
5. Welfare Theorems19

The Welfare theorems relate Pareto-efficiency and Walrasian equilibrium.

• The First Welfare Theorem (FWT) says that all Walrasian equilibrium allo-
cations are Pareto-optimal. This is very important result because it says that,
in Walrasian equilibrium, we cannot improve anybody’s life without reducing
somebody’s else.
• In general, there are many Pareto-optimal allocations, and they differ in im-
portant aspects, like the distribution of utility or wealth. One might be con-
cerned whether some FWT does not say how equitable are the equilibrium
allocations. The Second Welfare Theorem says that, if we are allowed to
transfer wealth (or endowment), then by appropriately choosing transfers,
we can implement any Pareto-optimal allocation. An important assumption
needed for the SWT is that the preferences are convex.
• The FWT has an interesting corollary that is an important in its own. Con-
sider an exchange economy with privately owned endowments. An equilibrium
requires possible participation of all agents in the economy, whose equilibrium
allocations may differ from their endowments (because each one of the trades
their goods). Suppose that a subset of the agents would like to remove them-
selves from the general economy and reallocate their privately owned goods
between each other. Can they be better off by doing so? It turns out, not.

Together, the Welfare Theorems are theoretical underpinnings for the argument the
“free-market”, possibly with wealth-correcting transfers, is better left untouched.

5.1. First Welfare Theorem.

Theorem 6. Let (x, p) be a Walrasian equilibrium such that all prices are non-
negative, p > 0, and the Walras Law holds for each consumer (for instance, because
(a) for each good, at least one consumer is strictly monotonic in this good’s direction,
or (b) prices are strictly positive, p � 0 and preferences are locally non-satiated).
Then, x is Pareto-optimal.
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The two assumptions: local non-satiation and strictly positive prices, are required
to handle the problem of “bads” (see the discussion in Remark 1). Notice that due
to Lemma 2, the assumptions are satisfied if, the preferences are strongly monotone.

The assumptions (local non-satiation) do not allow for indivisble goods. This can
be fixed if we allow the members to trade lotteries over goods.

Proof. Suppose that (x, p) is a Walrasian equilibrium that is not Pareto-optimal. In
particular, there is a feasible allocation x∗ such that for each consumer i, ui (xi) ≤
ui (x∗i ), and there is a consumer j such that the inequality is strict.

For each consumer i, if x∗i is individually feasible and ui (xi) ≤ ui (x∗i ), it must be
that x∗i ∈ x∗i (p, wi) is a part of the demand. The Walras Law implires that

p · x∗i ≥ p · xi.

Moreover, it must be that
p · x∗j > p · xj.

Otherwise, because x∗is feasible, x∗j is individually feasible, hence available for con-
sumer j, and as it is strictly better, consumer j should not have chosen xj. Finally,
notice that profit maximization implies that

p · y∗j ≤ p · yj.

The Walras Law applied at the equilibrium allocation implies that for each con-
sumer i

p · xi = p · ωi +
∑

j

θijp · yj.

By summing up across consumers we obtain the aggregate budget balance condition

p ·
∑

i

xi = p · ω + p ·
∑

j

yj.

The above inequalities imply that

p ·
∑

i

x∗i > p ·
∑

i

xi = p · ω + p ·
∑

j

yj ≥ p · ω + p ·
∑

j

y∗j .

Because all prices are non-negative, there must be a good l such that

x∗,li > ωl
i +

∑
j

y∗,lj .
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But this contradicts feasibility of allocation x∗. �

Exercise 10. Suppose that we use a stronger definition of Walrasian equilibrium,
with strict instead of weak aggregate feasibility. In such a case, show that the FWT
does not need the assumption that prices are non-negative.

5.2. Separating hyperplane theorem. For the proof of the Second Welfare The-
orem, we will need the Separating Hyperplane Theorem.

Theorem 7. Let A and B be two disjoint nonempty convex subsets of Rn. Then there
exist a nonzero vector p ∈ Rn such that

sup
a∈A

p · a ≤ inf
b∈B

p · b.

Of course, the convexity is very important for the Theorem. An infinite general-
ization: Hahn-Banach theorem.

5.3. Equilibrium with transfers. Instead of initial endowments, we can also con-
sider original endowments and transfers.

