
3. Walrasian equilibrium15

3.1. Ownership structure. Although the production model described in Section
1.3 mentioned owenership, so far we haven’t defined it. It is on purpose: we did not
need it to talk about feasible allocations, nor about Pareto-optimality.

However, we are going to need it to talk about the optimal behavior of consumers
and who gets the profits obtained by firms. Our model assumes that all endowments
and technologies are privately owned: Each agent i owns private endowment ωi ∈
RLand a share θij ∈ [0, 1] of firm j. We assume that∑

i

ωi = ω and
∑
i

θij = 1 for each firmj.

It is a private ownership economy: everything belongs to private individuals. No
public goods.

3.2. Prices and demands.

• Prices: p ∈ RL - price vector. A price is a payment by a consumer to the
producer (or to the selling consumer). In principle, a price can be negative,
in which case, the good is sold be the consumer to the producer (for instance,
labor). (But, a better convention is that the factors are denoted with appror-
priate sign).
• Value of bundle x:

p · x =
∑
l

plxl.

Price is a linear functional on the commodity space.
• Budget set

Bi (p, wi) = {x ∈ Xi : p · x ≤ wi} .

3.3. Walrasian equilibrium.

• Assumptions of the private ownership, competetive model:
– Consumer maximization: Each consumer chooses optimal consumption
bundle in her budget set. Consumer’s demand

x∗i (p, w) = arg max
x∈Xi:p·x≤w

ui (x)

15November1, 2019.
22



23

Alice

Bob

X

Y

ωA

Figure 3.1. Walrasian equilibrium in an exchange economy .

– Firm maximization: Each firm chooses a bundle in its technology set to
maximize the profits. Firm’s demand

y∗j (p) = arg max
y∈Yj

p · y

– Markets clear: Prices must make sure that the resulting allocation is
weakly aggregate feasible.

Definition 3. A Walrasian equilibrium is a allocation x = (x1, ..., yJ) and a vector
of non-negative prices p such that

• (consumer’s optimization) for each i, xi ∈ x∗ (p, wi), where wi = p · ωi +∑
j θij (p · yj),

• (firm’s optimization) for each j, yj ∈ y∗ (p);
• (market clearing) x is feasible.

Pictures:

• Exchange economy with two agents and two goods with convex preferences.
Use the picture to talk about relation between Pareto-optimality and Wal-
rasian equilibrium (FWT).
• Production economy with a single agent, technology and convex preferences.



24

leisure

coconuts

y

ω + Y

Figure 3.2. Walrasian equilibrium in a production economy .

3.3.1. Underlying assumptions.

• No consumption externalities (a) the preferences are defined on individual
bundles xi ∈ Xi, not on the allocations x ∈ X; (b) individuals choose their
consumption bundles independently.
• No production externalities: firms choose their output bundles independently
• Price taking. Walrasian- auctioneer.
• Costless transactions (though we saw that we can incorporate cost of trans-
actions, like transportation, into the model.)
• Single market. All goods are traded on the same market - meaning that each
consumer (and firm) needs to satisfy a single budget constraint.

3.4. Monotone preferences. The next Lemma shows that if the preferences of at
least one consumer are sufficiently monotone, then the prices must be positive. The
result can be quite helpful in eliminating the need to check for “stupid” cases when
looking for an equilibrium.

Lemma 2. Suppose that (x, p) is a Walrasian Equilibrium.

(1) If at least one consumer has strongly monotone preferences, then all prices are
strictly positive, p� 0, and
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(2) If at least one consumer has strictly monotone preferences, then all prices are
positive, p ≥ 0.

(3) If prices are strictly positive and preferences are locally non-satiated, then
allocation x satisfies strict aggregate feasibility.

Proof. 1. If some price pl ≤ 0 is non-positive, then the consumer with strongly
monotone preferences is not optimizing by choosing a finite amount of good xli.

