
9. Matching27

Matching models are special cases of a broader class of allocation problems, in
which agents are allocated with “each other”. Many of them are purely social, ie.
they describe relations between groups of people, but they also include economic
allocations, like workers to jobs, students to schools, tenants to dorm rooms, etc.

9.1. Marriage matching problem. Basic model of one-to-one matching with strict
preferences was introduced in (Gale-Shapley 1962). This section is based on (Roth
1992) that contains all the classic results. The matching theory got a second life in
and after 00s

• finite sets of men M and women W
– Examples include men - women, workers - firms, students - schools, etc.

• Each man m ∈M has strict preferences over W ∪ {m}, i.e., over women and
staying single, <m.
• Each woman w has strict preferences overM ∪{w}, i.e., over men and staying
single, <w.

Typically, preferences and the entire problem is purely ordinal. Also, typically, with-
out loss of generality to assume that people have utility functions as long as the
problem is finite. We denote by

• um (w) the utility of man m from being matched with w ∈ W ∪ {m}, and
• vw (m) the utility of woman w from being matched with m ∈M ∪ {w}.

If the problem is infinite, utility functions are more natural. In any case, because we
will not consider randomized matchings here, there is a complete equivalence between
strict preference orderings and utilities without indifferences.

If preferences are not strict, typically, we can break the indifferences. Everything
that we say for the basic model applies also to the model in which preferences are
broken.

27December5, 2019.
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Definition 18. Matching is one-to-one correspondence µ : M ∪W → M ∪W that
has order 2 (i.e., µ (µ (x)) = x) and such that if µ (m) 6= m, then µ (m) ∈ W , and
similarly for w.

Matching is an allocation in this model. Some man and women can remain un-
matched, otherwise, each man can marry only one woman, and vice verse. Let
M (M,W ) denote the set of matchings between men and women from sets M and
W .

For each matching, let

U (m;µ) =

um (µ (m)) if µ (m) ∈ W,

um (0) otherwise

be the utility of man m from matching µ. Similarly, define the utility V (w;µ) of
woman w from matching µ.

We can think about matching problems as a special case of NTU-cooperative games
(I, V ), where I = M ∪W and for each coalition M ′ ⊆M,W ′ ⊆ W , we have

V (M ′ ∪W ′) = {(um (µ) , uw (µ)) : µ ∈M (M ′,W ′)} .

9.2. Stable matching.

Definition 19. Matching µ is stable if it is

• individually rational: for each ind. x, x (weakly) prefers her match to being
alone,

x ≤x µ (x) ,

• pairwise stable: no pair of men and women can block the matching: for each
m,w,

eitehr w ≤m µ (m) or m ≤w µ (w)

.

Cooperative concept. In fact, the above definition is identical to a (weaker) version
of the core: mathcing is stable if it cannot be blocked by any 1- or 2 person coalition
S, i.e., any S st. |S| ≤ 2. It turns out that, because of the nature of the matching
problem, the set of stable matching is equal to the core: Recall that matching is
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blocked by coalition A ⊆ M ∪W if there exists (sub)matching µ′ : A → A such that
µ′is stable on A and everybody on A prefers µ′ to µ. Matching µ is in the core if it is
not blocked by any coalition.

Theorem 12. The core is equal to the set of all stable matchings.

Proof. If there is a deviating coalition, then clearly, there exists a blocking pair. But
this means that the original matching wasn’t stable. �

Using the utility notation, there is an equivalent definition of a stable matching:

Exercise 20. Show that matching µ is stable if and only if for each man m ∈M ,

U (m;µ) = max
w∈{w′∈W :vw′ (m)≥V (w′;µ)}∪{m}

um (w) ,

and, for each woman w ∈ W ,

V (w;µ) = max
m∈{m′∈W :um′ (w)≥U(m;µ)}∪{w}

vw (m) .

For instance, the first equality says that the stable match utility of man m is equal
to the best utility he can achieve among all available matches either by statying
alone, or by matching with a woman w′ who likes him more (not less) than her utility
V (w′;µ).

