the unidentified MS/MS spectra (a basic 

version of the program, written in perl, is also available upon request). The subtraction 

significantly reduces the file size and the number of MS/MS spectra in the file (Figure 2.2A steps 

4a~4c). The new MGF files can be searched against another database such as a cDNA, transcript 

or genome database (Figure 2.2A step 5). For each database, we repeat the steps of identification, 

comparison, MS/MS spectra subtraction and new MGF file construction (Figure 2.2A step 6). 

We end up with novel peptide sequences that do not exist in any of the annotated proteins, 

identified from searching of multiple genomic databases, with affordable computational demands, 

reduced search time and reduced overall data processing requirement (Figure 2.2B).  

2.4.4 MSSS evaluation scheme  

To evaluate the performance of MSSS we used the normal peptide identification approach as a 

control (shown in Figure 2.2C, top). In the normal approach, the whole MS/MS peptide spectra 

dataset was searched separately and respectively against the protein, cDNA, transcript and 

genome databases to obtain the peptide sequences, using Mascot 2.3 (Figure 2.2C, top), then the 



62 
 

results of the different searches were combined in an accumulative way (only novel non-

redundant peptides from each genomic database are added to the final list). In MSSS, Mascot 

search was performed against the same four databases, but after each search the identified 

MS/MS spectra were subtracted and new MGF files were created, then used to search the next 

database. The searching order in MSSS was protein database, cDNA database, transcript 

database then genome database (Figure 2.2C, bottom).  

2.4.5 Calculating the false-positive rate (FPR)  

To calculate the FPR, each of the protein, cDNA and transcript databases was appended with a 

decoy database since the use of concatenated target-decoy databases is preferable to separated 

database searches.[73] For each database search result, we calculated the false positives (FP) and 

the true positives (TP) of the nonredundant set of identified peptides. Next, to calculate the false-

positive rate (FPR) of the protein database search result, we used its own FP and TP (FPRprotein = 

FPprotein / (FPprotein+TPprotein)).[73] For the cDNA and mRNA databases search, we calculated an 

accumulative FPR. The FPR of the cDNA database search result was calculated from FPRcDNA = 

FPprotein+cDNA / (FPprotein+cDNA + TPprotein+cDNA), while the FPR of the transcript database search 

result was calculated from FPRtranscript = FPprotein+cDNA+transcript / (FPprotein+cDNA+transcript + 

TPprotein+cDNA+transcript). Therefore, we calculated unbiased FPR for both MSSS and the normal 

approach, avoiding the effect of any anomalous FPR value. 

2.4.6 Bioinformatics analysis  

The  evaluation  of  a  peptide’s  novelty  and  visualization  of  the  genomic  features  were  performed  

using  “ProteoGenomic  Features  Evaluator”  (PGFeval)  (see  results).[14] Sequence alignment was 

performed using a local version of NCBI BLAST and BLS2SEQ Windows version with the 
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default parameters [47, 49] and perl script. Mapping the peptides identified from the genome 

database to the genome was done using the proteogenomic mapping tool.[99]. 
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Table 2.2 The genes with novel peptides 

# Gene PepID Database Category Sequence Score Modifications 
1 LOC_Os12g32986 PC7 cDNA Intronic AQSMGDMSSLDFMR 80.5 15.994915@M:7,15.994915@M:13,79.966331@S:3 

2 LOC_Os12g32986 PC8 cDNA Intronic AQSMGDMSSLDFMR 75.8 15.994915@M:7,79.966331@S:3 

4 LOC_Os12g31800 PC31 cDNA -- KNDELMDDLFKDDEPDNYANK 71.7 15.994915@M:6 

5 LOC_Os12g21890 PC40 cDNA Intronic NDKDDVFSDSEAEDGSSK 75.8 79.966331@S:8,79.966331@S:10 

6 LOC_Os12g05920 PC41 cDNA 5'UTR NGSAESALVNPISLDGSDGSDK 73.4 79.966331@S:3 

7 LOC_Os11g47760 PC39 cDNA -- NALENYAYNMR 65.6 15.994915@M:10 

11 LOC_Os09g30412 PC25 cDNA -- GYEVLYMVDAIDEYAVGQLK 82.9 15.994915@M:7 

12 LOC_Os08g45110 PC33 cDNA -- LLLLLLLLLLL 50.4  

13 LOC_Os08g23360 PC24 cDNA Intronic GVSTLSLGER 76 79.966331@S:6 

14 LOC_Os08g02340 PC29 cDNA Acceptor Sp. KEEAKEESDDDMGFSLFD 72.3  

15 LOC_Os07g42300 PC6 cDNA -- APAADDDDDDDVDLFGEETEEEK 73 79.966332@T:19 

16 LOC_Os07g08330 PC36 cDNA -- MANADLGR 65.4 15.994915@M:1 

17 LOC_Os07g08330 PC37 cDNA -- MATLAEAAR 73.3 15.994915@M:1 

18 LOC_Os07g01920 PC1 cDNA Intronic AASDGDDMDIDGQQSSK 75.6 15.994915@M:8,79.966331@S:3 

19 LOC_Os07g01020 PC27 cDNA -- IAAPYDLVMQTK 79.3 15.994915@M:9 

20 LOC_Os06g46000 PC10 cDNA 3'UTR AVLMDLEPGTMDSVR 65.2 15.994915@M:11 

21 LOC_Os06g34710 PC20 cDNA -- GGEVVLEVSDMDEEDGEDDTDVK 81.5 15.994915@M:11,79.966331@S:9 

23 LOC_Os06g14406 PC43 cDNA 3'UTR SADEGDEDLSEQDDLPLSPPK 69.9 79.966331@S:10 

24 LOC_Os06g08280 PC23 cDNA -- GVGMGVGDPSSPSAR 67.2 15.994915@M:4,79.966331@S:10 

26 LOC_Os05g48880 PC45 cDNA Acceptor Sp. SSGPSAPDAENIEDLTDDEDDSNE 91.6 79.966332@T:16 

27 LOC_Os05g08970 PC18 cDNA -- GAAAMDVDSGPASD 66.8 15.994915@M:5,79.966331@S:13 

28 LOC_Os04g58280 PC48 cDNA 5'UTR VDSEGVMCGATFK 74.3 57.021465@C:8,15.994915@M:7,79.966331@S:3 

29 LOC_Os04g58280 PC49 cDNA 5'UTR VDSEGVMCGATFK 92.3 57.021465@C:8,79.966331@S:3 

31 LOC_Os04g31620 PC38 cDNA 5'UTR MLQSGLPLDDRPEGARSPSPEPVYDNLGIR 65.3 79.966331@S:17,79.966331@S:19 

32 LOC_Os04g27950 PC26 cDNA -- HTHYSTTTTTTDNGASGDDNNR 95.6  

33 LOC_Os04g27950 PC30 cDNA -- KHTHYSTTTTTTDNGASGDDNNR 97.8  

34 LOC_Os04g02820 PC46 cDNA -- STGISLFYEMSDESLK 68.2 15.994915@M:10 
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35 LOC_Os03g22350 PC4 cDNA -- AGYGSESEVDDEAATVSLASDVDK 81.9 79.966331@S:7,79.966331@Y:3 

36 LOC_Os03g19530 PC9 cDNA -- AVDAGMMEYDSDDNPIVVDK 74.7 15.994915@M:6,15.994915@M:7,79.966331@S:11 

37 LOC_Os02g58220 PC47 cDNA Intronic TYSAMGSSSSNGFSEMTTPTSVK 80.8 15.994915@M:16,79.966331@S:9 

38 LOC_Os02g54700 PC14 cDNA -- DLAPQTEAFVDRPPTADGSGPPGGAVK 68.2 79.966332@T:15 

39 LOC_Os02g38920 PC44 cDNA Donor Sp. SDVNIVSNASCTTNCLAPLAK 75.6 57.021465@C:11,57.021465@C:15,79.966331@S:10 

40 LOC_Os02g33490 PC5 cDNA Intronic ANSYSAMMEADMENGR 77 79.966331@S:3 

41 LOC_Os02g12794 PC2 cDNA 5'UTR ADNPLYGSSLIEYAHIEQWNDFSATEVDANIGK 98.5  

42 LOC_Os02g10970 PC21 cDNA 3'UTR GLVSYGDGSPDSAGK 64.9 79.966331@S:9 

43 LOC_Os02g10970 PC22 cDNA 3'UTR GLVSYGDGSPDSAGK 69.8 79.966331@S:9,79.966331@S:12 

44 LOC_Os02g07260 PC35 cDNA -- LSELLGVDVVMANDCIGEEVEK 83 57.021465@C:15,15.994915@M:11 

45 LOC_Os01g67126 PC34 cDNA -- LNALNSSAGADDDDEEEDDE 96.4 79.966331@S:7 

47 LOC_Os01g43330 PC15 cDNA Intronic DNNSEDLGMANISDVNCK 81.5 57.021465@C:17,15.994915@M:9,79.966331@S:4 

22 LOC_Os06g22550 PG3 Genome -- AQVVPVAEGAAVEGDSPR 98.8 79.966331@S:16 

46 LOC_Os01g43639 PG12 Genome -- KGSPAADEEQSTAAAAVR 98.9 79.966331@S:3 

47 LOC_Os12g32986 PM1 us-mRNA Intronic AQSMGDMSSLDFMR 77.9 15.994915@M:4,15.994915@M:13,79.966331@S:3 

48 LOC_Os11g07850 PM6 us-mRNA Intronic VLDPDPDPDAAAAAATGNSPLGGR 86.9 79.966331@S:19 

49 LOC_Os10g38489 PM3 us-mRNA Intronic FGELDVAEK 67.1  

80 LOC_Os10g32550 PM5 us-mRNA -- SVAAGMNAMDLR 68.3 15.994915@M:9 

51 LOC_Os06g03676 PM2 us-mRNA Donor Sp. FDLSDSEDATR 73.7 79.966331@S:4 

52 LOC_Os04g54930 PM4 us-mRNA Intronic NLSYQYSTGANGR 65.9 79.966331@S:7 

 

  



66 
 

Table 2.3 The novel peptides mapped to intergenic regions 

# PepID Chromosome Database Novelty Sequence Length PepScore Modifications 
1 PG1 chr07 Genome Intergenic ADSGGYNLNEK 11 64.5 79.966331@S:3 