2. If at least one price is negative, pl < 0 for some l, then the consumer with
strictly monotone preferences is not optimizing by choosing bounded consumption
bundle. The consumer can choose arbitrarily large amount of good l and use the
fact that the price of it is negative to subsidize the consumption of arbitrarily large
amounts of all other goods.

3. Locally non-satiated preferences and strictly positive prices imply that the Wal-
ras Law holds:

p · xi = p · ωi +
∑
j

θijp · yj.

By adding the equalities across all consumers, we obtain

p ·
∑

xi = p · ω + p
∑
j

·yj.

Hence, if the allocation satisfies weak aggregate feasibility, and the prices are strictly
positive, it must be that ∑

xi = ω +
∑
j

·yj.

�

3.5. Examples. Some helpful tricks to find Walrasian equilibrium

• If at least one agent preferences are strongly monotone, prices must be positive.
• With strictly positive prices and locally non-satiated preferences for consumer
i, the Walras Law holds p · xi = wi..
• With strictly positive prices and locally non-satiated preferences for each con-
sumer, the Walras Law implies aggregate feasibility holds p · xi = wi for each
i.
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• If a firm has constant returns to scale, the equilbrium prices must give 0
profits for any such a firm (or more precisely, any firm that has positive level
of activity).
• Scalling prices by a strictly positive factor does not affect the equilibrium.
Hence, we can normalize at least one price (at least when it is positive).

3.5.1. Robinson Crusoe economy.

Example 12. Suppose that |I| = |J | = 1, |L| = 2. There are two good - coconuts
and leisure, one consumer - Robinson, and one firm - Coconut, Inc. Robinson owns
the firm, owns L0 units of leisure, and no coconuts. His utility u (x, l) = xαl1−α from
coconuts x and leisure l. The firm production function is f (λ) = λβ, where λ is the
amount of labor (i.e., leisure given to the firm). Assume α, β ∈ (0, 1). Build a model.
Find WE. Is it Pareto-optimal?

Two goods: coconuts x and leisure l.
One consumer: Robinson. XR = R+ × [0, L0]. . Endowment ωR = (0, L0). One

firm: Coconut, Inc. Technology converts leisure into coconuts: Y =
{
(x,−l) : 0 ≤ x ≤ lβ, l ≥ 0

}
.

Robinson owns the Coconut, Inc.
Prices (p, w), where p, w > 0. We can normalize one price, say w = 1.
Consumer demand:

p = α

1− α
l

x
,

where the budget constraint implies that

px = (L0 − l) + π,

where π are the equilibrium profits of Coconut, Inc. (More generally, Cobb-Douglas
utility implies that the share of spending on each good is proportional to the expo-
nents.)Hence, the consumer’s demand for leisure

l = (1− α) (L0 + π) .

Firm’s optimization

p = 1
β
λ1−β.



27

Hence, the profits are equal to

π = 1
β
λ1−βλβ − l = 1− β

β
λ = 1− β

β
(αL0 − (1− α)π) ,

where we used the fact that λ = L0 − l = αL0 − (1− α) π. More algebra leads to

π = α (1− β)
β + (1− β) (1− α)L0,

and the equilibrium labor is

λ = αL0 − (1− α) α (1− β)
β + (1− β) (1− α)L0 = αβ

β + (1− β) (1− α)L0 = αβ

1− α + βα
L0.

The social planner would maximize

max (λ)βα (L0 − λ)1−α ,

and the solution is the same.

3.5.2. Leontief’s preferences. Consider an exchange economy with two agents (Alice
and Bob) and two goods (X and Y ) and the Leontieff’s preferences

ui (x, y) = min (aix, biy)

for some ai,bi > 0. Let the endowment be ωi ∈ [0, 1]2 for each agent i. We want to
find Walrasian equilibria.

Case p � 0. Let’s try first strictly positive prices. We compute that demand of
agent i is going to be equal to

xA =
 xi

yi

 =
(
p · ωi
p · γi

)
γi = αiγi,

whereγi =
 bi

ai

 and αi = p · ωi
p · γi

.