Questions:

(1) Existence.
(2) Efficiency.
(3) Structure of the set of stable matchings.
(4) Comparative statics
(5) Incentives: strategy-proofness.
(6) Uniqueness.
(7) Characterization.

9.3. Existence: Gale-Shapley algorithm. Men-proposing algorithm (there is anal-
ogous women-proposing). Each man has a list of of women from top to bottom. Each
woman has a notebook with all the offers she got.
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The algorithm moves through rounds. At the beginning of round 0, each man start
with the complete list of preferences, and each woman starts with her own name in
the notebook.

At each round,

• each man approaches woman at the top of his list or does not approach any-
body, if staying alone is on top of his list,
• each woman adds all her offers to the notebook and crosses out all the suitors
except for the best offer, where, possibly, the best offer is to stay alone,
• each man that is rejected by his top woman crosses her out of her list.

At each round, the men’s list grows shorter, the women’s best current offer is getting
better. Because men and women are finite, the algorithm must stop.

Formally, we define

• for each man m and woman w,
– letm0

w = {w} be the most attractive match for women w at the beginning
of the process (i.e., being single),

– let w0
m = max≤m W ∪ {m} be the most attractive match for man m at

the beginning of the process.
• for each n ≥ 1, each man m and woman w,

– let mn
w = max≤w {mn−1

w }∪ {m : wn−1
m = w} be the most attractive match

among the most attractive match from the previous round and all the
men that rank w as the most attractive match in the previous round,

– let wnm =

w
n−1
m if wn−1

m =∅ or mn
wn−1

m
= m,

max≤m {w : w <m wn−1
m , w ∈ W ∪ {m}} otherwise

be the attractive match for man m in round n: either the same as the
most attractive match in the previous round, or if the previous most
attractive match is not available, the next best match.

Notice that

• for each woman w :mn−1
w ≤w mn

w, or woman’s utility weakly increases in each
round,
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• for each man m: wn−1
m ≥m wnm, or man’s utility weakly decreases in each

round,
• if , at some step, none of the inequalities is strict, then we have equalities in
all subsequent steps. We say that the matching algorithm stops at the first
n that it happens. We define µ (m) = w∞m and µ (w) = m∞w . Notice that
ifw∞m ∈ W , then man m must be most attractive man for woman w∞w at the
last round: m∞w∞m = m. A similar fact holds for women.

Because the number of agents is finite, the above properties mean that the algorithm
has to stop at some point (we always go down the list and the lists and the number
of lists are finite.)

Remark 5. The deferred acceptance algorithm is robust to men skipping their rounds
and forgetting to approach their most attractive remaining match for one or more
rounds. As long as in the end, all men approach their most attractive match, the
algorithm will continue with exactly the same end result.
It is also robust to men getting in hurry and skipping approaching the women who
are going to reject them.

Theorem 13. The matching obtained in the men-proposing deferred acceptance is
stable.

Proof. First, notice that the outcome of the algorithm is a proper match: Either
µ (m) = m or µ (µ (m)) = µ (w∞m ) = m∞w∞m = m; similarly, either µ (w) = w, or
µ (µ (w)) = w.

Individual rationality is obvious (no man or no woman ever rejects herself if it is a
best option left).

To check that there is no blocking pair, take any m,w that are not matched with
each other.

• If man m likes woman w more than his match µ∗ (m), it means that man m
must have approached woman w during the process and clearly got rejected:
there is n such that wn−1

m = w >w w
n
m.

• But it means that woman w preferred her temporary match in that round:
mn
w >w m.
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• Moreover, her current match is always (weakly) better than all previous, re-
jected ones: µ (w) = m∞w ≥w mn

w >w m

• Hence, w prefers her current match. Thus, m and w are not a blocking pair.

�

Because everything is symmetric, we can define a women-proposing deferred ac-
ceptance to find another stable matching. Typically, there are many more matchings
than those two.

