
8. Introduction to cooperative games26

A cooperative game theory generalizes some of the ideas and thinking behind equi-
librium theory to other, typically finite social situations. The starting point is to think
about the utility levels that can be achieved by group of players. For instance, a group
of firms, by choosing different production plans, can jointly achieve certain level of
profits that can be shared across firms. A group of municipalities may consider dif-
ferent options for transit systems that cost money, but that also affect positively the
welfare of the participating communities. A group of agents in an exchange economy
can trade their goods in some way and affect their consumption and utility levels.

There are two fundamental assumptions. First, groups of individuals can choose
allocations that only rely on the resources of the coalition members available to mem-
bers of the coalitions. Thus, it is appropriate to think about utility levels that are
available only to members of some coalitions, and that may differ if we change (for
example, expand) the coalition. Second, the cooperative theory abstracts from the
incentive or problems involved in implementing particular allocations. The assump-
tion is that coalitions can write enforceable contracts. The only question is how a
coalition decides which of the available choices to implement.

We are going to define a cooperative game as a mapping that associates a coalition
with sets of utility levels that are available to the coalition. Next, we are going to
choose about solution concepts that, in some principled way, choose subsets of such
utility levels (and, possibly, the formed coalition).

8.1. NTU-cooperative game. A basc elements of a cooperative games is the set
of players I, and its subsets called coalitions S ⊆ I. Each coalition is assigned with a
set of utility vectors V (S) ⊆ RS. Interpretation is that each u ∈ V (S) is a possible
vector of utility for each member of the coalition.

Definition 11. An NTU cooperative game (in a characteristic form) consists of a set
of players I and a utility possibility allocation V (S) ⊆ S for each S ⊆ I such that
each utility possibility set V (S).

We refer to I as a grand coalition.
26December5, 2019.
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MWG assumes that each utility-possibility set must be also comprehensive: for
each u ∈ V (S), if u′ ∈ RS and u′ ≤ u, then u′ ∈ V (S) as well. (In other words,
the utility possibility sets must satisfy free disposal.) I am not exactly clear why
they make this requirement. We are simply going to say that the NTU game is
comprehensive if each utility-possibility set is comprehensive.

8.1.1. Shapley-Shubik assignment.

Example 15. Shapley-Shubik assignment game (Example 11). There are I agents.
Each agent i has 1 unit of good i. Each agent wants 1 unit of a good, with utility
being ui (j) of agent i for utility of good j. For each S ⊆ I, define

V (S) =
{
(ui (a (i)))i∈S : a : S → S is a bijection

}
.

The assignment game can be further complicated by more general property rights.
For instance, certain goods can be used only if two or more individuals allow (joint
ownership). Maybe some individuals do own have anything. Maybe some goods can
be allocated only if majority of certain coalition agrees. Etc.

8.1.2. Voting.

Example 16. Voting game. There are I agents. There is a set of A of collective
decisions. Each agent can withdraw from the group and obtain payoff 0. Otherwise,
if a member of the group, the agent i receives utility ui (a) from some decision a ∈ A.
The set of available decisions includes the decision 0 ∈ A that corresponds to the
staying with status quo. Status quo can be replaced by some other decisions only
only by so-called winning coalitions. The collection of all winning coalitions is denoted
as C. We take:

V (S) = {0S} ∪ {(ui (a)) : a ∈ A} if S ∈ C

V (S) = {0S} if S /∈ C.

(1) For example, majority voting has C =
{
S : |S| > 1

2I
}
.

(2) Dictatorship of agent i has C = {S : i ∈ S}.
(3) Majority with a veto-right by individual i. C =

{
S : |S| > 1

2I and i ∈ S
}
.
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(4) Security Council voting. By majority, but any change from styatus quo must
be accepted by all five permanent members of the Council.

This example can be further complicated by allowing different actions available to
different winning coalitions. For instance, in the UofT insurance plan, the decision to
raise member contributions to the plan is made by majority voting. But the decision
to change essential parameters of the plan has an additional veto points.

8.1.3. Super-additive games.

Definition 12. A cooperative game (I, V ) is super-additive if for any two S, T ⊆ I

that are disjoint, S ∩ T = ∅, we have

V (S)× V (T ) ⊆ V (S ∪ T ) .

or, in other words, for each xS ∈ V (S) , xT ∈ V (T ), we have
(
xSxT

)
∈ V (S ∪ T ).