Because of part 3 of Lemma 2, we must have strict aggregate feasibility. Which means
that

xA + xB = ωA + ωB = ω.
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Thus, we obtain a system of two equations

αAγA + αBγB = ω, orαAbA + αBbB = ωX ,

αAaA + αBaB = ωY ,

with two unknowns αA, αB that, additionally, must satisfy the inequality constraints:

αA, αB ≥ 0.

The form of the equilibrium depends on the existence and the number of solutions:

• If the above system has a unique solution, and the solution is neither αAγA ≥
ωA nor αAγA ≤ ωA, then we can find prices p� 0 such that p · (αiγi − ωi) = 0
for each i. (The reason is that if neither αAγA ≥ ωA nor αAγA ≤ ωA, then
the aggregate feasibility stated above implies that the vector αiγi − ωi lies in
either NW or SE orthants. Hence, it is orthogonal to a vector p from the SE
orthant.) Notice that the two equations p · (αiγi − ωi) = 0 for i = A and B
are not linearly independent; this is OK, because we already know that the
prices are only determined bu to a multiplicative factor.
• If the above system has a unique solution, and the solution is such that αiγi =
ωi, then any vector of prices constitutes an equilibrium.
• If the above system has a unique solution, and the solution is such that either
αAγA > ωA or αAγA < ωA, then there is no equilibrium with strictly positive
prices.
• If the above system has infinitely many solutions, then each solution for which
neither αAγA ≥ ωA nor αAγA ≤ ωA corresponds to an equilibrium. It is
possible that there are infinitely many equilibria.
• If the above system has no solution (in which case, it must be that bA

aA
= bB

aB
),

then there is no equilibrium with strictly positive prices.

Case px = 0. We can assume that py = 1. In such a case, the demand of agent i is a
set ωi,yai γi +

 βi

0

 : βi ≥ 0

 .
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The aggregate feasibility implies that

∑
i

bi
ai
ωi,y + βi ≤

∑
i

ωi,x,∑
i

ωi,y ≤ ωi,y.

The second inequality is satisfied trivially (with an equality). Thus, we can have an
equilibrium of this form if ∑i

bi

ai
ωi,y ≤

∑
i ωi,x.

Case py = 0. Reasoning as above, we show that an equiobrium with such prices
exist if ∑i

ai

bi
ωi,x ≤

∑
i ωi,y.

Exercise 6. Is it always true that the Leontief model has a Walrasian equilibrium?



30

4. Existence of equilibrium16

4.1. Basic intuition. Describe non-clearance when price of one good is zero.
Describe non-clearance when price of the other good is zero.
With strictly convex preferences, the demands change continuously.
With convex preferences, the demand correspondence is u.h.c.

4.1.1. Example: Shoes.

4.2. Fixed point theorems. All equilibrium proofs in economics rely on a fixed-
point theorem. One of two most important “high” math results in economics. Two
important types of fixed-point theorems are:

• a continuous function has a fixed-point,
• a correspondence has a fixed point.

4.2.1. Function fixed point theorems. Let K be a set and let f : K → K be a function
from K to itself. We say that f has a fixed point, if there is a k

∑
K such that

f (k) = k.

Theorem 1. (Brouwer) Suppose that K ⊆ Rn is compact and convex. Every contin-
uous function f : K → K has a fixed point.

The convexity assumption is super important.

Exercise 7. Take K = {0, 1}, or K =
{
x ∈ R2 : ‖x‖ = 1

}
. Show that for each of

these two sets, there are continuous functions that are onto, and that do not have the
fixed point.

The assumption can be a bit relaxed: Instead of convexity, it is enough that K is
obtained from a convex set by a continuous deformation.

The compactness is also important.

Exercise 8. Take K = (0, 1), or K = R. Show that for each of these two sets, there
are continuous functions that are onto, and that do not have the fixed point.

16November1, 2019.
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4.2.2. Correspondence fixed point theorems. The above result require the mapping
from a set to itself to be a function. Sometimes, it is not enough: Unless we assume
strict convexity, the demand is typically a correspondence, not a function.