9.4. Efficiency.

Definition 20. Stable matching µis M -optimal, if for each man m, for each other
stable matching µ′, µ (m) ≥m µ′ (m).

Theorem 14. The (men-proposing) deferred acceptance matching µM is M-optimal.
It is also worst for women: for each other stable matching µ, for each woman w,
µM (w) ≤w µ (w).The alternative, women deferred acceptance matching is W -optimal
and worst for men.

Proof. Suppose that µ is any other matching. Suppose that there is either w such
that µ (w) < µM (w) or there is m such that µ (m) >m µM (m). We are going to show
that µ cannot be stable.

Because of the construction of the men-proposing algorithm, there must be the
first round n such that either (a) there exists w such that mn

w >w µ (w), or (b) there
exists man m such that wnm <m µ (m).

Suppose that we have (a). In such a case, mn−1
w ≤w µ (w) and for all men m such

that w = wn−1
m , we have w = wn−1

m ≥m µ (m). Because mn
w >w µ (w), it means that

there is man m = mn
w, such that w = wn−1

m and m >w µ (w). Because µ (w) 6= m,
it must be that µ (m) 6= w. Hence, because wn−1

m = w ≥m µ (m) implies that
w >m µ (m) . It follows that (m,w) is a blocking pair for matching µ.

If we don’t have (a), then suppose that we have (b). Then, wn−1
m′ ≥m′ µ (m′) for all

men m′ and mn
w ≤w µ (w) for all women w. Because wnm <m µ (m), it must be that

wn−1
m = µ (m) and man m is rejected by woman w = µ (m) in the nth round of the

algorithm. Let m′ = mn
w. Hence, w = wn−1

m′ ≥m′ µ (m′). Because µ (w) = m, it must
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be that µ (m′) 6= w and w >m′ µ (m′). Hence, (m′, w) is a blocking pair for matching
µ′. �

Remark 6. Notice for future reference that the proof shows that if µ (m) > µM (m),
then

9.5. Lattice structure of the set of stable matchings. For any two stable match-
ings µ0 and µ1 define function λ:

• λ (m) = µ0 (m) if µ0 (m) >m µ1 (m) and λ (m) = µ1 (m) otherwise (thus, men
is matched to his more preferred partner)
• λ (w) = µ0 (w) if µ0 (w) <w µ1 (w) and λ (w) = µ1 (w) otherwise (woman gets
worse partner).

We also denote function λ as µ0 ∨M µ1.

Theorem 15. λ = µ0 ∨M µ1 is a stable matching. All men prefer λ to either µ0 or
µ1 and all women prefer µ0 to λ (or, µ1 to λ).

Proof. Let

M0 = {m : µ0 (m) >m µ1 (m)} ,

M1 = {m : µ1 (m) >m µ0 (m)}

M ′ = {m : µ0 (m) = µ1 (m)}

Then, the above sets are disjoint decomposition of M . Also, notice that µi (m) ∈ W
for each m ∈Mi.

We show that λ is a good matching. On the contrary, suppose that w = λ (m) =
λ (m′) for m 6= m′.

• both men m and m′ prefer w to their matches under both matchings µ and
µ′. Moreover each man is matched with w under one of the matchings.
• w.l.o.g. suppose that w prefers man m to man m′ and suppose that w is
matched with m′ under matching µ′.
• because man m prefers w to µ′ (m) and w prefers m to µ′ (w) = m′, (m,w) is
a blocking pair and µ′ is not stable. Contradiction.
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Hence, it follows that λ (M0) ∩ λ (M1) = ∅. Because µi is a bijection from Mi to
µi (Mi) = λ (Mi), λ is a bijection from M0 ∪M1 to λ (M0 ∪M1) = λ (M0) ∪ λ (M1).
Hence, µ is a well-defined matching.

Next, we show that λ is stable. Take any m and w and suppose that w prefers man
m to λ (w). Then, w prefers m to both µ0 (w) and µ1 (w). But this means that man
m prefers µ0 (m) and µ1 (m) to w. In particular, m prefers λ (m) to w. Hence, m and
w is not a blocking pair.