In other words, the utilities that can be achieved within each coalition separately,
can be be also achieved together.

Exercise 13. Show that the assignment game is super-additive .Consider voting game
with winning coalitions C. Show that if the winning coalitions is an upper contour
set (i.e., if S ∈ Cand S ⊆ S ′, then S ′ ∈ C), then the voting game is super-additive.
Is the assumption on C necessary? Check that all the examples of winning sets from
Example above satisfy the condition.

8.1.4. Core. For each utility vector x ∈ RI , let x|S ∈ R denote vector x restricted to
coalition S.

Definition 13. A utility vector x ∈ V (I) is in the core for game (I, V ) if for any
coalition S ⊆ I, there is no y ∈ V (S) such that y > x|S (i.e., for each y ∈ V (S),
either y = x|S or there is i ∈ S such that yi < xi). A core of the game is the set of
utility vectors that are in the core.

We say that a grand-coalition allocation x is blocked by coalition S and allocation
y ∈ V (S) if y > x|S. The core is the set of grand-coalition allocations that cannot
be blocked.
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Exercise 14. Show that each core allocation is Pareto-optimal in the grand coalition:
there is no allocation y ∈ V (I) that Pareto-dominates x.

The next Example shows that the core might be empty.

Exercise 15. Consider a majority voting game (Example 16) with three players.
We assume that each winning coalition can redistributie pie of value 1 between its
members. Formally, suppose that for any winning coalition S (i.e., a colaition of 2 or
3 players) V (S) = {(xi) : ∑i∈S xi = 1} ∪ {0S}. (Thus, our game has a transferable
utility.) Show that the game has empty core. This fact is also known as the Condorcet
paradox.

8.1.5. Solution of a cooperative game. A solution of a cooperative game assigns a
subset of utility vectors to the grand coalition σ (I, V ) ⊆ V (I). There are two types
of definitions of solutions.

• One is to define the solution according to some properties of how negotiations
that choose an allocation may look like. Example is core, or stability in case
of matching problems.
• Another one is axiomatic: We define a series of properties of a “good” solution.
An example of a typical property is that a good solution should be invariant
to certain changes in the game (or at least, the solution should change in a
regular way, when we change the game in some regular way). And then, we use
them to show that there exists a unique (in some sense) solution that satisfies
such properties. Examples: Nash-bargaining solution or Shapley Value.

8.2. TU-games. IN a TU- game, the utilities can be transferred between players
without a loss. The motivation is that all players have quasi-linear utility over un-
obouded resource that can lean

In terms of a definition, it means that if u ∈ V (S), then for any τ ∈ RS such that∑
i∈S τi = 0, we have u+ τ ∈ RS.

Definition 14. A TU cooperative game (in a characteristic form) is a tuple (I, v),
where I is the set of players and v : 2I → R assigns value to each coalition. Function
v is called characteristic of the game.
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Each TU-game corresponds to a NTU game defined so that V (S) =
{
u ∈ RS : ∑i∈S ui ≤ v (S)

}
.

Conversely, say that NTU game has a transferable utility if and only if for each S,
each u ∈ V (S), and each τ ∈ RS such that ∑i∈S τi = 0, we have u+ τ ∈ RS. Then, if
the game has bounded payoffs (i.e., supi,S:i∈S supu∈V (S) ui < ∞), then we can define
the characteristic of the associated TU -game as

v (S) = max
{∑
i∈S

xi : x ∈ V (S)
}
.

In the latter case, we say that the TU game is derived from an NTU-game.
For a TU game, the core definition goes like this

Definition 15. A utility vector x ∈ RI is in core for a TU-game (I, v) if
∑
i∈I

xi = v (I) , and
∑
i∈S

xi ≥ v (S) for each coalition S ⊆ I.

The first condition guarantees that the core allocation redistributes the value of the
grand coalition, and the second set of conditions ensure that no coalition can block
the allocation.

Convince yourself that the two definitions are equivalent if a NTU game has a
transferrable utility and the TU game is derived from it.