A correspondence (i.e., a set-valued function) φ from the set X to the set Y is
some rule that associates one or more points in Y with each point in X. Formally,
it can be seen just as an ordinary function from X to the power set of Y , written as
ϕ : X → 2Y . We write φ : X ⇒ Y .

We say that a correspondence φ : K ⇒ K has a fixed point if there exists k such
that k ∈ φ (k).

Suppose that K ⊆ Rn. A Kakutani correspondence is a correspondence φ : K ⇒ K

from the set to itself such that

(1) φ (k) is nonempty for each k ∈ K,
(2) φ (k)is convex and compact for each k ∈ K,
(3) φ is upper hemi-continuous: for each sequence of kn → k, and values ln ∈

φ (kn) such that ln → l, we have that l ∈ φ (k).

Theorem 2. (Kakutani) Suppose that K ⊆ Rn is compact and convex. Every Kaku-
tani correspondence φ : K ⇒ K has a fixed point.

4.2.3. Generalizations. Here are some generalizations of the above results. Mostly,
to expand towards infinitely-dimensional spaces. The infinitely-dimensional general-
ization of Brouwer fixed point is the Shauder-Fixed Point Theorem:

Theorem 3. (Shauder) Every continuous function from a convex compact subset K
of a Banach space to K itself has a fixed point.

Fan-Glicksberg. Other extensions: Please check out http://www.math.cmu.edu/∼omostovy/papers_not_mine/Analysis/fixedPointTheoryMcLennan.pdf.
Convexity can be further generalized into objects that behave like convex. This

leads to the fixed point theorems on Absolute Retracts or Absolute Neighborhood
Retracts (ANRs).

4.3. Some facts about correspondences. Suppose that K,A,B are compact sub-
sets of some Euclidean spaces.

http://Andrew%20Maclennan's%20notes.%20
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4.3.1. Product correspondence. Let ψ : K ⇒ A and φ : K ⇒ B be two correspon-
dences. We can create a product correspondence ψ×φ : K ⇒ A×B in the following
way: for each k ∈ K,

(ψ × φ) (k) := ψ (k)× φ (k)

= {(a, b) : a ∈ ψ (k) , b ∈ φ (k)} .

Lemma 3. 1. If φ, ψ are convex-valued, then φ× ψ is convex-valued.
2. If φ, ψ are u.h.c., then φ× ψ is u.h.c..

Exercise 9. Prove the Lemma.

4.3.2. Optimal solution. A special type of correspondences associate optimization
problem with their optimal solutions. Let K be a compact set and let f : K×X → R

be a continuous function. We consider a optimization problem

max
x∈X

f (x, k) ,

where we optimally choose x given a parameter of the problem k ∈ K. Because of
the continuity and compactness, the value of the maximization problem

fmax (k) = sup
x∈X

f (k, x)

is finite and it is attained by some x for each k. (The latter means that we can replace
“sup” by “max”.) Define the correspondence of the solution to the maximization
problem

x∗f (k) = arg max
x∈X

f (k, x) .

Lemma 4. Suppose that K,X are compact subsets of Euclidean space and f is con-
tinuous.

1. x∗f is nonempty-valued and u.h.c.
2. If, additionally, f is quasi-concave in x for each k, then x∗f is convex-valued.

Proof. We are going to show the first part. Suppose that kn → k,xn ∈ x∗f (kn) for
each n, and xn → x. Then, fmax (k) ≥ f (k, x) = lim f (kn, xn) = lim fmax (kn). If
fmax (k) = lim fmax (kn), then all inequalities can be replaced by equalities, which
implies that x ∈ x∗f (k). Hence, the claim will be show if we can prove that the the
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value function fmax is lower semi-continuous. For this, take any x′ ∈ x∗f (k) and notice
that fmax (k) = f (k, x′) = lim f (kn, x′) ≤ lim fmax (kn, x′).