�

Corollary 1. The set of matchings form a lattice with the men optimal at the top
and the woman optimal at the bottom. The lattice is distributive: (check in BOOK).

9.6. Rural hospital theorem.

Theorem 16. The set of people who stay single is the same in all stable matchings.

Proof. Let Mm (µ) be the set of married men in matching µ. Then, for each stable
matching µ

Mm (men optimal) ⊇Mm (µ) ⊇Mm (women optimal) .

Otherwise, if man m would have higher utility in a non-optimal matching, which is
impossible. A similar (reverse) observation holds for women. But for each match

|Mm (µ)| = |Wm (µ)|!

�

The name of the result due to A. Roth comes from the observation that in the
resident-hospital matching, if some (typically, rural) hospitals are remain unmatched
in some stable matching, it is not a problem of this particular stable matching, and
it cannot be ameliorated by a different matching algorithm.

Remark 7. One of the benefits of the rural hospital theorem is that it helps in finding
other stable matches, once we find one of them. For instance, suppose that you found
woemn-optimal match. Then all men and women that are unmatched, will remain
unmatched in any other, including men-optimal match. Hence, when running the
men-proposing algorithm, we can safely ignore these men and/or women.
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9.7. Incentives. In order to operate, the (men- or women proposing) deferred accep-
tance algorithm needs preferences as an input. But how do we now the preferences?
We can of course ask. But, then, how do we now whether people (men and women)
report truthfully? The problem is that the reports will determine outcomes. It is
possible that somebody discovers that misreporting her preferences may lead to a
more favorable outcome. This section examines this issue. We are going to define a
matching mechanism as a mapping that chooses a stable matching on each matching
market.

From now on, fix set of men M and women W . Let M (M,W ) be the set of
matchings onM andW . A matching market is defined as a tuple of strict preferences:(
(≤m)m∈M , (≤w)w∈W

)
. Let A (M,W ) be the set of all matching markets.

A matching mechanism φ : A (M,W )→M (M,W ) assigns markets with a match-
ing market A with matching φ (A). The mechanism is stable if for each A, matching
φ (A) is stable in market A. An example of a stable matching mechanism is men-
proposing deferred acceptance algorithm. Another example is the women proposing
deferred acceptance.

We are going to consider the incentives to misreport preferences. Consider a market
A =

(
(≤m)m∈M , (≤w)w∈W

)
, and let Ax,≤′x is a market where agent x reports that his

or her true preferences are ≤′x instead of x and everybody except for x reports the
same as in A.

Definition 21. Mechanism φ is strategy-proof if for each matching market A ∈ A
for each x, each preference relation ≤′x, agent x prefers outcome of the market under
A than under his or her misreport Ax,≤′ :

(φ (A)) (x) ≥x (φ (Ax,≤′)) (x) .

The strategy-proofness is a terminology from the cooperative literature. In the
language of game theory, a mechanism is strategy proof if truth-telling is a Nash
equilibrium of a game, where agents report preferences. A closely related notion in
mechanism design is incentive compatibility.

Theorem 17. There exists no strategy-proof and stable matching mechanism.
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Proof. It is enough to find a single market such that for each stable matching, at least
one man or woman would like to restate his/her preferences. Suppose that there are
two men and two women. Consider a market with preferences:

w1 >m1 w2,w2 >m2 w1,

m2 >w1 m1,m1 >w1 m2,

There are two stable matchings (a) (m1, w1) and (m2, w2) and (b) (m1, w2) and
(m2, w1).

Suppose that the matching mechanism chooses (a). If woman w2 misreports pref-
erences m1 (i.e., she prefers to stay single rather than marry m2), then (b) is the
only stable matching. But w2 prefers m1 to m2, so she is better off misstating her
preferences.

Similarly, if the mechanism picks (b), then man m1 is better off reporting that he
prefers w1 > ∅ (i.e., that he prefers to be single than to marry w2).