8.2.1. Minimal cost network.

Example 17. There are I cities that want to be connected with an electric network
to the power supply. The power supply is in city 0. The cost of connection between
cities i and j is equal to aij = aji. An electric grid for coalition S is a connected
symmetric graph g = (gij) on the set of nodes S ∪ {0}, i.e., a graph such that
gij = gji = 1 and for each city i ∈ S there is a path i = i1, ..., im = 0 from i to 0 such
that gi1i2 · ... · gim−1im = 1. The cost of such a graph is

c (g) = 1
2
∑
i 6=j

aijgij.
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(The coefficient 1
2 comes from the fact that we do not want to double-count the

connections.) Let G (S) be the set of networks for coalition S. Define

v (S) = − min
g∈G(S)

c (g) .

8.2.2. Market game.

Example 18. Market game. There are L goods (inputs in a production process) and
J producers. Each producer has an endowment of inputs ωj. Each producer has a
production function fj (x) where x ∈ RL+ (that, we can assume, is increasing in each
input). For each coalition S ⊆ J , we define

v (S) = max∑
i∈S

xi≤
∑

i∈S
ωi

∑
fi (xi) .

8.2.3. Scheduling game.

Example 19. Scheduling game. There are I tasks. Each task has execution time wi
and a cost function c (ti) that depends and is increasing in the moment ti in which
the task is executed. No two tasks can be executed at the same time. An allocation
in coalition S is a bijection a : {1, ..., |S|} → S that essentially orders the tasks from
the first to the last one. We define the value of a coalition as (the negative of ) the
minimal cost of scheduling task in a coalition:

v (S) = − min
bijection a:S→{1,...,|S|}

∑
i≤|S|

ca(i)
(
wa(1) + ...+ wa(S)

)
For an example, you can think about a queue of airplanes that wait to land on an

airport; packets of information that need to be transferred through a network node;
emergency room waiting room with patients that asylum applications that wait on
the desk of an CIC agent.

8.2.4. Super-additive games. A TU-game is super -additive if its associated NTU
game is super-additive. Equivalently,m we say that the TU game (I, v) is super-
additive if for any two disjoint coalitions S and T , we have

v (S ∪ T ) ≥ v (S) + v (T ) .

The interpretation is that there are positive externalities.



79

8.3. Core existence for TU games. The next theorem provides conditions for the
non-emptiness of core for TU games. (There is a NTU-version of it, but it is more
complicated to state, so we ignore it).

The conditions are not exactly intuitive. We say that a collection of weights
{δS ∈ [0, 1] : S ⊆ I} is balanced if for each player i, we have∑

S:i∈S
δS = 1.

(I don’t know a good interpretation a balanced collection of weights. There is a
mathematical interpretation - where teh collection comes from the duality theory
and corresponds to a certain set of Lagrange multipliers. But, we are not going to
worry about it.)

Theorem 11. (Bondareva-Shapley). Consider a TU game (I, v). A necessary and
sufficient condition for the core of (I, v) to be non-empty is that for each balanced
collection of weights {δS}, we have∑

δSv (S) ≤ v (I) .

Definition 16. We say that a game is balanced if it satisfies the above condition.
(Thus, the Bondareva-Shapley Theorem can be restated as saying that a game has
a non-empty core if and only if it is balanced.) We also say that a game is totally
balanced, if each of its subgames is balanced.

The balanced condition is not easy to check for a particular game, but it turns out
to be easy to check for classes of games. For example, one shows that Market Games
from Example 18 are totally balanced (and that essentially, each TU-game that is
totally balanced is equivalent to some market game - see Game Theory Maschler,
Zamir, and Solan.

Proof. Necessity. Suppose that x is in the core of (I, v). It means that for any coalition
S, ∑i∈S xi ≥ v (S) (otherwise, there would be a vector that could redistribute v (S)
and improve the utility for each member of coalition S). It follows that for any
balanced weights {δS}, we have∑

S

δSv (S) ≤
∑
S

δS
∑
i∈S

xi =
∑
i

xi
∑
S:i∈S

δS =
∑
i

xi = v (I) .
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Sufficiency. Suppose that the game is balanced. Construct two sets:

B1 =
{( ∑

S:1∈S
λS,

∑
S:2∈S

λS, ...,
∑
S:I∈S

λS,
∑
S

λSv (S)
)

: λS ≥ 0 for each S ⊆ I

}
,

B2 = {(1, 1, ..., 1, v (I) + ε) : ε > 0} .