2 PG10 chr05 Genome Intergenic GSPSAGDAGGDAPVR 15 86.8 79.966331@S:2 

3 PG11 chr02 Genome Intergenic ILSGLQSDGDESR 13 79.9 79.966331@S:3 

4 PG13 chr01 Genome Intergenic KTSFQTDASSLGK 13 95.3 79.966331@S:3 

5 PG14 chr12 Genome Intergenic KVEPETSSPLANDSQQDAAVGDVDDSR 27 101.1 79.966332@T:6 

6 PG15 chr05 Genome Intergenic LALTPAGGTDNDGEGTVERPSK 22 99 79.966332@T:9 

7 PG16 chr03 Genome Intergenic LHNGHNDMDNISEGGSMANDLNDAGELNNGR 31 110.5 79.966331@S:12 

8 PG17 chr12 Genome Intergenic MTSGDMALGSPVSSQGK 17 67.9 79.966331@S:10 

9 PG18 chr02 Genome Intergenic NVDESCDMDGSPEEVVSK 18 64.9 57.021465@C:6,79.966331@S:11 

10 PG19 chr07 Genome Intergenic QISALNISSPSTK 13 70 79.966331@S:9 

11 PG2 chr07 Genome Intergenic AEDAYHSDEEQYDGGR 16 70.9 79.966331@S:7 

12 PG20 chr12 Genome Intergenic SELDGSESADPAPPSNALQR 20 83.5 79.966331@S:6 

13 PG21 chr05 Genome Intergenic SHSISNDLHGVQPDPVAADILR 22 83.7 79.966331@S:3 

14 PG22 chr01 Genome Intergenic SPCQPSYIDDSLR 13 66.6 57.021465@C:3,79.966331@S:1 

15 PG23 chr09 Genome Intergenic TLYGVVDGGSSDEDESTSK 19 84.6 79.966331@S:10,79.966331@S:11 

16 PG24 chr09 Genome Intergenic TLYGVVDGGSSDEDESTSK 19 75.6 79.966331@S:11 

17 PG25 chr06 Genome Intergenic TNDETLSESGPSNQGESVEMIK 22 91.4 15.994915@M:20,79.966331@S:7 

18 PG26 chr06 Genome Intergenic TNDETLSESGPSNQGESVEMIK 22 97.5 79.966331@S:7 

19 PG4 chr11 Genome Intergenic DADGRSDDEVADEYWANHIAR 21 80.3 79.966331@S:6 

20 PG5 chr06 Genome Intergenic DAESSASSSPFVASSSSPR 19 88.2 79.966331@S:17 

21 PG6 chr10 Genome Intergenic DIDFSSAGASENEEDDDEPLEK 22 97.9 79.966331@S:10 

22 PG7 chr01 Genome Intergenic DNDDDDDGNDDDESELAR 18 99.8  

23 PG8 chr12 Genome Intergenic EVSGASEHATEMQYER 16 68.3 15.994915@M:12,79.966331@S:3 

24 PG9 chr05 Genome Intergenic GSFAFAASPR 10 76.5 79.966331@S:8 
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Table 2.4 The output of this study 1 versus the content of OryzaPG-DB 

 OryzaPG-DB This Study 

Main goal Build the rice proteogenomic database  Report the Mass Spectrum Sequential Subtraction Method 

Employed dataset(s) 27(rice proteome) samples. 34 (rice phosphoproteome) samples3.  

Confirmatory peptides 2 15,125 5,175 (3,095 new) 

Novel peptides 166 74 

Novel genomic features 51 47 

Genes with novel peptides 119 41 

Genes to be updated 40 24 

Intergenic peptides 112 24 

Peptides novelty categories  4  6 

 

1) Numbers related to this study resulted from a proteogenomic analysis using peptides identified solely in the rice phosphoproteome 
and after excluding all peptides shared with OryzaPG-DB.      
2) Peptides identified from the protein databases. 
3) 27 rice proteome samples were also used only for method development. 
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2.5 Chapter Conclusion  

We have developed MSSS as a new bioinformatics method to facilitate the identification of 

peptides from large-scale MS/MS datasets and large-sized databases, and demonstrated that 

MSSS is useful in maximizing the utility of high-throughput mass spectrometry-based shotgun 

proteomics and phosphoproteomics data in proteogenomics. MSSS decreased the required search 

time and computational demands without affecting the accuracy or the peptide identification 

capability, comparing with the normal approach. Further, it makes searching the whole genome 

database possible without extra preprocessing, reduction of the database features or splitting the 

database into smaller databases. Although additional improvements may be needed to further 

optimize MSSS to work with lower peptide score confidence, it nevertheless represents a 

promising approach with a range of potential applications in proteogenomics and cancer research.   
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Chapter 3 
 

 

Developing the bioinformatics pipeline (2) The 
ProteoGenomic Features Evaluator (PGFeval). 
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3.1 Chapter Abstract  

Integrating the proteome-level information for the refinement of genome annotation is the basic 

application of proteogenomics. Such integration requires the identification of the peptide/protein 

sequences, mapping the identified sequences to its genomic origin, evaluating the genomic 

novelty of the identified sequence and updating the current gene annotation. These steps are 

considered the shared part in all proteogenomic projects. The peptide/protein sequence 

identification is usually done using a high-throughput and high performance proteomics 

approach such as Liquid chromatography–mass spectrometry (LC-MS/MS). However, the other 

steps remain highly manual and, in some cases, low-throughput. In this chapter, I am presenting 

the ProteoGenomic Features evaluator (PGFeval) a software tool designed I developed for the 

evaluation of the proteogenomic novelty of the peptides identified using means of high-

throughput proteomic approach. Further, PGFeval visualize the gene annotation including the 

identified peptides, its positions and its proteogenomic novelty. The input of PGFeval is the 

current genome annotation and the peptide mapping information to the current genes, both in the 

standard GFF3 format. PGFeval updates the annotation and evaluate the proteogenomic novelty 

of each peptide. The output of PGFeval is the updated annotation in standard GFF3 format, the 

visualization of the gene annotation including the peptides and colored annotations for its 

novelty and two reports in CSV format. PGFeval represent the first attempt to automate the 

process of peptide’s  proteogenomic  novelty  evaluation.  
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3.2 Introduction 

Proteogenomics approaches, which utilize the proteome information for the improvement of the 

genome annotation, became well appreciated as a relatively easy way to have experimental 

evidence for the expression of the predicted genes. [2, 4]Recently, proteogenomics applications 

in genome annotation extended to be integrated in the primary genome annotation process for 

newly sequenced genome. [3, 95]The main benefit from utilizing the proteome information in 

the primary genome annotation of a newly sequenced genome or in the improvement of an 

existing annotation is the existence of an expression evidence for the predicted gene or protein, 

that is the MS/MS measured peptides. Thus, it became possible to confirm several putative genes, 

hypothetical genes and conserved hypothetical genes using this approach. [2] Further, it gives the 

ability of to identify novel genomic features in the annotated genes such as new exons or new 

alternative splicing isoforms. [2, 13] Furthermore, it is possible, using proteogenomics 

approaches, to find new non-annotated genes that were never been found using the conventional 

annotation approaches (computational prediction with transcriptional-based confirmation). [7, 11, 

100] Therefore, the details of a proteogenomic analysis/project varied based on the available data, 

tools and aim of the project (see chapter 1). [95]   

Despite the diversities between different proteogenomic analysis/projects, they always contain 

three proteogenomic modules that differentiate the proteogenomic analysis from other. These 

three modules are 1. mapping the MS/MS identified peptides to the genome, 2. evaluating 

proteogenomic novelty of the mapped peptide, and 3. update the current genome annotation or 

confirm/modify the primary annotation. [95] In general, most of these steps were performed 

manually and in sometime, in low-throughput rate in many projects. Therefore, automation tools 

are required to automate these steps. 
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Among the three modules, the module of peptides mapping to the genome received most of the 

automation efforts. Mainly, two tools are available now performing this step, the proteogenomic 

mapping tool and Pepline. [77, 99] While, the proteogenomic mapping tool performs the 

mapping step only, PepLine performs peptide sequence identification, peptide mapping to the 

genome and evaluating the proteogenomics novelty of the peptide. However, there are two main 

drawbacks for PepLine. First, PepLine uses peptide sequence tags (PSTs) to perform spectrum 

interpretation. Therefore, it cannot work with a platform that uses the database searching method 

for peptide sequence identification. Secondly, PepLine is optimized to handle with specific type 

of MS/MS data, the quadrupole time-of-flight (QTOF) MS/MS data (PepLine is reviewed in 

details in Chapter 1). [77] Nevertheless, these tools represents the eager for automating these 

three processes, though they are not enough for performing them in all types of genomes and all 

types of MS/MS data. Furthermore, none of them includes a visualization module that can 

visualize the gene annotation, the identified peptides and the novelty of each peptide. 

In this chapter, I present the ProteoGenomic Features evaluator (PGFeval), a software tool for 

peptide’s   proteogenomic   novelty   assessment   and   gene   annotation   visualization.   PGFeval  

analyzes the peptides obtained from the mass spectrometry-based proteome experiments and 

mapped to the genome and show graphical annotations indicates the proteogenomic novelty of 

these peptides e.g. peptides from intronic regions, peptide spanning exon acceptor or peptide 

spanning exon donor (see below). The input of PGFeval is the peptides’ mapping results and the 

current genome annotation (both in GFF3 format), while the output of PGFeval is the updated 

genome annotation (in GFF3 format), two reports for genes and peptides (in CSV format) and 

the   visualization   of   the   genome   annotation   per   gene   and   peptide’s   proteogenomic   novelty   (in  
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PNG, JPEG or GIF image format) (Figure 3.1). PGFeval is the first attempt to automate the 

peptide’s  proteogenomic  novelty  assessment  with  integrated  visualization  module.   
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Figure 3.1  The design and architecture of PGFeval 

  

1. Annotation_Updater
Combines and updates the current annotation by 
adding  the  peptides’  lines  to  the  corresponding  
gene model in the current annotation files. 