It is easy to use the above example to find problematic markets for a a general (not
two-element) sets of men and women. �

Theorem 17 is quite disappointing. It is impossible to find a mechanism which
always produces a stable matching, and that cannot be manipulated. Because the
issue of incentives is so important for modern economic theory, the literature studied
this issue very intensively. Overview of the results:

(1) Although fully strategic proof mechanism is impossible, it is possible to design
mechanisms, in which the incentive problems only affect one side of the market.
For instance, one can show that in the men-proposing deferred acceptance,
truthtelling is always best response for men. So, all teh incenitve problems
are on the women side.

(2) This observation is very helpful in situations in which, for whatever reasons,
we know the preferences of one of the sides of the market. For example, it
is possible that by law, the school prefer students according to some legally
defined criteria (distance to the school, outcome on some exam, etc.). In such
a case, the school preferences are known; the student-proposing algorithm
becomes fully strategy-proof.
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(3) Even if teh preferences are not fully known, it is possible to show that in
some situations the incentive problem disappears. More precisely, one shows
that if a woman receives the same match under every stable matching (or
equivalently, under the men-optimal or women-optimal matchings), she has
no incentives to misreport under the men-proposing algorithms. This should
be intuitive, the incentives to misreport should only exist if one can gain.
(One can actually show that if a woman gains through misreport under the
men-proposing algorithm, then the resulting matching must be stable under
original preferences.)

(4) It follows that if we know that the matching market has a unique stable
matching. In such a case, none of the deferred acceptance algorithms has any
incentive problem. Examples of such markets are given in the next section.

(5) Some of the recent papers examined approximate strategy-proofness and showed
than in many markets, with some stochastic model of preferences, a serious
incentive problem affects only a small group of agents. It happens in these
papers that the stable matchings are very close to each other. The message
of this literature, as far I understand it is that almost uniqueness is closely
related to almost strategy-proofness. But, I have never seen a result that says
this explicitly.

9.8. Uniqueness. Common preferences (a.k.a. 1-dimensional case)

Theorem 18. Suppose that all men have the same preferences. Then, there is a
unique stable matching.

Proof. Because all men have the same preferences, we can arrange all women from
the best to the worst. Consider matching, in which the best woman picks first, then
the second woman picks avoiding the pick of the first, etc. It is easy to see that in
the men-proposing or women-proposing algorithms select this matching. �

Special case (exactly 1-dimensional)

Example 20. Men and women are distributed on the interval m,w ∈ [0, 1]. For
each man m, utilityof man m, M (m,w), is increasing in w. For each w, utility and
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W (m,w) is increasing in m. Then, the stable matching is unique and it is possitively
assortative.

Top-match property

Definition 22. Matching market has top-match property if for each subset of men
M ′ ⊆ M and for each subset of women W ′ ⊆ W , there exists man m̂ ∈ M ′ and
woman ŵ ∈ W ′ such that both are most favorite matches in the subsets (man m̂ is
the most favorite men of woman ŵ among all men in set M ′ and vice verse).

m̂ ∈ arg max
m

It is easy to see that top-match property (and strict preferences) implies uniqueness.
? shows that this property is also necessary if we want to have unique matching in
each subset.
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10. Matching with transferable utility28

10.1. Model and notation. In this section, we assume that individuals have quasi-
linear preferences over matches. Each man m and woman w has preferences repre-
sented by utility functions

M (m,w) + θ for w ∈ W ∪ {∅} ,

W (m,w) + θ, for m ∈M ∪ {∅}.

Here, we can think about θ as a payment, or transfer. To simplify notation, we
sometimes write M (m, ∅) = M0 (m) and same for women. Also, for m ∈ M ∪ {∅}
and w ∈ W ∪ {∅}, let

f (m,w) = M (m,w) +W (m,w)

denote the joint production function. (We take f (∅, ∅) = −∞ although it is never
going to play any role.)