Both sets are convex and, because the game is balanced, they are disjoint. Hence,
by the Separating Hyperplane Theorem, there exists a non-zero vector (z1, ..., zI , z0)
such that for each λS ≥ 0 for each S ⊆ I and each ε > 0

∑
zi + z0v (I) + z0ε ≥

∑
i

zi
∑
S:i∈S

λS + z0
∑
S

λSv (S)

=
∑
S

λS

(∑
i:i∈S

zi + z0v (S)
)

Because each ε > 0 can be chosen, it must be that z0 ≥ 0 (otherwise, the left-hand
side could become arbitrarily small, and smaller than the right-hand side.)

Because arbitrary (but positive) weights can be chosen, we could also choose λS = 0
for each S, which implies ∑

zi + z0v (I) ≥ 0. (8.1)

Moreover, we could have chosen λS → ∞, which would make the right–hand side
arbitrarily large (and bigger than the left hand side) unless

∑
i:i∈S

zi + z0v (S) ≤ 0. (8.2)

�

We will show that z0 6= 0. If not, than the equations imply that zi ≤ 0 for each i
and ∑i zi ≥ 0, which contradicts the fact that the vector (z1, ..., zI , z0) is non-zero.

Notice that inequalities (8.1) and (8.2) imply that

− 1
z0

∑
zi ≤ v (I) and − 1

z0

∑
i∈S

zi ≥ v (S) .

Take xi = − 1
z0v(I)zi. The above inequalities mean that x = (x1, ..., xI) is in the core.
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8.4. Convex games.

Definition 17. A TU-game (I, v) is convex if for any two coalition T, S ⊆ I, we have

v (T ) + v (S) ≤ v (T ∩ S) + v (T ∪ S) .

To understand this condition, let A = T ∩ S,B = T\S,C = S\T . Notice that all
three coalitions are disjoint. The above condition is equivalent to

v (A ∪B ∪ C)− v (A ∪B) ≥ v (A ∪ C)− v (A) .

In other words, the increase of the value caused by adding coalition C to coalition A
is higher if also members of coalition B are present.

Exercise 16. Show that any convex game is super-additive.

Exercise 17. Show that the voting game from the Exercise 15 is not convex.

Proposition 4. Each convex game has a non-empty core.

Proof. We assume w.l.o.g. that v (∅) = 0 (such choice is really a convention and it
doesn’t affect the definition of convexity - convince yourself!) The proof constructs
one of core allocations. Suppose that all players are arranged in some (arbitrary order
i = 1, 2, ...,|I|). We define x1 = v (1) and for each i > 1

xi = v (1, ..., i)− v (1, ..., i− 1) .

We show that x is a core allocation.
First, notice that such allocation satisfies

∑
i∈I

xi = v (1)+v (1, 2)−v (1)+v (1, 2, 3)−v (2)+...+v (1, 2, ..., |I|)−v (1, 2, ..., |I − 1|) = v (I) .

Second, for each coalition S ⊆ I, let i1 < ... < i|S| be the list of names (i.e., elements
of the original order) of the members of the coalition. For each s, let Ss = {i1, ...is}
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and let Ts = {1, ..., is − 1}. Then, by convexity, for each s ≤ S

v (i1, ..., is−1, is)− v (i1, ..., is−1) = v (Ss)− v (Ss ∩ Ts)

≤ v (Ss ∪ Ts)− v (Ts)

= v (1, ...., is)− v (1, ..., is − 1)

= xis ,

where we use the convention that v (∅) = 0. It follows that

v (S) = v
(
i1, ...., i|S|

)
− v (∅)

=
∑

1≤s≤|S|
v (i1, ..., is−1, is)− v (i1, ..., is−1)

≤
∑

1≤s≤|S|
v (1, ....is−1, is)− v (1, ..., is−1) =

∑
i∈S

xi.

�

Remark 4. Alternatively, one can show that any convex game is totally balanced.
Then, the non-emptiness of the core would follow directly from the Bondareva-Shapley
Theorem 11.

