
2. Pareto-optimal allocations13

2.1. Definition. Suppose that we have economy where each agent has preferences
over feasible allocations (that are derived from their own preferences over consumption
spaces as in Section 1.3.4).

Definition 2. A feasible allocation x is Pareto-optimal if for any other feasible allo-
cation y, if y �i x for some agent, then there is an agent j 6= i such that y ≺j x.

if a feasible allocation x is Pareto-optimal, then any other feasible allocation that
makes somebody better-off must make somebody else strictly worse-off.

Let P ⊆ X be the set of Pareto-optimal allocations.

2.2. Finding the utility possibility frontier. Define the utility-possibility set

UP = {(u1 (x1) , ..., uI (xI)) : x ∈ X} .

The Pareto-optimal allocations correspond to the utilities from the upper-boundary of
this set. (Some examples). If everything works well, the set is sufficiently regular and
we can find the Pareto-optimal allocations as the solution to the following program:

Proposition 1. Suppose that the commodity sets are standard (i.e., Xl = R or R+ for
each commodity l), each agent i’s preferences are strongly monotone and continuous,
and Xi = Z for each agent i. Then, an allocation x∗ = (x∗1, ..., y∗J) is Pareto-optimal
if and only if, for some i,

x∗ ∈ arg max
x∈X

ui (x) st. uj (x) ≥ u∗j for each j 6= i,

where u∗j = uj (x∗). Moreover, at the optimum, the constraint holds with equality.

Proof. One direction, namely if x∗ is Pareto-optimal, then it is a solution to the
maximization problem, is trivial.

The proof of the other direction is a bit more complicated. Suppose that x∗is a
solution to the problem that is not Pareto-optimal. Hence, there must be an allocation

x′ = (x′1, ..., x′I , y′1, ...y′J)
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and player j 6= i such that uj (x′) > uj (x∗) and uk (x′) ≥ uk (x∗) for each k 6= j.
We will show that there exists a feasible allocation x′′ such that ui (x′′) > ui (x∗) and
uk (x0) ≥ uk (x∗) for each j 6= i.

The idea is that allocations x′′and x′ differ only with respect to the consumption
plans of agents j and i: we are going to reallocate some fraction of the consumption
bundle from j and give it to i.

Because the commodity sets are standard, there is a consumption bundle b < xj

such that b ∈ Z = Xj. (Consumption bundle b is bad). For very small ε > 0,
construct

x′′j = (1− ε)x′j + εb = x′j − ε
(
x′j − b

)
.

Because preferences of agent j are continuous, and because uj (x′i) > uj (x∗), for
sufficiently small ε > 0, we are going to have uj (x′′i ) ≥ uj (x∗). Construct

x′′i = x′i + ε
(
x′j − b

)
.

Then, x′′i ∈ Xi. (This is because the assumption on the consumption space of agent i
as well as the standard commodity sets.) Moreover, by strict monotonicity, ui (x′′) >
ui (x′) ≥ ui (x∗).

Construct x′′ from x′ by replacing the allocations of players j and i by x′′j and x′′i .
Clearly x′′ is feasible. (Convince yourself why.) Thus, we find an allocation x′′ that
is feasible and that makes each consumer at least as well-off as than under x∗, and
consumer i strictly better off. That is not good as it contradicts the fact that x∗is
the solution to the maximization problem.

The last claim follows from the proof. �

2.3. Examples.

2.3.1. Linear preferences.

Example 9. Consider exchange economy with two goods, X and Y , total endowment
ω = (1, 1) and two agents Alice and Bob with preferences ui (x, y) = aix+ biy, where
we assume that ai, bi > 0 for each i. Describe the utility-possibility frontier. Find the
set of all Pareto-optimal allocations.



17

We want to solve

max
xA+yA

aAxA + bAyA st. aB (1− xA) + bB (1− yA) = uB.

The constraint implies that

yA = 1− uB
bB

+ aB
bB
− aB
bB
xA.