2. Gene-Models_Getter
Gets  gene  models  and  gene  models’  features  
(e.g. exons, introns, UTRs and novel peptides) 
and submits them to the drawing module and 
evaluation module. 

3. Gene-Models_Drawer
Draws  gene  models  and  gene  models’  features  
(e.g. exons, introns, UTRs and novel peptides) 
and  adds  file’s  header,  summary  and  legend.  

4. Peptides_Evaluator
Evaluates the peptides identified from sources 
other than the reference database and adds 
them  to  one  of  the  novel  peptide’s  cluster  
(Intronic, Exon Acceptor Spanning and Exon
Donor Spanning). 

5. Peptides_Evaluation_Drawer
Draws the evaluation mark corresponding to the 
peptide’s  cluster  in  each  peptides.  

1)   Peptide files
2) Current annotation (Both in GFF3 format)

1)  Updated annotation in GFF3 format
2) Graphical illustration of the new annotation 

(png, jpg or gif format)
3) Reports (CSV format)

A) Gene model report
B) Peptide report

Output

Input
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3.3 PGFeval architecture and design  

The genomic features can be visualized using tools such as the generic genome browser 

(Gbrowse) or UCSC genome browser [102, 103], but determination of whether or not the peptide 

represents a novel genomic feature and the type of novelty, e.g., intronic or exon-boundary 

spanning, cannot be done with these tools. We consider a peptide novel if it does not exist in the 

protein database. Therefore, all the peptides identified from the other three databases used in the 

analysis presented in this thesis are considered novel. However, this does not mean that such a 

peptide represents a novel proteogenomic feature. The peptide may be aligned to a known coding 

region, but may not exist in the protein database, due to its incompleteness [72, 74]. Hence, we 

need an evaluation tool and algorithm to assess the genomic novelty of each novel peptide. 

Therefore, I developed PGFeval (ProteoGenomic Features Evaluator), an evaluation and 

visualization tool using perl and the GD library (http://www.libgd.org), which evaluates the 

genomic novelty of each peptide and draws the whole gene model with graphical annotation that 

incorporates the genomic novelty of the peptides. PGFeval updates the annotation files by 

merging the peptides GFF3 files with the current annotation GFF3 file. Then, analyzes the 

updated annotation file and uses the type, start and end columns to draw the gene and its 

structural elements, such as the UTRs and exons and peptides (see below). PGFeval works on 

one gene a time and can be used in high-throughput mode, as described below. 

 

3.3.1 PGFeval architecture 

The architecture of PGFeval was designed in a modular fashion, where each module performs 

certain function. Such modularity allows improvement, replacement or fixing part of the program 
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without the need of modifying the whole program, just modifies the required module. [77] 

PGFeval  consists  of  five  modules  (Figure  3.1).  Here  I’ll  briefly  describe  each  of  them. 

1. Annotation Updater Module 

The Annotation Updater Module in the first module of PGFeval to work in case of submitting the 

standard required inputs (current genome annotation and peptide files both in GFF3 format). This 

module reads the peptide file(s) and separate the peptides based on the genes that they are 

mapped to. This, it creates list of genes and the peptides mapped to each gene. Then it reads the 

annotation file and separates it into individual genes. Thus, it creates list of all genes and list of 

genes with identified and mapped peptides. Finally, the Annotation Updater Module merges the 

two lists by appending the peptides of each gene to the end of its annotation and excludes genes 

without identified and mapped peptides. The output of this module is an updated annotation 

file(s) that contains the peptides mapping information (Figure 3.1). If this file(s) already exists, 

the modular design of PGFeval allows starting from the next step directly without using the 

Annotation Updater Module.        

2. Gene Model Getter Module 

The Gene Model Getter Module encapsulates the functions that get the gene model properties 

and features. The gene model name, number of cDNAs (alternative splicing isoforms), length of 

each  of  them,  number  of  exons,  introns,  UTRs  of  each  of  them…etc  are  some  of  the  gene  model  

propertied and features that the Gene Model Getter Module gets in order to do calculations 

required for drawing the gene model. The getter functions output is saved in a list to be presented 

to the next module, the Gene Model Drawer Module to draw the gene model (Figure 3.1).      
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3. Gene Model Drawer Module 

The Gene Model Drawer Module stats by creating a blank image with width and height 

calculated from the outputs of the Gene Model Getter Module. Next, the Gene Model Drawer 

Module start drawing the gene elements starting with the mRNA in the bottom then the cDNAs 

staked on the top of each other and finally the peptides. For each cDNA, the Gene Model Drawer 

Module draws   its   components   (3’UTRs,   5’UTRs,   exons   and   introns)  with   different   colors   and  

shapes that ease the differentiation of each of them (Figure 3.2). Then, the Gene Model Drawer 

Module draws the peptides identified from each database in one track with different colors 

(Figure 3.1).       

4. Peptide Novelty Evaluator Module 

The Peptide Novelty Evaluator Module is the core module of PGFeval functionality. It performs 

the main task of the program, the novelty evaluation. The Peptide Novelty Evaluator Module gets 

its inputs also from the Gene Model Getter Module by receiving the coordinates (start and end 

columns) of each exon and intron in each cDNA and the mapping coordinates of each peptide 

mapped to the gene. Then, PGFeval uses a special algorithm (see below) to evaluate the 

proteogenomic novelty of the peptide and if PGFeval found the peptide novel, it continues to 

cluster the peptide according to its novelty (Figure 3.1). The Peptide Novelty Evaluator Module 

output is saved in a list to be presented to the next module, The Peptide Novelty Drawer Module 

to add the graphical representation of the peptide novelty to the graphical output and to the final 

report (see below).         

5. Peptide Novelty Drawer Module 

The Peptide Novelty Drawer Module comes in the end of the gene annotation and peptides 

novelty analysis chain, to visualize the peptide novelty and draw the gene model summary and 
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legend. The Peptide Novelty Drawer Module receives its inputs from the Peptide Novelty 

Evaluator Module, which is the peptide ID, its coordinates (start and end) and its novelty 

category. Using this information the Peptide Novelty Evaluator Module, adds graphical 

annotations to the gene model visualization exported by the Gene Model Drawer Module, 

through adding circles with different colors for each peptide indicating its novelty cluster (Figure 

3.2). Then the Peptide Novelty Drawer Module adds the gene model summary and the shape and 

color legends to the image (Figure 3.2). The gene model summery summarizes the gene model 

properties such as number of cDNAs, number of peptides, number of novel peptides, number of 

peptides identified from each database and number of peptides from each novelty cluster. Such 

numbers are all driven from the gene annotation analysis done by the Gene Model Getter Module 

(see above).            
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Figure 3.2 Example of the graphical output of PGFeval 
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3.3.2 Algorithm for peptide novelty assessment implemented in PGFeval 

To evaluated the proteogenomic novelty of the peptides, PGFeval uses a special evaluation 

algorithm that determines if the peptide is novel or not and, if novel, it determine the type of its 

novelty. 

 

3.3.2.1  Peptide’s  proteogenomic  novelty       

Previously, it is mentioned that the peptide is Novel if it cannot be driven from the protein 

database (not existing in any annotated protein). However, the proteogenomic novelty of a 

peptide is whether this peptide is mapped to novel genomic region or from not. Novel peptides 

mapped to exons, for instance, are not adding new genomic information to our knowledge while, 

peptides mapped to introns indicate the possible existence of missed exon or even a completely 

new alternative splicing isoform. Thus, we cluster the peptides according to their proteogenomic 

novelty into six different categories listed in table 3.1 and illustrated in figure 3.3A.    

3.3.2.2  Peptide’s  proteogenomic-novelty assessment algorithm    

The  Peptide’s  proteogenomic-novelty assessment algorithm implemented in PGFeval starts the 

evaluation by investigating the updated gene annotation resulted from the Annotation Updater 

Module and   analyzed by Gene Model Getter Module (see above). The algorithm (Figure 3.3b) 

selects the peptides only for evaluation, by confirming that the Feature column  value  is  “peptide” 

in the GFF3 file. Next, it checks the source of identification of each peptide. Since we do not 

consider the peptide identified from the protein database novel, the algorithm selects the peptides 

identified from the nucleotide sequence databases only for evaluation through confirming the 

identification source using the value of the Source column. After creating list of peptides to be 
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evaluated,  the  algorithm  put  the  other  genomic  features  (e.g.  exons,  introns,  UTRs…etc)  in  a  list  

to be compared with the peptide list.  

The algorithm performs the comparison  by  comparing  the  peptide’s  coordinates  (start  and  end)  

with  the  features’  coordinated  to  find  if  the  peptide  lays  inside  any  know  coding-region such as 

exons, then it will be a confirmatory peptides that confirms the expression of this region and, 

therefore, will be added to the Known cluster. If the peptide did not match any feature, the 

algorithm performs the next check by checking if the peptide overlaps the start or end of any 

feature. If this test returns false, this means the peptide is mapped to an intron and, therefore, will 

be added to the Intronic cluster. While, if the test returns true, the algorithm performs one more 

test through checking the overlap position. If the peptides overlaps the start of the exon, it will be 

added to the Exon Acceptor Spanning cluster while, if the peptides overlaps the end of the exon, 

it will be added to the Exon Donor Spanning cluster (Figure 3.3B, Table 3.1).      
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Table 3.1 Novelty terms and categories used in PGFeval  

Novelty Description 

Novel Genomic Feature New genomic information obtained from the proteogenomic analysis performed on the novel peptides. 

Novel Peptide Peptide identified from database other than the protein database (not existing at any annotated protein). 

Intronic peptides Peptide mapped to intronic regions. 

Acceptor Spanning Peptides Peptides spanning the acceptor (start) of the exon 

Donor Spanning Peptides Peptides spanning the donor (end) of the exon. 

3'UTR Peptides Peptide mapped to 3'UTR regions (available in the updated PGFeval version only). 

5'UTR Peptides Peptide mapped to 5'UTR regions (available in the updated PGFeval version only). 

Intergenic Peptides Peptides mapped to intergenic regions. 