Comparing to balancedness, convexity is very easy to check (and to develop intu-
itions). Unfortunately, it is very strong, often too strong for applications.

For a more discussion of the existence of solutions in non-convex games (and many
great applications, like matching) see a very nice recent paper “Hyperadditive Games
and Applications to Networks or Matching Problems” by Eric Bahel.

8.5. Nash bargaining solution. For the sake of reference and completeness, I men-
tion two other important solution concepts: Nash bargaining solution and the Shapley
value. You will be talking more about the first one in the first part of the game theory
class.

A bargaining problem is a very special type of a cooperative game in which the
agreement of all players is necessary for the non-trivial outcome. Formally, a bar-
gaining game is defined as (U, u∗), where U ⊆ RI is the convex(!) utility possibility
set for the grand coalition, and u∗ ∈ U is the status-quo, i.e., ui is the solution for
single-player coalition {i}. In other words, (U, u∗) is a NTU-cooperative game with
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I, V (I) = U, V (S) =
{
(u∗i )i∈S

}
foer S ⊂ I. Let U be the collection of all bargaining

problems.
A solution to the bargaining problem is a mapping f : U → RI such that f (U, u∗) ∈

U for each problem (U, u∗).
We can define some properties of a “good” solution:

(1) Independence of Affine Transformations (IAT): for any β ∈ RI+, and
α ∈ RI , we have

f (βU + α, βu∗ + α) = βf (U, u∗) + α.

(Here, βU = {(β1u1, β2u2, ..., βIuI) : (u1, u2, ..., uI) ∈ U} is the set of trans-
formed utilities.

(2) Symmetry (S): If U is symmetric (i.e., does not change after permutation of
the axis) and u∗i = u∗j for each i 6= j, then if u = f (U, u∗), then ui = uj for
each i 6= j.

(3) Pareto-Optimality (PO): There is no u ∈ U that Pareto-dominates f (U, u).
(4) Individual Rationality (IR): f (U, u∗) ≥ u∗. Effectively, PO and IT together

mean that the solution is in the core of the NTU-cooperative game.
(5) Independence of Irrelevant Alternatives IIA: If u∗ ∈ U ′ ⊆ U and

f (U, u∗) ∈ U ′, then f (U, u∗) = f (U, u∗). The last axiom is the most sub-
stantial. It says if that the solution to the bargaining problem should not
change if some of the alternative allocations that are not the solution are
removed.

Proposition 5. (Nash bargaining solution.) There exists a unique solution to the
bargaining problem that satisfies IAT, S, PO, IR, IIA. The solution can be described
as

f (U, u∗) = arg max
u∈U

∏
i

(ui − u∗i ) . (8.3)

Exercise 18. Show that the solution (8.3) satisfies all the axioms.

Proof. We are left with showing that any solution that satisfies the axioms has the
form of (8.3). TBA. �
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8.6. Shapley value. Shapley value is an attempt to assign a unique solution f (v) ∈
RI to each TU-cooperative game with population I: Shapley proceeds axiomatically:
Define some properties of a “good” solution:

(1) Independence of Affine Transformations (IAT): For any b ∈ R+, and
a ∈ RI , let bv + a be a new characteristic function defined as: for each S ⊆ I

(bv + a) (S) = bv (S) +
∑
i∈S

ai

The IAT axiom says that

f (bv + a) = bf (v) + a.

(2) Symmetry (S): Suppose that π : I → I is a permutation of name of the
players. Let π (v) be a characteristic function of a permuted game defined as:
(π (v)) (S) = v (π (S)). Then, fi(v) (π (v)) = fπ(i) (v).

(3) Pareto-Optimality (PO): ∑i fi (v) = v (I).
(4) Dummy axiom (DA): Individual i is a dummy in game v if for each coalition

S ⊆ I, we have v (S ∪ {i}) = v (S), i.e., if i does not affect the value. Then,
the solution satisifes the dummy axiom if fi (v) = 0 for each dummy i in game
v.

(5) Additivity (A): For any two TU-games v, u with the same grand-coalition I,
we have

f (v + u) = f (u) + f (u) .

To characherize the solution, we need the following result. An ordering (a “permu-
tation”) of a grand coalition is a bijection o : I → {1, ... |I|}. Let O (I)be the set of
orderings. Notice that there is |I|! of them.