• In the marriage model, the transfers correspond to bride-price, dowry, al-
location of responsibilities in the household, division of household income,
prenuptial agreement etc.
• More importantly, the model with transfers allow for matching workers and
firms and wages!

A matching with transfers (µ, θ) is a pair of matching µ and a transfer function st.
for each x ∈M ∪W

θ (x) + θ (µ (x)) = 0.

It follows that aggregate budget condition holds:∑
m

θ (m) =
∑

θ (w) . (10.1)

A matching with transfers (µ, θ) is stable if two conditions are satisfied:

• individual rationality: for each m and w, each c

M (m,m) ≤M (m,µ (m)) + θ (m) ,

W (w,w) ≤ W (w, µ (w)) + θ (w) ,
28December5, 2019.
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• pairwise stability: for each m and w, each ξ

either M (m,w) + ξ ≤M (m,µ (m)) + θ (m) ,

or W (m,w)− ξ ≤ W (w, µ (w)) + θ (w) .

We have the following simple observation:

Lemma 10. Matching wit transfers is pairwise stable if and only if for each m and
w:

M (m,w) +W (m,w) ≤M (m,µ (m)) + θ (m) +W (w, µ (w)) + θ (w) . (10.2)

Proof. Exercise. �

10.2. Characterization of stable matching. Define the aggregate welfare of a
matching µ :

W (µ, θ) =
∑

m:µ(m)=∅
M0 (m,µ (m)) +

∑
w:µ(w)=∅

W0 (w)

+
∑

m:µ(m) 6=∅
M (m,µ (m)) + θ (m) +W (m,µ (m)) + θ (m)

=
∑
m

M (m,µ (m)) +
∑
w

W (w, µ (w))

=W (µ),

i.e., it does not depend on the transfers.

Theorem 19. For any matching µ, the following two are equivalent:

(1) There exist transfers θ such that (µ, θ) is a stable matching with transfers,
(a) µ ∈ arg max

υ:υ is a matchingW (υ)

The Theorem presents a characterization of a stable matching with transfers:
matching (with some transfers) is stable iff it maximizes welfare

10.2.1. Proof of direction: If a matching is stable stable, then maximizes welfare. Let
(µ, θ) be a stable matching with transfers. Let υ be any other matching. We are
going to show that W (µ) ≥ W (υ).
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For each m st. υ (m) = ∅, teh individual rationality of µ implies that

M (m, ∅) ≤M (m,µ (m)) + θ (m) .

For each w st. υ (w) = ∅, the individual rationality of µ implies that

W (w, ∅) ≤ W (w, µ (w)) + θ (w) .

For each m, st. υ (m) 6= m, let ξm be a transfer that would make m indifferent
between match (µ (m) , θ (m)) and (υ (m) , ξm):

M (m, υ (m)) + ξ (m) = M (m,µ (m)) + θ (m) (10.3)

Then, the pairwise stability condition applied to potential blocking pair (m, υ (m) , ξm)
implies that

W (m, υ (m))− ξ (m) ≤ W (υ (m) , µ (υ (m))) + θ (υ (m)) . (10.4)

(Note that if m receives teh transfer, his match υ (m) must pay up the same amount.)
Adding up (10.3) and (10.4), we obtain

M (m, υ (m)) +W (m, υ (m))

≤M (m,µ (m)) +W (υ (m) , µ (υ (m)))− θ (m) + θ (υ (m)) .

(This observation follows also from lemma 10.
Notice that the welfare of matching υ can be written as the sum of welfare of single

men, single women, and matched pairs,

W (υ) =
∑
m

M (m,µ (m)) +
∑
w

W (w, µ (w))

=
∑

m:υ(m)=m
M (m, ∅) +

∑
w:υ(w)=w

W (w, ∅)

+
∑

m:υ(m) 6=m
M (m, υ (m)) +

∑
w

W (m, υ (m)) .
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By the above inequalities, this is not larger than

≤
∑

m:υ(m)=m
M (m,µ (m)) + θ (m) +

∑
w:υ(w)=w

W (w, µ (w)) + θ (w)

+
∑

m:υ(m) 6=m
(M (m,µ (m)) +W (υ (m) , µ (υ (m)))) + θ (m) + θ (υ (m))

=
∑
m

M (m,µ (m)) +
∑
w

W (w, µ (w)) +
∑
m

θ (m) +
∑
w

θ (w)

=W (µ)

by the aggregate budget condition (10.1).