Genes to be revised Genes with novel peptides mapped to novel genomic regions. 
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Figure  3.3  Assessment  and  visualization  of  a  peptide’s  proteogenomic  novelty.  A) Schematic 

illustration   of   peptide’s   proteogenomic   novelty   clusters.   B)   The   assessment   algorithm   used   in  

evaluating  the  peptide’s  proteogenomic  novelty  in  PGFeval.   
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3.4 PGFeval Output 

PGFeval first output (Figure 3.1) is the updated gene annotation GFF3 file results from the 

Annotation Updater Module, which can be in one single file, file per chromosome or file per 

gene. The second output is graphical visualization of the gene annotation, the identified peptides 

and  the  peptide’s  proteogenomic  cluster  (Figure  3.2)  which  can  be  in  PNG,  JEPG  or  GIF  image 

formats. The last output is the analysis reports. PGFeval exports two CSV reports, a genes report 

and a peptides report, in a master-slave style. The genes report contains one entry per gene 

summarizing   the   gene’s   features   such   as   total   peptides,   number   of novel peptides and novel 

genomic features, while the peptide report contains one entry per peptide, indicating its gene and 

assessment result, such as novelty, cluster and identification source. Thus, the two reports can be 

easily analyzed using any spreadsheet software or imported into any relational database as two 

tables with one-to-many relationship e.g. the rice proteogenomics database (described in chapters 

4 and 5).  
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3.5 PGFeval updates 

3.5.1  Updated  peptide’s  proteogenomic-novelty assessment algorithm 

The peptides expressed from the untranslated-region (UTR) are known to have special 

importance since it plays crucial regulatory and inhibitory roles.  [104, 105] Thus, I developed 

PGFeval to be able to detect the peptide  identified  from  the  3’UTR  and  5’UTR.  To develop this 

function, I   modified   both   the   peptide’s   proteogenomic-novelty assessment algorithm and the 

graphical   output.   The   peptide’s   proteogenomic-novelty assessment algorithm added two more 

tests 1) for the peptide of the Known cluster, check if the feature that the peptide mapped to is 

UTR.   If   this   check   returns   true,   it   performs   the   next   check   to   find   if   this   UTR   is   3’UTR   or  

5’UTR   and   add   the   peptide   to   the   corresponding   cluster   (Figure   3.4A).   Figure   3.4B   shows  

graphical illustration for the updated peptide’s  proteogenomic-novelty assessment algorithm.  

 

3.5.2 PGFeval high-throughput mode 

The original version of PGFeval was designed to work with one gene at a time. This, however, 

was inconvenient since, in many cases, one needs to work with hundreds or even thousands of 

genes in a single analysis. Therefore, I added one more module to PGFeval that added a high-

throughput mode to PGFeval to handles high-throughput data (up to thousands of genes). The 

high-throughput module takes folder of GFF3 files; each file contains one single gene. Then, it 

passes them one by one to the slandered PGFeval program. The output of the high-throughput 

mode is the same as the normal mode except that it is multiple outputs gathered in one folder. 

The updated version of PGFeval was used in the analysis reported in chapter 2 and chapter 5.          
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Figure 3.4 PGEeval updates A)   The   updated   peptide’s   proteogenomic   novelty   assessment  

algorithm. B) Schematic illustration of peptide novelty categories of the updated version of 

PGFeval.   
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3.6 Chapter Conclusion 

Proteogenomics, the inclusion of proteome information in the genome annotation process, 

presents a breakthrough in the advancement of this process. The proteome information adds an 

experimental confirmation of the genes expression in the translational level. Thus, it confirms the 

transcription and translation of the predicted genes. Further, it is capable to identify novel non-

annotated genes. However, proteogenomics faces several challenges, such as the assessment of 

the proteogenomic novelty of the identified peptides, which determines if the peptide points 

novel genomic information or not. In this work, I present PGFeval, the first attempt to automate 

the proteogenomic-novelty assessment process as well as the visualization of the genome 

annotation, gene model components, peptides mapped to the genes and the proteogenomic 

novelty of these peptides. PGFeval was designed in a modular way that allows future 

improvements and integration with other tools. It was used in several analysis reported in this 

thesis (Chapters 2, 4, 5) proving its utility in the performed proteogenomic analysis.     
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Chapter 4 
 

 

Developing the bioinformatics pipeline (3) The rice 
proteogenomics database (OryzaPG-DB). 
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4.1 Chapter Abstract  

Proteogenomics aims to utilize experimental proteome information for refinement of genome 

annotation. Since mass spectrometry-based shotgun proteomics approaches provide large-scale 

peptide sequencing data with high throughput, a data repository for shotgun proteogenomics 

would represent a valuable source of gene expression evidence at the translational level for 

genome re-annotation. Here, I present OryzaPG-DB, a rice proteome database based on shotgun 

proteogenomics, which incorporates the genomic features of experimental shotgun proteomics 

data. This version of the database was created from the results of 27 nanoLC-MS/MS runs on a 

hybrid ion trap-orbitrap mass spectrometer, which offers high accuracy for analyzing tryptic 

digests from undifferentiated cultured rice cells. Peptides were identified by searching the 

product ion spectra against the protein, cDNA, transcript and genome databases from Michigan 

State University, and were mapped to the rice genome. Approximately 3200 genes were covered 

by these peptides and 40 of them contained novel genomic features. Users can search, download 

or navigate the database per chromosome, gene, protein, cDNA or transcript and download the 

updated annotations in standard GFF3 format, with visualization in PNG format. In addition, the 

database scheme of OryzaPG was designed to be generic and can be reused to host similar 

proteogenomic information for other species. OryzaPG is the first proteogenomics-based 

database of the rice proteome, providing peptide-based expression profiles, together with the 

corresponding genomic origin, including the annotation of novelty for each peptide. The 

OryzaPG database was constructed and is freely available at http://oryzapg.iab.keio.ac.jp/.   
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4.2 Introduction  

Among high-throughput experimental methods, genome sequencing represents a turning point in 

the understanding of biological systems. Nevertheless, the biological significance of the 

sequenced genome cannot be understood unless the protein-coding genes and their products are 

accurately identified. Thus, genome annotation has become major issue [4, 106, 107]. Genome 

annotation is the process of gene structure and function determination, and it usually takes place 

after genome sequencing and before data deposition in a database or databank [87, 107 , 108].  

In typical genome annotation work, experimental and computational methods are integrated to 

analyze the huge volume of sequence data [11, 15, 87, 107]. Thus, genome annotation is highly 

dependent on the expression evidence, usually transcriptional, provided by experiments and the 

algorithms implemented in the computational tools [2]. Consequently, the annotation process 

suffers from several limitations. For instance, most of the sequenced genomes lack rich 

transcriptional evidence, e.g., a full-length cDNA library. Even when such information is 

available, evidence of expression at the transcriptional level does not necessarily imply 

translation into a protein [2, 109]. Therefore, annotation is highly reliant on de novo annotations 

of protein-coding genes performed using gene prediction programs [2, 87, 107].  

On the other hand, gene/protein prediction tools have proven their usefulness and utility in the 

annotation process. However, the prediction accuracy varies from one tool/algorithm to another 

and from one organism to another, depending on the genome complexity [2, 88, 90, 107]. For 

instance, in the human and Arabidopsis genomes, the prediction accuracy amounted to 50% and 

~66%, respectively, indicating the need for better identification and validation methods [88, 89].  

Mass spectrometry-based proteomics, as an experimental approach to measure proteins, can 

provide translation-level expression evidence for the predicted protein-coding genes; this is the 
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so-called proteogenomics approach of using large-scale proteome data in genome annotation 

refinement [2, 4, 5, 110]. This approach seems the best option for identification and validation of 

protein-coding genes, or at least a significant portion of them, in an independent and 

unambiguous way.  This can be achieved by detecting the naturally occurring proteins 

(proteomics) and systematically mapping them back to the genome sequence (genomics) [2, 4, 5, 

110]. In addition to validating predicted gene models at the translation level [22, 24], 

proteogenomics has other useful applications, such as finding new gene models [11], 

determination of protein start and termination sites [25], finding and verifying splice isoforms at 

the protein level [13] and verification of hypothetical and putative genes/proteins [25, 31]. The 

results of proteogenomic studies are usually made freely available via specialized databases such 

as AgBase [111] or are included in databases developed particularly to host data from specific 

projects, such as the AtProteome database developed to host the Arabidopsis proteogenomics 

data [7]. Overall, proteogenomics represents a promising approach for application to both 

completed and newly sequenced genomes. 

Rice (Oryza sativa)   is   one   of   the   most   important   food   crops;;   almost   half   of   the   world’s  

population is estimated to rely totally or partially on it. Moreover, rice considered a model 

organism because of its relatively small genome (12 chromosomes and ~370 Mbp) [112, 113]. 

The whole genome sequence and annotation have been published and updated several times (5 

builds for the genome and 6 builds for the annotation to date) [97, 101, 114]. However, there has 

been little attempt to include proteome information in the genome-wide annotation, except for 

the work of Itoh and colleagues, who used rice proteome data, available through the rice 

proteome database [115], to confirm 834 ORFs [114]. The virtual absence of proteome-based 
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genome annotation for rice is possibly due to the absence of accurate and detailed rice proteome 

information.   

In this chapter, I present OryzaPG-DB, a rice proteome database based on shotgun 

proteogenomics. Unlike the currently available rice proteome database [115], which provides the 

2D-PAGE-based proteome, OryzaPG-DB contains peptides obtained from shotgun-based 

proteomics with their product ion spectra, as well as updated annotations, side by side with the 

corresponding protein, cDNA, transcript and genomic sequences and information. 
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4.3 Construction and content  

4.3.1 Generation of a reference dataset by shotgun proteomics 

To perform proteogenomics-based genome annotation refinement of rice, we firstly generated a 

dataset by using a shotgun proteomics approach with an LTQ-orbitrap high-accuracy mass 

spectrometer for analysis of undifferentiated cultured rice cells (see Materials and Methods).  

The experimental workflow is shown in Figure 4.1. Three pre-fractionation procedures, SDS-

PAGE at the protein level, and strong cation exchange chromatography (7 runs) [116] and 

isoelectric focusing (7 runs) [43] at the peptide level, were employed prior to nanoLC-MS/MS 

analysis to extend the proteome coverage.  As a result, 156,871 product ion spectra were 

acquired from 27 LC-MS/MS runs. Undifferentiated cultured rice cells were selected as the first 

sample to construct our bioinformatics pipeline and data repository system.  