We leave the second part as an exercise (you have already proven it in the Consumer
Theory part of the class). �

A more complicated situation arises when the set of available choices changes with
the parameter. From now on, assume that we have a correspondence XK : K ⇒ X

of available choices. Consider the problem,

max
x∈XK(k)

f (x, k) ,

and define

fmax (k) = sup
x∈X(k)

f (k, x) ,

x∗f (k) = arg max
x∈X(k)

f (k, x) .

Lemma 5. Suppose that K,X are compact subsets of Euclidean space and the corre-
spondence XK : K ⇒ X is Kakutani (i.e., u.h.c., convex and nonempty-valued,) and
f is continuous.

1.If, additionally, f is quasi-concave in x for each k, then x∗f is convex-valued.
2. fmax (k) is upper semi continuous17 and x∗f is nonempty-valued.
3. If fmax (k) is lower semi-continuous, then x∗f is upper hemi-continuous.

Proof. We verify the second claim. Suppose that kn → K, xn ∈ x∗f (kn). Be-
cause X is compact, we can assume (possibly by taking a subsequence) that xn
converges, xn → x. Because correspondence XK is u.h.c., it must be that x ∈ XK (k).
Hence, fmax (k) ≥ f (x, k) = limn f (xn, kn) = limn fmax (kn). This shows upper semi-
continuity of fmax.

Suppose that fmax is also lower semi-continuous, hence continuous. Then, fmax (k) ≥
f (x, k) = limn f (xn, kn) = limn fmax (kn) = fmax (k) and all inequalities can be re-
placed by equalities. But it implies that fmax (k) = f (x, k), or that x ∈ x∗f (k). Hence,
x∗f is upper hemi-continuous. �

17Recall that a function f is lower semi-continuous, if for each sm → s, we have lim infm f (sm) ≥
f (s) and upper semi-continuous if lim supm f (sm) ≤ f (s)



34

4.4. Existence of equilibrium results. We follow the discussion in Kreps (13),
who, in turn, follows the classnotes of Vijay Krishna.

Theorem 4. Suppose that the economy satisfies the following assumptions:

(1) For each consumer i, Xi is convex subset of RL, and the preferences are con-
tinuous and convex.

(2) For each firm j, Yj is convex.
(3) Compactness: For each consumer i, Xi is compact and for each firm j.
(4) For each consumer i, the endowment ωi belongs to the interior of Xi. For

each firm j, its technology satisfies the possibility of inaction: 0 ∈ Y .

Then, the economy has a Walrasian equilibrium with non-negative prices.

The substantive assumptions are that the preferences are convex and continuous
and technologies are convex.

Assumption 3 is important for the proof. Because compactness means that the
technologies and consumption spaces are bounded (and closed), it is considered strong
(Kreps calls it “very bounded economy”). There are many ways of relaxing it (see
below). I personally don’t care because in our world, everything is finite, hence
compact. You can read more on relaxation of the assumption in Kreps.

Assumption 4 is used in a technical part of the argument. There are many other
assumptions that deliver the same result.

4.5. Proof of Theorem. Let P =
{
p ∈ [0, 1]L : ∑l p

l = 1
}
be the simplex of nor-

malized non-negative price vectors.

S0 = X1 × ...×XI × Y1 × ...× Yj × P

= {(x1, ..., yJ , p) : ∀ixi ∈ Xi,∀jyj ∈ Yj, p ∈ P} .

be the space of individually feasible allocations and (bounded) prices.

(1) First, we are going to define correspondence

φ : S0 ⇒ S0.

(2) We show that φ is a Kakutani correspondence. We postpone one part of the
proof that the correspondence is u.h.c. for later.
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(3) We show that the fixed point of φ is a Walrasian equilibrium.
(4) We finish the proof that φ is u.h.c.