For each ordering π and each agent i, let

v {i′ : o (i′) ≤ o (i)} − v {i′ : o (i′) < o (i)}

is a contribution of agent i to the coalition of all agents that are before him under π.
We define the Shapley value as

Shi (v) = 1
|I|!

∑
π∈O(I)

(v {i′ : o (i′) ≤ o (i)} − v {i′ : o (i′) < o (i)}) .
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The Shapley value of player i. Suppose that we order the players at random (each
permutation o has an equal probability 1

|I|!). Each player enters the room in the order,
and each player receuives, as a payoff, his or her contribution to the current coalition
in the room. The Shapley value of player i is the average (i.e., the expected) payoff
of player i obtained in such a way.

Proposition 6. (Shapley value) The Shapley value Sh (.) is the unique solution that
satisfies IAT, S, PO,DA and A.

Exercise 19. Show that the Shapley value satisfies all axioms IAT, S, PO,DA and
A.

Proof. Given the Exercise, it is enough to show that if f satisfies all the axioms, then
it is unique and equal to Sh. The proof is quite straightforward given the powerful
axioms.

First, notice that axiom A and axiom IAT (specifically, being able to scale by
factor β) implies that Sh is a linear mapping from the space R2I (i.e., the space of
characteristic functions) to RI (the space of payoff vectors). Hence, there must exists
coefficients αiS for each coalition S ⊆ I and each agent i such that

fi (v) =
∑
S

αi,Sv (S) =
∑
k<n

∑
S⊆I\{i}:|S|=k

αi,S∪{i}v (S ∪ {i}) + αi,Sv (S) + .

The second equality turns out to be a useful representation.
Second, notice that the Symmetry implies that for each permutation π : I → I we

have

αi,S = απ(i),π(S).

For each k and two coalitions S, S ′ such that |S| = |S ′| = k and i /∈ S, S ′, we can find
a permutation πS,S′ such that πS,S′ (S) = S ′ and πS,S′ (i) = i. It follows that for any
such two coalitions, we have

αi,S∪{i} = αi,S′∪{i} =: βi,k

βi,S = βi,S′ =: βi,k,
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It follows that

fi (v) =
∑
k<n

∑
S⊆I\{i}:|S|=k

αi,kv (S ∪ {i}) + βi,kv (S) .

By symmetry, the coefficients αi,k and βikdo not depend on i.
Third, the Dummy axiom implies that βi,k = −αi,k. To see it, consider a class of

characteristic functions such that v (S ∪ {i}) = v (S) = v for some coaltion |S| = k

and v (S ′) = 0 for any other coalition. If tβi,k 6= −αi,k, then the f would have to
depend on i, but it should not. Hence,

Shi (v) =
∑
k<n

αk
∑

S⊆I\{i}:|S|=k
(v (S ∪ {i})− v (S)) .

Fourth, the Pareto-Optimality implies that∑
i

αk
∑

S⊆I\{i}:|S|=k
(v (S ∪ {i})− v (S))

=
∑
S⊆I

(
|S|α|S|−1 − (n− |S|)α|S|

)
v (S) .

It follows that for each k ≤ n, we have

αk = k

n− k
αk−1,

or
αk = α0

1
n− 1 ·

2
n− 2 · ... ·

k

n− k
= (n− k − 1)!k!

(n− 1)! α0 = 1 n− 1
k

α0.

Finally, the additive part of the Independence to Affine Transformation means that
for each ai, fi (v + (0, ...0, αi0, ..., 0)) = fi (v) + ai, which implies that

∑
k<n

αk
∑

S⊆I\{i}:|S|=k
ai = ai

∑
k<n

αk

 n− 1
k

 = ai,

which implies that

1 =
∑
k<n

αk

 n− 1
k

 = α0
∑
k<n

1 n− 1
k


 n− 1

k

 = α0n = 1,
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or that α0 = 1/n. Hence, we get

fi (v) =
∑
k<n

1 n

k


∑

S⊆I\{i}:|S|=k
(v (S ∪ {i})− v (S)) .

In particular, there is a unique f that satisfies all the axiom. Some algebra shows
that it is indeed the same as the Shapley value. (Or it follows from the exercise. ) �
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