Regarding the databases for MASCOT [59] search, the Rice Genome Annotation Project, 

currently at Michigan State University (MSU), offers rice protein, cDNA, transcript and genome 

databases (MSU DB) as de novo annotation of the rice genome sequence, with further 

improvements and modifications using full-length cDNA and EST alignment [97] Thus, we 

decided to use these four databases for peptide/protein identification, since each of them provides 

a special opportunity to identify novel peptides. The protein database provides all potential 

protein and peptide sequences. The cDNA database is similar to the protein database, but allows 

searching six-frame translations of the nucleotide sequence, and therefore,  it is possible to 

identify exon-exon junction peptides and exon-skipping events from the two databases [13, 28]. 

The transcript database includes introns, so we can identify exon-intron spanning and intronic 

peptides. Finally, the genome database includes the intergenic regions, offering the potential to 
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find new non-annotated genes. Thus, each of the four databases affords specific search 

advantages (Figure 4.2). 

As a result, we identified 14,955 unique peptides from the database searching against MSU 

protein database (V6.1). Further, we identified 166 additional unique peptides from three 

nucleotide sequence databases (cDNA, transcript and genome databases). Then, the obtained 

peptides were mapped to the annotated MSU genome (V6.1) to get the proteins (cDNAs) and 

unspliced mRNAs (genes) found in this study. Genes with peptides mapped to novel regions 

such as intron, exon-intron boundary and non-coding region,   are   counted   as   “Genes   to   be 

revised”,  indicating  that  the annotation of these genes needs revision. 
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Figure 4.1 The experimental workflow to obtain the rice proteome. Proteins from undifferentiated cultured cells were extracted, 

digested, and pre-fractionated, and 27 samples were prepared for the subsequent LC-MS/MS analysis. 
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Figure 4.2 Informatics analysis flowchart to create list of peptides/proteins identified from non-redundant product ion spectra. 
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4.3.2 Proteogenomics analysis to find novel genomic features 

Next, we performed proteogenomic data analysis using bioinformatics approaches to map the 

identified peptides back to the genome and find novel genomic features as follows:  

Download the original annotation from MSU genome browser with only the MSU Osa1 Rice 

Gene Models and MSU Osa1 Rice Loci features selected. The original files can also be obtained 

from the OryzaPG-DB download page. 

Align all peptides identified from the MSU protein, cDNA and transcript databases to their 

corresponding genomic origin (genomic-unspliced mRNA), using the Basic Local Alignment 

Search Tool (BLAST) [47]. The alignments were performed using a local version of NCBI 

BLAST (blast2seq) [49] and perl script. 

Extract the alignment results of the peptides identified from the MSU genome database directly 

from MASCOT output files.   

Create perl scripts that read the alignment results and convert them to standard GFF3 format. 

Each  peptide’s  alignment  was  converted  to  a  GFF3  line  indicating  its  type,  identification  source,  

start, end, parent and OryzaPG-DB peptide ID. 

Map the peptides identified from the MSU genome to the genes by comparing the peptide 

alignment  coordinates  (start  and  end)  with  the  gene  coordinates.  If  a  peptide’s  start  and  end  are  

between  or  overlapping  with  a  gene’s  start and end, we map this peptide to that gene and create a 

GFF3 line similar to the one described above. 

Update   the  original   annotation   files  by   appending   the  peptides’  GFF3   lines  obtained   from  our  

analysis to the end of the corresponding gene. So far, we have created an updated annotation in 

GFF3  format  containing  the  original  annotation  and  the  proteome  information.  Thus,  the  “Type”  

column  in  the  updated  GFF3  files  includes  the  type  “peptide”  beside  the  original  types  (3’UTR,  
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5’UTR,  CDS,…etc).    However, the identified novel peptides require further analysis to find out 

whether or not they represent novel genomic features. 

The  peptide’s  preoteogenomic  novelty  was  performed  using  PGFeval  (Chapter  3).  The  analysis  

of PGFeval revealed 51 new genomic features in 40 genes. The majority of the novel features 

consisted of intronic peptides (36), while the exon boundary-spanning peptides consisted of 13 

donor-spanning and 2 acceptor-spanning peptides. The remaining novel peptides were mapped to 

known coding regions.  
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4.3.3 Generic scheme design for the relational database 

We attempt to design a generic and simple database scheme that would be suitable for such 

proteogenomic data and that could be used in similar shotgun proteogenomics projects. As long 

as the annotation main unit is the gene, in our design (Figure 4.3), the database main entity is the 

gene as well. We used the MSU V6.1 locus as our gene ID, joining all other gene components 

together. All other database entities, such as protein, cDNA, unspliced mRNA and peptide, take 

the gene ID as a foreign key. Further, protein, cDNA, and un-spliced mRNA have their own IDs 

and aliases that were used in MSU V6.1. Peptide IDs start with P, C, T or G, which indicates that 

the identification source of the peptide is the protein, cDNA, transcript or genome database, 

respectively. The letter is followed by the serial number of the peptide in its sample, e.g., P345 is 

the peptide number 345 among the peptides identified from the protein database. The peptide ID 

also joins the peptide with its MASCOT results page and product ion spectral details. In the 

updated   annotation   files,   the   peptides   are   assigned   to   their   parents   using   the   notation   “parent  

ID:peptide  ID”  e.g. LOC_Os06g01230.1:P62531. 
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Figure 4.3 OryzaPG database scheme. 
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4.3.4 Database implementation and web interface development         

As mentioned above, PGFeval exports two reports: genes report and peptides report. Both 

reports are designed in master-slave style. Thus, both were imported directly into the database. 

The protein, cDNA, and transcript information such as the IDs, aliases, descriptions, lengths and 

sequences were extracted from the FASTA files and the GFF3 files obtained from the MSU 

website and MSU genome browser, then converted to tables using perl scripts. Next, HTML files, 

similar to MASCOT peptide view files, were generated and imported into the OryzaPG-DB 

server. The data were later imported into a database implemented using the MySQL server. The 

annotation files (GFF3) and the visualization files (PNG) are stored in the web server directly. 

The whole system is thus a two-tier web-based system.  

The web interface was developed using HTML, Java script and the server side scripting was 

done using PHP. The database was implemented using the MySQL server. We host the system 

on Microsoft Internet Information Service (IIS V7.5) on a Dell server running Windows 7 at the 

Institute for Advanced Biosciences (IAB), Keio University. 

4.3.5 OryzaPG-DB Application Programming Interfaces (APIs) 

The application programming interface (API) is an interface implemented by the application to 

allow interaction with the operating system or other programs. An API determines the protocol 

and parameters required to run certain functions or parts of the program and to return the results 

of its execution [117]. In OryzaPG-DB, we provide users with several URL APIs for data 

retrieval. For each entity, we provide users with an API that returns the results per record, per 

chromosome or for the whole genome. The data are returned in tabular view or in FASTA format 

with minimum formatting to allow easy processing. The complete list of the available APIs and 

their parameters can be found on OryzaPG-DB API Guide, available in the OryzaPG-DB website.  
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4.4 Utility and Discussion 

4.4.1 Shotgun proteogenomics  

The current rice genome annotation includes 56,797 genes, of which most are either putative 

(23,348 genes) or hypothetical (8,885 genes) or conserved hypothetical (2,003 genes) [97, 

http://rice.plantbiology.msu.edu]. Thus, the total number of genes for which experimental 

expression evidence is lacking represents more than 60% of the total annotated genes. Moreover, 

the available expression evidence (for 6,311 genes, representing about 10% of the total) is based 

on transcription, which does not necessarily imply translation to protein [2]. This indicates the 

need for a novel approach to improve and refine the rice genome annotation. 

To perform genome annotation refinement of rice by means of a proteogenomics approach, we 

firstly need accurate and high-throughput proteome information. Thus, we generated the rice 

MS/MS-based proteome using our highly accurate nanoLC-MS/MS proteomics facility (see 

Materials and Methods). We started with undifferentiated cultured rice cells to generate data for 

the construction of our bioinformatics pipeline and data repository system, because a relatively 

unbiased expression profile of the rice proteome was expected, based on the report that an 

Arabidopsis thaliana proteomics study using cultured cells covered over 70% of the 

differentiated organ proteome [7]. We plan to generate similar datasets for all vegetative organs 

throughout the rice life cycle.  

The generated data were compared against four databases (protein, cDNA, transcript and 

genome) for peptide/protein identification and the resultant peptides were filtered using Mascot 

score and peptide length to select peptides with high identification confidence and high 

specificity (p value < 0.001 and false-positive rate (FPR) <=1%). Then, the peptides identified 

from the protein database together with the novel peptides identified uniquely from the other 
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three databases were used to create list of peptides identified from non-redundant product ion 

spectra. 

We utilized these peptides to perform proteogenomic analysis for the rice genes within our 

sample coverage. Our analysis revealed novel genomic features in 40 genes. In addition, 112 

peptides, from the genome database-identified peptides, were mapped to intergenic regions, 

indicating the possible existence of non-annotated genes.    

 

4.4.2 OryzaPG-DB Utility 

OryzaPG-DB provides the scientific community with the first high-throughput MS/MS-based 

rice proteome information and proteogenomic results, publicly available through a 

comprehensive web interface (Figure 4.4). The web interface provides several means of data 

acquisition. Users can browse the database displaying data for genes, updated gene models, 

proteins, cDNAs and transcripts for the whole genome or per chromosome. In each case, the 

details of each record will be displayed together with links to related products, genomic origin 

and identified peptides. In addition, the sequence in FASTA format, the annotation in GFF3 

format and visualization in PNG are available for download per displayed record. Further, 

external links to other databases such as NCBI, MSU and RAP are available. Users can also 

search the database using keyword search or parameter search, and the search results are 

displayed per gene. The download page provides users with all the data generated in this project 

and the data used to perform the proteogenomic analysis. Links to the websites that contains the 

original datasets and instructions for how to download the original annotations are also provided.  
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Figure 4.4 OryzaPG screenshots. (A) The advanced search form. (B) Example of advanced 

search results. (C) Gene detailed view including information on the gene, its protein products, 

cDNAs, transcripts and graphical visualization. D) Peptide view and the product ion spectra. The 

browse bar at the top of all pages allows the user to navigate through the database displaying 

data for all chromosomes or per chromosome. 