4.5.1. Definition of correspondences. In the first step of the proof, we are going to
define correspondences

φCi : S0 ⇒ Xi for each i,

φPj : S0 ⇒ Yj for each j,

φ0 : S0 ⇒ P,

and correspondence φ so that for each s ∈ S0,

φ (s) = φC1 (s)× ...× φCI (s)× φP1 (s)× ...× φPJ (s)× φ0 (s)

=
{
(x1, ..., xI , y1, ..., yJ , p) : ∀ixi ∈ φCi (s) ,∀jyj ∈ φFj (s) , p ∈ φ0 (s)

}
.

The idea is that for each “old” allocation s = (x1, ..., yJ , p), the correspondence
associates a set of “new” allocations:

• Consumers compute their wealth given “old” prices and market choices, and
choose “new” optimal bundles: For each consumer i, define wi (s) = p · ωi +∑
j θijp · yj as a function of the “old” prices and production plans. Define

φCi (s) = x∗i (p, wi (s)) .

• Firms chose “new” optimal plans given “old” prices: For each j, define

φPj (s) = y∗i (p)

• Walrasian auctioneer chooses “new” prices to maximize the social value of the
market imbalances: Let

φ0 (s) = arg max
p∈P

p ·

∑
i

xi −
∑
i

ωi −
∑
j

yj

 .
The Walrasian auctioneer will increase the price of the goods that have surplus
demand, and decrease the price of goods that are not demanded enough.
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4.5.2. Kakutani correspondence. We are going to check that φ is a Kakutani corre-
spondence

φ : S0 ⇒ S0

has the Kakutani property.
By Lemma 3, it is enough to check that each of the coordinate correspondences

φCi , φ
P
j , φ

0 is Kakutani.
The fact that correspondences φPj , φ0 are Kakutani follows from Lemma 4.
The fact that correspondences φCi are nonempty- valued and convex valued, follows

from Lemma 5.
The u.h.c. of φCi will follow from Lemma 5 if we can show that the consumer’s

optimal utility is lower semi-continuous. We postpone the proof till step 4.

4.5.3. Walrasian equilibrium. Because S0 is a compact and convex set, Theorem 2
applies and φ has a fixed point. We are going to show that the fixed point is a
Walrasian equilibrium.

Suppose that s = (x1, ..., yJ , p) is a fixed point of the correspondence φ. Then,

• for each consumer i, xi ∈ x∗i (p, wi (s)) and
• for each firm j, yj ∈ y∗j (p).

Thus, to verify that allocation (x1, ..., yJ) with prices p is a Walrasian equilibrium,
we need to check the aggregate feasibility. For this, notice that the budget constraint
for each consumer implies that

p · xi ≤ p · ωi +
∑
j

θijp · yj.

By summing it across all consumers, we get

p ·
∑
i

xi ≤ p · ω +
∑
j

p · yj.

Hence, the budget constraint implies that the payoff of the Walrasian auctioneer is
never positive. On the other hand, if there is a good l such that

∑
i

xli > ωl +
∑
j

ylj,
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then the auctioneer could have chosen pl = 1 and pl
′ = 0 for each l′ 6= l to get

the positive payoff. Hence, the allocation satisfies the weak version of the aggregate
feasibility.

4.5.4. Demand correspondence is u.h.c. We are still left to show that φCi is u.h.c..
We use the fact that the initial endowment belong to the the interior of Xi. We start
with a (very technical, but useful) Lemma.

Lemma 6. Suppose that assumption 4 holds and Xi is convex.
Then, for each s = (x0, p) ∈ S such that the firms maximize profits, each wealth level
wi = wi (s) , each x ∈ Xi such that p · x ≤ wi, there is a sequence xm ∈ Xi such that
xm → x and p · xm < wi.

Proof. Recall that

wi (s) = wi
(
x0

1, ..., x
0
I , y

0
1, ..., y

0
J , p

)
= p · ωi +

∑
j

θij

(
max
yj∈Yj

p · y0
j

)
.