10.2.2. Proof of direction: If matching maximizes welfare, then stable. Solve linear
programming problem:

W ∗ = max
∑
m,w

µ (m,w) (M (m,w) +W (m,w))

+
∑
m,w

µ (m, ∅) (M (m,w) +W (m,w)) +
∑
m,w

µ (∅, w)W (∅, w)

st.∀m,wµ (m,w) ≥ 0,

∀m
∑
w

µ (m,w) + µ (m, ∅) = 1,

∀w
∑
m

µ (m,w) + µ (∅, w) = 1.

Here, µ ∈ ∆ ((M ∪ {∅})× (W ∪ {∅})). Because the solution set is spanned by the
matchings (Birkhoff–von Neumann Theorem), a solution is a proper matching, and
it is an efficient matching.

To find the transfers, we consider a dual problem:

J∗ = min
∑
m

U (m) +
∑
w

V (w)

st.∀m,wU (m) + V (w) ≥M (m,w) +W (m,w) ,

∀mU (m) ≥M (m, ∅) ,

∀wV (w) ≥ W (w, ∅) .
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By the duality theory (see below), the values of the primal and the dual problems are
equal

J∗ = W ∗.

Suppose that pair (U, V )is a solution to the dual problem, and µ is a solution to
the primal problem. Then,

U (m) + V (µ (m)) ≥M (m,µ (m)) +W (m,µ (m)) if µ (m) 6= ∅,

U (m) ≥M (m,µ (m)) if µ (m) = ∅,

V (w) ≥ W (w, µ (m)) if µ (w) = ∅,

which implies that

J∗ =
∑
m

U (m) +
∑
w

V (w)

≥
∑

m:µ(m)=∅
M (m, ∅) +

∑
w:µ(w)=∅

W (w, ∅)

+
∑

m:µ(m)6=∅
M (m,µ (m)) +W (m,µ (m))

=W (µ) ≥ J∗ (µ)

and the inequality turns into equality only if all the above constraints are equal!
Let

θ (m) = 0 if µ (m) = m,

θ (w) = 0 if µ (w) = w,

θ (m) = M (m,µ (m))− U (m) for all other m.

Easy to check that the matching µ with transfers θ is stable! Indeed, IR for men is
satisfied because their utility is equal to U (m) ≥ M0 (m) by constraints. Same for
women.Moreover, suppose that m,w is a blocking pair with a transfer θ: Then

M (m,w)− θ > U (m) ,

W (m,w) + θ > V (w) .

But the sum of the above inequalities contradicts the constraint of the dual problem!
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10.2.3. Duality theory. Let b ∈ Rm, c ∈ Rn and let A be m× n matrix. Consider two
finitely dimensional linear programming problems.

• Primal problem:max cTx st. Ax ≤ b and x ≥ 0, where x ∈ Rn

• Dual problem: min bTy st. ATy ≥ c and y ≥ 0, where y ∈ Rm.

Theorem 20. (Strong Duality Theorem). The values of the primal and the dual
problems are the same.

To apply to the matching,

• assume that f (m,w) ≥ 0 (add constant to normalize), and take

c =



f (m1, w1)
...

f
(
m1, w|W |

)
f (m1, ∅)
f (m2, w1)

...

...

f
(
m|M |, ∅

)
,

f (∅, w1) ,
...

f
(
∅, w|W |

)



, b =



1
...

...

...

...

1


nM +nW

,

and matrix A that is (|M |+ |W |)× ((|M |+ 1)× (|W |+ 1)− 1)-dimensional.