A

D

B

C
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4.5 Materials and Methods 

4.5.1 Sample Preparation 

1. In-gel digestion 

Rice cultured cells (~180 mg) were frozen in liquid nitrogen and then disrupted with a Multi-

beads shocker (MB400U; Yasui Kikai), as previously reported [118]. SDS-PAGE was performed 

using Wako Super Sep Ace precast gel (Osaka, Japan). The gel was stained with negative gel 

stain MS kit (Wako), and sliced into 10 slices, followed by in-gel digestion as described [42]. 

These digested samples were desalted using StageTips with C18 Empore disk membranes (3 M) 

[119] for the subsequent LC-MS/MS analysis. 

2. In-solution digestion 

The same disrupted cells were suspended in 0.1 M Tris–HCl (pH 9.0), transferred to the 

homogenizer and homogenized. Then, the homogenate was reduced with dithiothreitol, alkylated 

with iodoacetamide, and digested with Lys-C, followed by dilution and trypsin digestion as 

described [120]. These digested samples were desalted using StageTips with C18 Empore disk 

membranes (3 M). The peptide concentration of the eluates was adjusted to 1.0 mg/ml with 0.1% 

TFA and 80% acetonitrile. The resultant peptides were pre-fractionated using two methods, 

strong cation exchange (SCX) (7 fractions) [116] and isoelectric focusing (IEF) (7 fractions) [43], 

resulting in 14 peptide samples, which were evaluated by LC-MS/MS. 

 

4.5.2 Peptide pre-fractionation 

1. SCX pre-fractionation 

Pre-fractionation of digested peptides was carried out according to the StageTips fractionation 

protocol [121], with a strong cation exchange (SCX) disk (SCX-StageTips [42]). Elution with 
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20-500 mM ammonium acetate solutions containing 15% acetonitrile afforded five fractions. 

Eluates, including the flow-through fraction, were desalted with C18-StageTips.  

1. IEF pre-fractionation 

Another portion of the in-solution-digested peptides was pre-fractionated by use of the IEF pre-

fractionation method [43] with a ZOOM® IEF Fractionator (Invitrogen) according to the 

manufacturer’s   protocol.   Digested   peptides   (890   µg)   were   loaded   onto the ZOOM® IEF 

Fractionator, and five IEF fractions, enriched in peptides with pI values of 3–4.6, 4.6–5.4, 5.4–

6.2, 6.2–7, and 7–10, were obtained. 

 

4.5.3 LC-MS/MS analysis 

An LTQ-Orbitrap XL (Thermo Fisher Scientific, Bremen, Germany) coupled with a Dionex 

Ultimate3000 pump (Germering, Germany) and an HTC-PAL autosampler (CTC Analytics AG, 

Zwingen, Switzerland) was used for nanoLC-MS/MS analyses. A self-pulled needle (150 mm 

length u 100 µm I.D., 6 µm opening) packed with ReproSil C18 materials (3 µm, Dr. Maisch, 

Ammerbuch,  Germany)  was  used  as  an  analytical  column  with  “stone-arch”  frit  [122]. A spray 

voltage of 2400 V was applied. The injection volume was 5 µL and the flow rate was 500 

nL/min. The mobile phases consisted of (A) 0.5% acetic acid and (B) 0.5% acetic acid and 80% 

acetonitrile. A three-step linear gradient of 5% to 10% B in 5 min, 10% to 40% B in 60 min, 

40% to 100% B in 5 min and 100% B for 10 min was employed. The MS scan range was m/z 

300–1500. The top ten precursor ions were selected in the MS scan by Orbitrap with R = 60,000, 

and for subsequent MS/MS scans by ion trap in the automated gain control (AGC) mode where 

AGC values of 5.00e+05 and 1.00e+04 were set for full MS and MS/MS, respectively. The 
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normalized CID was set to 35.0. A lock mass function was used for the LTQ-Orbitrap XL to 

obtain constant mass accuracy during gradient analysis [123].  

4.5.4 Database search and Sequence alignment  

Peptides and proteins were identified by MASCOT v2.2 (Matrix Science, London, U.K.) [59] 

against the MSU rice protein, cDNA, transcript and genome databases [97] with strict specificity 

allowing for 1 missed cleavage only. MASCOT identification parameters were 

Carbamidomethyl (C) as a fixed modification and Acetyl (N-term), Gln->pyro-Glu (N-term Q), 

Glu->pyro-Glu (N-term E) and Oxidation (M) as partial modifications. The product ion mass 

tolerance was 0.80 Da, while the precursor ion mass tolerance was 3 ppm. Peptides were rejected 

if the MASCOT score was below the 99.9% (p value < 0.001) confidence limit based on the 

“identity”  score  of  each  peptide in all database searches. To increase the identification accuracy 

and peptide specificity, we accepted peptides with at least seven amino acids [93, 100]. 

Alignment was performed using a local version of NCBI BLAST (blast2seq) Windows version 

[47, 49] and perl script. We used the default parameters of BLAST.  Perl scripts were written for 

all other data analysis and manipulation steps (see results).  
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4.6 OryzaPG-DB Availability and Requirements  

OryzaPG-DB is freely available at http://oryzapg.iab.keio.ac.jp. In the development of Oryza-PG 

DB, we followed the usual standards of web applications development and the Java scripts 

employed are cross-browser scripts. We have confirmed that OryzaPG-DB is fully functional on 

four web-browsers, Google Chrome, Mozilla Firefox, Microsoft Internet Explorer and Safari, in 

five operating systems, Windows XP, Vista and 7, Linux Ubuntu and Mac OS (10.5), with no 

need for any plug-ins or special system requirements.  
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4.7 OryzaPG-DB Future developments      

Plans for further development of OryzaPG-DB are mainly focused on the content and 

consequently also the interface. We plan to extend the data to include rice root, stem, leaf blade 

and other organs as soon as we generate those proteomes. In addition, proteogenomic analysis 

will be available for all genes covered by the new samples. The interface, therefore, will be 

updated to allow browsing the data by sample, organ, etc., and we will also add advanced search 

parameters, enabling auto-generation of updated FASTA sequences using experimentally based 

genome re-annotation. Chapter 5 describes the developments, content expansion and newly 

added features in the current version of the rice proteogenomics database OryzaPG-DB (v1.1). 
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4.8 Chapter Conclusions 

The rapid growth of available sequenced genomes requires novel approaches to identify genes 

and their functions, as well as sustainable data repository systems to store the accumulated data 

and make it publicly available for researchers. Proteogenomics is a novel approach combining 

MS/MS-based proteomics with genomic information and bioinformatics to enhance genome 

annotation. In this chapter, we present OryzaPG-DB, the data repository system of the Rice 

Proteogenomics Project. OryzaPG-DB provides interested rice biologists with the MS/MS-based 

proteome and the results of proteogenomic analysis, together with all the genomic information 

within our coverage. The database currently contains the results for cells from undifferentiated 

culture, and it is planned to be updated periodically with the results of analysis of samples from 

all vegetative organs of rice. We believe OryzaPG-DB will be an important resource and data-

serving tool for rice biologists. 
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Chapter 5 
 

 

Developing the bioinformatics pipeline (4) 
OryzaPG-DB (v1.1): The rice proteogenomics 
database development, expansion and new features.  

 



112 
 

5.1 Chapter Abstract  

The recently developed rice proteogenomics database (OryzaPG-DB), described in chapter 4, is 

the first sustainable resource for rice shotgun-based proteogenomics, providing information on 

peptides identified in rice protein digested peptides measured by means of liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), and mapping of the peptides to their 

genomic origins and the genomic novelty of each peptide. The sequences of the peptides, 

proteins, cDNAs and genes, and the gene annotations are available for download in FASTA and 

GFF3 formats, respectively. Further, an annotated visualization of the gene models, 

corresponding peptides and genomic novelty is available for each gene, and MS/MS spectra are 

available for each peptide. In this chapter, I am discussing the utilization of OryzaPG-DB and 

describing its recent development, content expansions and newly added features in the current 

version (OryzaPG-DB v1.1).  
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5.2 Introduction  

The rapid improvement of analytical instruments for biological research made it are capable of 

producing hundreds of gigabytes of raw data every day resulting in the accumulation of 

enormous amounts of both raw and analyzed data [95]. Such huge amounts of data contain 

valuable biological information, which can only be uncovered by performing appropriate 

computational analysis using proper bioinformatics tools. Since this data is very rich, applying 

different kinds of computational analysis or using different bioinformatics tools can lead to 

different discoveries according to the goal of the research. Therefore, such biological data  are 

generally deposited in biological databases, which are collections or libraries of biological data 

sorted and organized in a way that allows easy access, management and updating in a sustainable 

format so that interested scientists can have consistent access over a prolonged period [124]. 

Data sustainability and ease of use are the main benefits of storing biological data in databases. 

Further, long-term projects, e.g. the human genome project, require extendable and sustainable 

databases that can store data from different phases of the projects [125, 126]. Almost all kinds of 

biological data are stored in databases including, for example, sequence data, structural data, 

interaction data and proteogenomic data [124]. 

 

Proteogenomics is an alliance between proteomics and genomics, and aims mainly to use 

proteomics data and technologies for identifying novel genomic features, such as novel un-

annotated genes, and for improving, correcting or confirming the structural and functional 

genome annotation [2]. However, it is also applicable to deeper and wider goals, such as 

understanding the mechanisms of environmental adaptation between different species, discovery 

of biomarkers and identification of the targets of antibodies [3, 32, 33]. In plants, particularly, 



114 
 

Arabidopsis received most of the proteogenomic efforts [7, 11]. However, proteogenomic 

analysis was performed for several other plants, such as rice, and several major plant pathogens 

[9, 14, 35, 127]. 

Proteogenomic analyses usually rely on high-throughput genomic and proteomic data, such as 

genome sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) data. 

The scheme of proteogenomic analysis can differ from project to project depending on the 

available genomic and proteomic data, the status of the genome annotation of the organism in 

question (annotated or newly sequenced) and the availability of sufficient informatics tools and 

computational power to deal with such large amounts of data [95]. However, three steps are 

always shared among different proteogenomic projects: 1. Mapping proteomic data (peptide 

sequences derived from the MS/MS analysis) to the genome. 2. Evaluating the genomic novelty 

of the proteomic data 3. Updating or confirming the current genome annotation by integrating 

the newly discovered genomic information into the current genome annotation [2, 95]. These 

considerations distinguish proteogenomics databases from other types of biological databases. 