Because yB ∈ [0, 1], we have xA ∈
[
1− uB

aB
, 1− uB

aB
+ bB

aB

]
. We can substitute to the

original problem, to get

max
xA

(
aA
bA
− aB
bB

)
xA+1−uB

bB
+aB
bB

st. max
(

1− uB
aB
, 0
)
≤ xA ≤ 1+ 1

aB
min (bB − uB, 0) .

The solution depends on the sign of the coefficient with xA. If aA

bA
= aB

bB
, then all

non-wasteful allocations are Pareto-optimal.
Assume aA

bA
> aB

bB
(the remaining case is solved analogously). In other words, Alice

cares relatively more about the good X rather than Y . If bB > uB, then xA = 1,and
yA = 1− 1

bB
uB. Given Bob’s utility, Alice’s utility is equal to

aA + bA −
bA
bB
uB.

If bB ≤ uB, then yA = 0, and xA = 1− uB−bB

aB
. Alice’s utility becomes equal to

aA + aA
aB
bB −

aA
aB
uB.

The utility -possibility frontier’s Alices allocations are

{(xA, 0) : xA ∈ [0, 1]} ∪ {(1, yA) : yA ∈ [0, 1]} .

In other words, we first start giving good X to Alice, and the rest ot Bob; once we
do not have any good X left, Alice strats taking the other good.

2.4. Assignment problem.

Example 10. There are I agents and L objects. Each agent i needs at most one
object, receives utility uil from getting object l and utility ui0 if she receives nothing.
A (pure, possibly wasteful) allocation is a mapping a : I → L ∪ {0} such that for
each i, i′, l if a (i) = a (i′) ∈ L, then i = i′. (We allow for wasteful allocations because
maybe some agents do not like certain objects.)
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If you need a concrete example to focus attention, think about students as agents
and rooms in the dorm as objects. Other applications are offices for professors,
students to universities.

We are going to describe the Pareto-optimal allocations in the above example. To
make things simpler, we assume that each agent has a strict preference ranking over
her options, ui,l 6= ui,l′ for any i and l, l′ ∈ L ∪ {0} such that l 6= l′.

Consider the following way of choosing allocations. First, assign a priority order:
bijection π : I → {1, ..., |I|}. Then, each agent in order π (1) , π (2) ,π (3) , ... makes a
pick of his favorite object among all remaining (yet unpicked) objects. . The objects
chosen by the agents are removed from the set of remaining objects. We refer to such
an algorithm as the Serial Dictatorship.

More formally, let L0 = {∅}and for each k = 1, 2, 3, ...,define inductively

lk = arg max
l∈(L\Lk−1)∪{∅}

uπ−1(k),l,

Lk = Lk−1 ∪
{
lk
}
.

In other words, lk is an object chosen at stage k by agent π−1 (k). Such agent chooses
freely from objects that are not chosen by agents with a higher priority.

We are going to show than any allocation obtained by the Serial Dictatorship is
Pareto-optimal. Let a be an allocation that is obtained from the Serial Dictatorship
with priority order π . Suppose that a′ is another allocation a′ 6= a. We show that a′

is not Pareto-optimal. Because a′ 6= a, the set {i : a (i) 6= a′ (i)} is not empty. Let

i∗ = arg min
i:a(i) 6=a′(i)

π (i)

be the highest priority individual whose allocations differ under a and a′. By the
construction, it must be that a′ (i) /∈ Lk−1\ {∅} (otherwise, we would vi9olate feasi-
bility with some higher priority individuals). But then, again by the construction,
ui,a′(i) < ui,a(i).

Exercise 4. Show that any (pure, wasteful) Pareto-optimal allocation can be ob-
tained from the Serial Dictatorship under some priority assignment.
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Notice that the total number of all priority orderings is equal to I! and potentially
very large. Although not all priority orderings lead to different allocations (convince
yourself so), they might (for instance, when all agents have exactly identical prefer-
ences, each priority ordering leads to a different allocation.) Thus, there is potentially
a very large number of Pareto-optimal allocations.