Because the endowment is in the interior of the consumption space Xi, there exists
ε > 0 and a bundle ρi ∈ Xi such that p · ρi < p · ωi − ε. Because the technology
contains the possibility of inaction, the profits of each firm are non-negative, p·yj ≥ 0,
which implies that

wi − p · ρ = p · ωi +
∑
j

θij

(
max
yj∈Yj

p · y0
j

)
− p · ρ ≥ p · ωi − p · ρ ≥ ε > 0.

Take x ∈ Xi such that p · x ≤ w. For each m, define xm = 1
m
ρ + m−1

m
x. Because Xi

is convex, allocation xm is individually feasible, xn ∈ Xi. Moreover,

wi − p · xm = m− 1
m

wi −
m− 1
m

p · x+ 1
m
wi −

1
m
p · ρ ≥ 1

m
(wi − p · ρ) ≥

1
m
ε > 0.

�

Armed with the Lemma, we can proceed with the proof of u.h.c of teh consumer’s
correspondence.

Lemma 7. Suppose that assumption 4 holds and Xi is convex. Then, the optimal
utility

u∗i (s) = max
x∈Xi:p·x≤wi(s)

ui (s)
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is lower semi-continuous.

Proof. Take any sequence sn = (xn, pn) → s = (x, p). Let x∗ ∈ x∗i (p, wi (s)) be the
optimal allocation at s. By Lemma 6, there exists a sequence xm → x∗ such that
xm ∈ Xi and for each n, p · xm < wi (s). Moreover, by the continuity of wealth and
convergence of prices,

wi (sn)− pn · xm m→∞−→ wi (s)− p · xm > 0.

Hence, for sufficiently high n, xm satisfies the budget constraint at sn. It follows that
u∗i (sn) ≥ ui (xm) and

lim inf
n
ui (sn) ≥ ui (xm) for each m.

As we take m→∞, xm → x∗, and the continuity of the utility function implies that

lim inf
n
ui (sn) ≥ ui (x∗) = u∗i (s) .

Hence, u∗i is lower semi-continuous. �

4.5.5. Comments on the proof. The proof is almost “game-theoretic”: there are agents
(consumers, firms and the auctioneer), with well-defined payoffs, that depend on their
own actions, who choose their optimal best responses. In fact, when you see the proof
of the existence of Nash equilibrium, you will realize that the latter is a simpler version
of the proof of the existence of the Walrasian equilibrium.

The main difference is that here, we assume, that the set of actions that are available
to some of the agents (i.e., consumers), depends on the actions taken by other players
(i.e., prices, bu the auctioneer). In game theory - that is not good, as all actions are
supposed to be taken simultaneously and independently.

4.6. Other existence theorems. If you don’t like the compactness assumption of
Theorem 4, there are other results that you may like better. For instance, the next
result substantially weakens the compactness assumption.

Theorem 5. Suppose that the economy satisfies the following assumptions:

(1) For each consumer i, Xi is convex subset of RL, and the preferences are con-
tinuous and convex.
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Additionally, preferences are semi-strictly convex: if x ≺i x′, then x ≺i
αx′ + (1− α)x for each α ∈ (0, 1).

(2) For each firm j, Yj is convex.
(3) Bounded relevant outputs: There exist a large number B < ∞ such that for

any profile of outputs (yj) ∈ ×Yj, if ω + ∑
j yj ≥ 0, then it must be that

|yj| ≤ B for each j.
(4) For each consumer i, the endowment ωi belongs to the interior of Xi. For

each firm j, its technology satisfies the possibility of inaction: 0 ∈ Y .

Then, the economy has a Walrasian equilibrium.

Comparing with Theorem 4, the assumption 1 about consumer preferences is
strengthened a bit. On the other hand, the compactness assumption is significantly
relaxed. Theorem 5 does not require the compactness of the consumption spaces.
Instead, the last assumption essentially says that the relevant space of technologies
is bounded, hence compact (it is almost like compactness).

The idea of the proof is to work with a bounded version of the economy, find the
bounded equilibrium, and then release the bound and show that the existence of
equilibrium is not affected.
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