Thus, a proteogenomic database is a biological database that holds genomic and proteomic 

sequence data, together with the mapping of the proteomic data to the genome and the genome 

annotation.   It   can   also   store   other   information   concerning   the   organism’s   genes   and   proteins,  

such as mRNA and cDNA sequences and biological or biochemical functions. Therefore, 

proteogenomic databases require special design and implantation [14].  
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5.3 The Rice Proteogenomic Database (OryzaPG-DB) 

The Rice Proteogenomic Database (OryzaPG-DB), chapter 4, incorporates the genomic features 

of experimental shotgun proteomics data for rice (Oryza sativa) [14]. It was developed using 

whole proteome data of rice undifferentiated cultured cells, generated from 27 nanoLC-MS/MS 

runs on a hybrid ion trap-orbitrap mass spectrometer, and the rice genome annotation database at 

Michigan State University (MSU), which offers rice protein, cDNA, transcript and genome 

databases and rice genome annotation [97]. The MS/MS spectra are filtered using our previously 

described method [128] then searched against the above-mentioned databases in the order 

mentioned, using Mascot (v.2.3) [59] with peptide acceptance criteria >= 99.9%. The lists of 

identified peptides are merged and filtered to remove all peptides shorter than seven amino acids 

[93]. Then, the list of accepted peptides is filtered again to remove redundancy. Therefore, the 

final list contains only accurate and unique peptides (here, unique means a unique combination 

of sequence and modifications).      

The identified peptides were used to perform proteogenomic analysis of the rice genome by 

mapping the identified peptides to their genomic origins. Mapping was performed through 

alignment of peptides identified from the protein, cDNA and transcript databases to the un-

spliced genomic mRNA of the corresponding genes. Peptides identified from the genome 

database were aligned to the corresponding chromosome then mapped to the genes using the 

alignment coordinates. Next, the alignment results were converted to GFF3 format and the 

peptide’s  GFF3  line  was  appending  to  the  annotation  of  the  corresponding  gene  and  new  GFF3  

files were created. The new files are submitted to the ProteoGenomic Features Evaluator 

(PGFeval), chapter 3, software tool to evaluate the genomic novelty of each peptide [14]. 

PGFeval analysis provided 51 novel genomic features in 40 rice genes. Further, PGFeval 
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exported a visualized annotation file for each gene in PNG image format. Finally, a tailored 

proteogenomic database was designed and implemented to host all this data, with the capability 

of expansion to host data from future phases of rice proteogenomics analysis, and to make the 

data publicly available for interested scientists in the rice biology community.             

 

5.4 OryzaPG-DB design  

Since proteogenomics data has a complex structure, as described above, a tailored database 

design is required for a proteogenomic database. Further, when we designed OryzaPG-DB, we 

decided to make the design as generic as possible, in order to help other researchers working on 

the design of databases suitable for proteogenomic data [14]. In the original design (Chapter4, 

Figure 4.3), the main entity of the database is the gene. Then, information on the corresponding 

protein(s), LC-MS/MS measured peptide(s), cDNA(s), mRNA(s), mapping information and 

updated gene annotation are attached to this entity. In addition, several files are attached to each 

gene, including protein, peptide, cDNA and mRNA sequences, gene annotation in GFF3 format 

and visualization of the gene annotation (PGFeval output). 
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5.5 Updates on OryzaPG-DB design and development 

The original version of OryzaPG-DB has been publicly available online since 2010 and was 

officially opened in 2011. Since that time, several developments have been added to the original 

version. Here, we review the recent updates and newly added features in the current version 

(OryzaPG-DB v1.1).   

5.5.1 OryzaPG-DB updated database design  

The above design of OryzaPG-DB was suitable for hosting the rice proteogenomic data available 

at the database launch. However, we were aware that this design would need to be updated to 

accommodate new proteomes from other samples/organs or other types of analysis, such as 

phosphoproteome analysis, as mentioned in the future work section of the original publication on 

OryzaPG-DB [14]. Thus, the database design of the current version of OryzaPG-DB (v1.1) has 

been updated to include information about the experimental sample (Figure 5.1).  

Adding the ability to include sample information makes the design sufficiently generic to host all 

proteogenomic data of an organism while retaining information about the source of each peptide 

and the expression organ of each gene/protein, as well as providing the basis for several other 

grouping features that can be useful in performing functional analysis, organ-specific analysis 

and/or inter-organ comparisons. It is now possible, with the updated design, to select peptides 

identified from a certain sample and/or organ and/or analysis and/or database, with the 

corresponding genes. For instance, in a proteogenomic study with extensive sampling, such as 

the Arabidopsis proteogenomic study [7], it is important to have an easy way to create lists of 

genes/peptides identified from various combinations of sample, organ and condition for 

comparison in order to find organ or life stage specific biomarkers. Such a task is now 

straightforward with the updated design of OryzaPG-DB v1.1. 
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Figure 5.1 Updated design of OryzaPG-DB (v1.1) 
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5.5.2 OryzaPG-DB new browsing options 

The original version of OryzaPG-DB   had   the   “browse   per   chromosome”   feature   that   allows  

fetching data of all genes, updated genes, proteins, cDNAs or transcripts of all chromosomes or a 

single chromosome. However, updating the database design consequently requires updating the 

“browse  per  chromosome”  options  to  add  sample  level  options.  In  the  current  version,  we  added  

the  sample  level  to  the  “browse  per  chromosome”  menu.  This  allows  fetching  data  of  all  genes,  

genes identified in a particular sample/organ/analysis or genes overlapping samples for all 

chromosomes or single chromosome (Figure 5.2).   With   the   new   “Save to File”   option   (see  

below), it is possible to save the browsing/search results to a CSV file for download, so that 

creating lists of genes, proteins, cDNAs, transcripts or peptides per sample, or those overlapping 

samples for all chromosomes or a single chromosome, has become a single-click task. 
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Figure 5.2 Updated browsing options of OryzaPG-DB (v1.1) 
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5.5.3 OryzaPG-DB new and updated application programming interfaces (APIs)  

An application programming interface (API) is an implemented interface that allows other 

programs or the operating system to interact with the whole program or particular parts or 

functions of the program. [117]. To increase the usability of the data stored in OryzaPG-DB, we 

provided six URL APIs to help researchers fetch OryzaPG-DB dynamically with scripts or 

integrate OryzaPG-DB data into their applications. The URL APIs of OryzaPG-DBv1.1 contains 

seven APIs (Table 5.1), which are updated versions of the six APIs of the original OryzaPG-DB 

plus a new API for samples. The seven APIs are briefly described. 

Genes API: Allows users to retrieve the gene information for a particular gene, all genes in a 

particular chromosome or all chromosomes. 

Updated Genes API: Allows users to retrieve the gene(s) with updated annotations and novel 

genomic features; per gene, all updated genes in one chromosome or all updated genes. 

Proteins API: Allows users to retrieve the protein information for a particular gene, all genes in a 

particular chromosome or all genes. The result can be shown in tabular view or in FASTA 

format.  

cDNAs API: Allows users to retrieve the cDNA information for a particular gene, all genes in a 

particular chromosome or all genes. The result can be shown in tabular view or in FASTA 

format.     

Transcripts API: Allows users to retrieve the transcript (unspliced-genomic mRNA) information 

for a particular gene, all genes in a particular chromosome or all genes. The result can be shown 

in tabular view or in FASTA format. 

Peptides API: Allows users to retrieve peptides information for peptides identified from a 

particular gene or gene products (protein, cDNA or mRNA), all genes in a particular 
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chromosome or all genes covered by our analysis. The result can be shown in tabular view or in 

FASTA format. Also, a special parameter can be used to select novel peptides only instead of all 

peptides. 

Samples API (new): Allows users to retrieve the genes identified in a particular sample, all 

samples or overlapping samples for a particular chromosome or all chromosomes. 

For all APIs, a new option was added that allows saving the API execution result to a CSV file 

by setting the to_file parameter to true (Table 5.1).  
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Table 5.1 OryzaPG-DB v1.1 URL APIs 

URL API Chr. 3) Gene 3) FASTA Novelty Sample To file 7) 

Genes Chr=X1) Gene=Locus2) NA NA NA to_file=1 

Updated Genes Chr=X1) Gene=Locus2) NA NA NA to_file=1 

Proteins Chr=X1) Gene=Locus2) fasta=1 NA NA to_file=1 

cDNAs Chr=X1) Gene=Locus2) fasta=1 NA NA to_file=1 

Transcript Chr=X1) Gene=Locus2) fasta=1 NA NA to_file=1 

Sample5) Chr=X1) NA NA NA sid =Y6) to_file=1 

Peptides4) Chr=X1) Gene=Locus2) fasta=1 Novel=1 NA to_file=1 

 

1) X: from 1 to 12, if X is out of this range, the API will show data for all genes in the system. 
2) Locus is the MSU V6.1 locus e.g. LOC_Os01g01689. 
3) Gene and Chr (chromosome) parameters cannot be used at the same time. 
4) In the case of peptides, the API cannot work without parameters.   
5) SID and Chr parameters cannot be used at the same time. 
6) See the ABOUT DB page to get the Y value corresponding to each sample. 
7) If the to_file=1, the API result will be saved to a CSV file, otherwise the result will be displayed.  
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5.6 OryzaPG-DB data expansion 

A key feature of biological databases is their expandability, so that the database can expand to 

host more data related to the original content when such data becomes available. The OryzaPG-

DB original and updated database designs both aim to host rice proteogenomics data in an 

expandable and sustainable way, as described above. In the current version of OryzaPG-DB v1.1, 

the rice proteogenomic data derived from the proteogenomic analysis of the original 27 nanoLC-

MS/MS runs of cultured rice cells were recently expanded to 61 runs in total, demonstrating the 

sustainability of OryzaPG-DB (Table 5.2). The updated design of the database, by adding sample 

information, is able to distinguish peptides and genes identified in each sample or those 

identified in both samples (Figure 5.1). The proteogenomic analysis of the newly added sample 

covers 845 new genes which were not present in the original OryzaPG-DB coverage, and adds 

new peptides and/or novel genomic features to 914 of the originally existing genes, expanding 

the database coverage to 3,973 genes. The numbers of genes with novel peptides and genes with 

novel genomic features are increased from 119 and 40 to 160 and 62, respectively.  
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Table 5.2 OryzaPG-DB current contents 1)  

 OryzaPG-DB v1.1 

Employed dataset(s) 61 LC-MS/MS runs 

Confirmatory peptides 2) 18,214 

Novel genomic features 98 

Genes 3,973 

Genes with novel peptides 160 

Genes to be updated 62 

 

1)As of March 28, 2012.  
2) Peptides identified from the protein databases. 
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5.7 OryzaPG-DB new and updated features  

The updated database design and the recent data expansion required the development of several 

new features that take advantage of the new developments and improve data fetching. In this 

section, I present a brief description of some of the new features, which are mainly related to 

database search and content download.     