2.5. Quasi-linear economy. We can define the welfare of the allocation as the sum
of the utilities: For each x ∈ X, let

W (x) :=
∑
i

ui (xi) .

This definition is typically not useful, because the utility levels of different agents do
not typically have any meaning, as they are defined up to monotone transformations.

The definition becomes useful if all consumers have quasi-linear preferences over
the same numeraire good, say good L. Then, as we know, the numeraire allows us
to directly compare the (non-linear) utilities from other allocations. We have the
following powerful result:

Proposition 2. If all consumer preferences are represented by quasi-linear utilities
ui (xi) = u0

i (xi,−l) + xi,l over good L, then

W (x) =
∑
i

u0
i (xi,−l) + ωL,

and a feasible allocation x is Pareto-optimal if and only if it maximizes welfare among
all feasible allocations:

x ∈ arg max
x′∈X:

∑
xi,L=ωL

∑
i

u0
i (xi,−l) .

Proof. We show first that if x is Pareto-optimal, then it must maximize welfare.
Suppose that x, x′ are feasible allocations such that is an allocation such thatW (x) <
W (x′). We are going to create a feasible allocation x′′ that Pareto-dominates x.
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Indeed, fore ach j,

x′′i,−L = x′i,−L,

y′′j = y′j, and

x′′i,L = x′i,L + ui (xi)− ui (x′i) + 1
I

[W (x′)−W (x)] .

The individual utility from the new allocation is equal to

ui (x′′i ) = ui (x′i) + ui (xi)− ui (x′i) + 1
I

[W (x′)−W (x)]

= ui (xi) + 1
I

[W (x′)−W (x)] > ui (xi) .

To check that the allocation is feasible, we only need to look at the aggregate feasibility
of the numeraire (because nothing else changed). But,

∑
i

x′′i,L =
∑
i

x′i,L +
∑
i

(ui (xi)− ui (x′i)) + I
1
I

[W (x′)−W (x)]

=
∑
i

x′i,L +W (x)−W (x′) + [W (x′)−W (x)]

=
∑
i

x′i,L.

Hence, x′′ is feasible and x′′ Pareto-dominates x.
For the other direction, suppose that x maximizes welfare among all feasible allo-

cations that satisfy the strong aggregate feasibility for the numeraire. Consider any
other allocation x′. We have

W (x) ≥ W (x′) .

Hence, it cannot be that all consumers are weakly better off and at least one of the
is strictly better off under x′. �

2.5.1. Assignment problem with quasi-linear preferences. Consider an assignment prob-
lem like in Example 10, but where there is an additional good “money” and the
agents have quasi-linear utility over money (and the previously described utility from
objects). The existence of money dramatcially changes the set of Pareto-optimal al-
locations. In fact, the above result shows that they can be found as solutions to the
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maximization problem:

max
a:I→L∪{0}

∑
i

ui,a(i)

st.if a (i) = a (i′) ∈ L, then i = i′.

The constraints make sure that the allocation is feasible.
The above problem is actually easier to solve when we expand the space of allo-

cations by allowing lotteries in the sense of Example 7. Let αi ∈ ∆ (L ∪ {0}) be a
random allocation of consumer i. Let α = (αi) be a (not necessarily feasible) random
allocation. Consider the following problem:

max
α=(αi)

∑
i

∑
l∈L∪{0}

αiluil

st.
∑
i

αil ≤ 1 for each l.

The constraint implies that each object l cannot be allocated with a probability above
1 (it is possible that nobody wants some good; if these are preferences. )

This is a linear programming problem! We understand such problems very well, we
have Kuhn-Tucker conditions to solve them, or simplex method. More importantly,
such a problem has discrete (i.e., not random) solutions. Conivince yourself that any
such non-random solution is a solution to the original discrete problem, hence it is a
Pareto-optimal allocation.
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