10.3. One-dimensional case. Suppose that men and women are distributed on the
interval m,w ∈ [0, 1]. Define the joint marriage production function f (m,w) =
M (m,w) +W (m,w).

Definition 23. Say that f is strictly supermodular, if for any m < m′ and w < w′

f (m,w) + f (m′, w′) > f (m,w′) + f (m′, w) .

Theorem 21. If f is strictly supermodular, then, the unique stagble matching with
transfers is assortative. If −f is supermodular, then the unque stable matching with
transfers is negatively assortative.
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Proof. Suppose that two matched pairs in a matching are not matched assortatively.
Then, a rematch increases the welfare from thetwo pairs, and, as a consequence, the
total welfare. Apply Theorem . �

Compare with NTU case!

• TU: supermodularity (i.e., cross derivative of the joint production function)
• NTU: first derivative of the utilities.

10.4. Matching with contracts. The models of matching with or without transfers
have a nice common generalization. The idea is that, apart from two matching
partners, each match can be formed under some conditions that are chosen by the
partners. For instance, a man and a woman can form a marriage through a regular
law-recognized form of a wedding, they can cohabit without any formal ties, or they
can sign some sort of civil agreement, or anything else. The form of the marriage
presumably affects the utility of he spouses.

More importantly, when a worker matches with a firm, they sign a contract hat
specifies work conditions, hours, whether the work is done from office or at home,
benefits, work uniform, etc. All of these match conditions are describe in a contract,
the details of which presumably affect the parties utility from the match.

Suppose that C is the set of all possible contractual conditions. A match of man
m with woman w under contract c gives him and her the utility

M (m,w, c) and W (m,w, c) .

To make the notation consistent, we describe the utility of agent x staying alone as
a function of a conract (or form of staying alone):

M (m,m, c) and W (w,w, c) ;

a typical assumption could be that c does not affect the above utilities.
A matching with contracts is a tuple (µ, c) of a matching µ and a mapping c :

M ∪W → C such that for each x,

c (x) = c (µ (x)) .

This condition ensures that each match has a well-defined contract.
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A matching with contracts (µ, c) is stable if two conditions are satisfied:

• individual rationality: for each m and w, each c

M (m,m, c) ≤M (m,µ (m) , c (m)) ,

W (w,w, c) ≤ W (w, µ (w) , c (w)) ,

• pairwise stability: for each m and w, each c

either M (m,w, c) ≤M (m,µ (m) , c (m)) ,

or W (m,w, c) ≤ W (w, µ (w) , c (w)) .

of staying alone. in principle deach worker w from working at firm f under contrac-
tual conditions c are given by uw (f, c). The utility of firm f from worker w under
contractual conditions c are vf (w, c). The utility of staying alone is respectively,
uw (∅) and vf (∅).

We may consider the following 29 version of the Gale-Shapley algortithm to find a
stable matching.

• Initialization:
– Each woman has a list of potential options: man-contract pairs. Its
current tentative allocation is to stay alone.

– Each man has a list of available options: woman-contract-pairs.
• In each round, each manm has some (w, c) at the top of his list. He approaches
woman w and offers her contract c, i.e., offers her option (m, c).
– Each woman collects the offers and chooses the best offer. If the best offer
is better than her current tentative allocation, then the current tentative
allocation becomes the current best offer. The woman crosses out all
offers that are worse than then her current (possibly, newly updated)
tentative allocation. All the crossed out offers are rejected.

– All men whose offers are rejected, cross out the offer from their lists.
– The process continues until some round is passed without any crossing
out.

29Men-proposing. Of course, there is an analoguous firm-proposing version.
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As the original deferred acceptance algorithm, the algorithm stops in finite time. One
can show that the outcome of the algorithm (the current tentative match for the firm,
and the top position on the list for the worker) is a stable match.

Exercise 21. 1. Show that the stable match obtained in the previous point is worker-
optimal.

2. Show that an appropriate version of the rural hospital theorem applies in this
setting.
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