1- Adding sample to the advanced search: this option makes use of the new database design, in 

which one can limit the search to be within the genes/peptides of a certain sample or within the 

genes/peptides identified across all samples.     

2- Adding new peptide novelty categories to the advanced search: the advanced search form in 

the original version of OryzaPG-DB allows the user to limit the search results to show genes 

with particular type of peptide novelty, e.g. showing genes with intronic peptides only. Since we 

have adopted the newer version of PGFeval (Chapter 3) [14], the new form includes two new 

peptide  novelty  categories,  3’UTR  and,  5’UTR,   indicating  peptides   identified   from   the  3’UTR  

and  5’UTR,  respectively.             

3- Adding Save to File option to the database browsing results: the database browsing feature 

allow fetching data by sample or genes for all chromosomes or a single chromosome (see above). 

The retrieved data is displayed per gene with links to all details related to this gene such as 

protein, cDNA, mRNA, peptides and annotation. Consequently, the data is usually huge, so it is 

displayed in pages of 50 genes per page. In the original version of OryzaPG-DB, there was no 

way to display or save all retrieved data through database browsing. Therefore, we developed the 

Save to File option that appears in all database browsing results, and allows saving all the data to 

a downloadable file in CSV file format.  
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4- Adding Save Search Results option to the database searching results: similar to the database 

browsing feature, the database searching feature can display huge amounts of data and there was 

no way to display all this data or save it. Therefore, we added the Save Search Results option that 

allows saving all database searching results to a downloadable file in CSV file format in a similar 

way and format to the Save to File option described above.    
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5.8 Expanded utility and availability of OryzaPG-DB (v1.1) 

OryzaPG-DB is the first database that provides a sustainable resource for proteogenomic analysis 

of an economically important crop that includes genes, gene products (mRNA, cDNA and 

protein), experimental expression evidence (MS/MS peptide spectra) and mapping of the 

peptides to their genomic origin. Further, the sequences of each gene and its products and the 

gene annotation are available in GFF3 format and can be graphically visualized. Such data can 

be of great value for plant biologists in general and rice biologists in particular. Furthermore, the 

generic OryzaPG-DB database design provides a template that should be applicable to data from 

other similar projects/analyses. The new or updated features are discussed in detail above. 

OryzaPG-DB is freely available online at the servers of the Institute for Advanced Biosciences 

(IAB), Keio University, Japan at http://oryzapg.iab.keio.ac.jp/.                   

 
  



129 
 

5.9 The future of the rice proteogenomics database 

The current version of OryzaPG-DB, version 1.1, includes several developments and features 

that were foreshadowed in the future work section of our original article describing OryzaPG-DB 

[14], such as data expansion, adding sample level information and updating the advanced search 

parameters, together with features that not mentioned then, but which we thought would improve 

the utility of the database such as save to file and save search results options. Future 

developments are expected to focus mainly on data expansion and proteogenomic analysis of 

newly added data. In addition, more informatics updates will be included, such as offering 

downloadable Perl script that will be useful for automation of OryzaPG-DB data acquisition 

through the available URL APIs. 
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Proteogenomics is a systems biology approach that utilizes proteomics and genomics to obtain 

better understanding of the genome structure and function. Peptide spectra obtained using means 

of high-throughput proteomics, such as mass spectrometry-based shotgun proteomics, and 

genomic sequences obtained by modern genome sequencing instruments, such as next-

generation genome sequencers, are analyzed together using bioinformatics tools in order to 

improve, correct or confirm the genome structural and functional annotations.  This analysis is 

mainly through searching the peptide spectra against database(s) of genomic sequences to 

identify the peptide sequence corresponds to each spectrum. Next, the identified peptides are 

mapped to the genome in order to know its genomic origin. The peptide mapping process can 

reveal several types of novel genomic information. For instance, peptides mapped to genomic 

regions that was annotated   as   “intergenic”, point new un-annotated genes. Further, peptides 

mapped  to  “known  genes”  can  be  mapped to introns, pointing either an incorrect annotation of 

the  gene  or  a  new  alternative  splicing  isoform.  Furthermore,  peptides  mapped  to  “known  genes”  

and inside the gene mapped to an exon, represent an affordable mean of experimental 

confirmation for the expression of computationally predicted gens.  

However, in large-scale proteogenomic analysis, both the proteomic and genomic data are 

enormous and, therefore, analyzing them together is one of the major challenges in 

proteogenomics. In spite of the efforts made by the proteomics and bioinformatics societies to 

facilitate the peptide identification process in large-scale studies, the growing spectra generation 

rate of the modern mass spectrometers and the growing size of the sequence databases 

continuously require developing of new computational methods, algorithms and software tools.     

In this thesis, I intensely surveyed the efforts done by the proteomics and bioinformatics 

societies in the last decade to facilitate the peptide identification process in large-scale studies, 
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either through developing novel computational methods, sophisticated database searching 

algorithms or software tools (chapter 1). Next, I described the development and applications of a 

novel bioinformatics pipeline for large-scale proteogenomic studies (chapters 2~5). The 

developed bioinformatics pipeline has three main components. First, novel computational 

method facilitates peptides identification from large-scale proteomics and large-sized databases 

named Mass Spectrum Sequential Subtraction (MSSS) method (chapter 2). Second, software tool 

for evaluating the proteogenomic novelty of the identified peptide named The ProteoGenomic 

Features Evaluator (PGFeval) software tool (chapter 3). Third, database for hosting 

proteogenomic data, hosting the rice proteogenomic data of this work, named The Rice 

Proteogenomics Database (OryzaPG-DB) database (chapter 4 and 5).  

MSSS is a novel bioinformatics method speeds up the peptide-sequence identification from 

searching large peptide MS/MS spectra datasets, such as MS/MS datasets generated by the 

modern mass spectrometry instruments, against large nucleotide databases, such as six-frame 

translation of the genome databases. Searching one protein database and three nucleotide 

sequence databases, MSSS successfully decreased the number of search queries to 50% and the 

overall search time to 75%, on average, through sequential removing the identified spectra after 

each database search and creating new files contain the unidentified spectra only to be used in 

the next search. Further, MSSS had no effect on the peptide identification capability or the 

identification false-positive rate (FPR).  

The Rice Proteogenomics Database (OryzaPG-DB) is the first rice proteome database based on 

shotgun proteogenomics. OryzaPG-DB includes the genomic features of experimental shotgun 

proteomics data of rice together with their product ion spectra, updated annotations for rice genes, 

side by side with the corresponding protein, cDNA, transcript and genomic sequences. The first 
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version of OryzaPG-DB (v1.0) was created from the results of 27 nanoLC-MS/MS runs, 

analyzing tryptic digests from undifferentiated cultured rice cells. Later, the recent version (v1.1) 

includes data resulted from another 34 nanoLC-MS/MS runs of the phosphoproteome of the rice 

undifferentiated cultured rice cells. Currently, OryzaPG-DB is available online and covers 3,973 

genes and 6,291 proteins/cDNAs with 18,214 unique peptides.  

The ProteoGenomic Features Evaluator (PGFeval), is a software tool that developed specially to 

analyze the peptide-mapping data (data of mapping the peptides to the genome) to evaluate the 

peptide’s   proteogenomic   novelty   and   visualize   gene   model   structure   and   features.   PGFeval  

process the peptides mapping data and the current genome annotation to output an updated gene 

annotation, graphical visualization of the gene model structure and features and two reports 

describing the proteogenomic novelty of the peptides (peptide report) and the novel genomic 

features, if any, per gene (genes report).    

The developed pipeline was used to analyze rice proteome and phosphoproteome data (61 

nanoLC-MS/MS runs) revealing 98 novel genomic feature in 62 rice genes. In addition, MSSS 

method has several potential applications in cancer biology such as finding cancer-related 

somatic mutations, which can lead to discovery of new drug targets and/or biomarkers.  
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ABLCP Algorithm Based on Longest Common Prefix 

API Application Programming Interface 

BLAST Basic Local Alignment Search Tool 

CPU Central Processing Unit 

EST Expressed Sequence Tags  

FP False Positives  

FPR False Positive Rate  

GFF3 Generic File Format version 3  

GPF Genomic Peptide Finder  

HGPdb Human Genome Peptide Database  

HUPO PPP Human Proteome Organization Plasma Proteome Project  

IEF Isoelectric Focusing  

LC-MS/MS Liquid Chromatography-Tandem Mass Spectrometry 

LSH Locality Sensitive Hashing  

MGF Mascot Generic Format  

MS Mass Spectrometry 

MS IIS Microsoft Internet Information Service 

MSSS Mass Spectrum Sequential Subtraction  

MSU-DB Michigan State University Database 

MW Molecular Weight  

ORF Open Reading Frames  

PGFeval ProteoGenomic Features evaluator  

pI Peptide Isoelectric Focusing Value  

PST Peptide Sequence Tags  

PTM Posttranslational Modifications 



153 
 

QTOF Quadrupole Time-Of-Flight  

RAP Rice Annotation Project  

RT-PCR Reverse Transcription Polymerase Chain Reaction 

SCX-StageTips Strong Cation Exchange-StageTips  

SNP Single Nucleotide Polymorphism  

TP True Positives  

UTR Untranslated Regions 

 