Definition 4. A Walrasian equilbrium with transfers is a feasible allocation x =
(x1, ..., yJ), a vector of prices p, and transfers (τ1, ..., τI) such that ∑i τi = 0 such that

• for each i, xi ∈ x∗ (p, wi), where wi = p · ωi +∑
j θij (p · yj) + τi,

• for each j, yj ∈ y∗ (p).

Importantly, the transfers do not have a form of taxes, in many ways:

• they differ between individuals,
• they do not depend on behavior: they are not consumption taxes nor income
taxes,
• they are allocated by omniscient Walrasian taxmen.

5.4. Second Welfare Theorem. Suppose that x∗ is a Pareto-optimal allocation.
Recall that consumption plan x = (x1, ..., xI) Pareto-dominates x∗ (we will write
x∗ ≺P x) if x∗i �i xi for each i, with at least one inequality strict.
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Theorem 8. (SWT) Suppose that (a) all preferences are convexand all technologies
are convex, and (b) preferences are locally non-satiated and continuous„ the endow-
ments are interior, technologies satisfy the possibility of inaction.
Then, for each Pareto-optimal allocation x∗, there exists a vector of non-zero, non-
negative prices p∗ and transfers τ ∗ such that (x∗, p∗, τ ∗) is a Walrasian equilibrium
with prices.

The first set of assumptions is substantive. Convexity is important. Example in
Edgeworth box.

The second one is technical and we use it in similar way as in the proof of the
existence of Walrasian Equilibrium (Theorem 4).

Regarding the value of the SWT: the Walrasian Taxmen who has all the informa-
tion needed to figure out the level of taxes necessary to guarantee a given level of
equitability of the allocation, probably would have also information that is necessary
to compute the Pareto-efficient allocation, without a need for any market mechanism.

5.5. Proof of the SWT. Let x∗ = (x∗1, ..., x∗I , ..., y∗J) be a Pareto-optimal allocation.
Let x̃ = ∑

i x
∗
i be the aggregate demand in this allocation.

The proof is divided into a sequence of steps.

5.5.1. Aggregate demands and supplies. We define sets:

• the set of aggregate demands in consumption plans that Pareto-dominate x∗:

X∗ =
{∑

xi : x ∈
∏
Xi st. x∗ ≺P x

}
.

• the set of “available” aggregate consumptions

Y0 = ω +
∑

i

Yi, and

Y ∗ = {x : x ≤ y for some y ∈ Y0} .

• Observe that, by the aggregate feasibility of the Pareto allocation x∗, we have
x̃ ∈ Y ∗.

We have two simple Lemmas:

Lemma 8. X∗ and Y ∗are disjoint. Also, x̃ ∈ Y ∗ and x̃ ∈ clX∗.
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Proof. On the contrary, suppose that there is z ∈ X∗∩Y ∗. Then, there is a consump-
tion plan (x1, ..., xI) that Pareto dominates x∗ and such that ∑xi = z. Moreover,
there is a production plan (y1, ..., yJ) such that yj ∈ Yjfor each j and

z ≤ ω +
∑

yj.

Consider an allocation (x1, ..., xI , y1, ..., yJ). This allocation is individually and ag-
gregate feasible. It also Pareto-dominates the original allocation. Hence, x∗ is not
Pareto-efficient. Contradiction shows the first claim.

For the second claim, notice that x̃ ∈ Y ∗ because x∗is aggregate feasible. Local
non-satiation implies that there is a sequence of consumption bundles xn

i → x∗i for
each i such that x∗i ≺ xn

i . �

Lemma 9. X∗and Y ∗are convex.

Proof. The convexity of Y0 follows from Exercise 1. The convexity of Y ∗ is left as an
exercise.

For the convexity of X∗, take any x, x′ ∈ X∗ and α ∈ (0, 1). Let i be a player such
that x∗ ≺i x. Hence, x∗j �j xj, x

′
jfor each j, x∗i ≺i xi, and x∗i �i x

′
i. By the convexity

of preferences,

x∗j �j αxj + (1− α)x′j,

x∗i ≺i αxi + (1− α)x′i.

It follows that x∗ ≺P αx+ (1− α)x′. �

5.5.2. Prices. The Separating Hyperplane Theorem and Lemmas 8 and 9 implies that
that there exists a non-zero p ∈ Rn such that

sup
y∈Y ∗

p∗ · y ≤ inf
x∈X∗

p∗ · x. (5.1)

Note that the prices must be positive; the reason is that set Y ∗is unbounded from
below, and if one price pl < 0, then we can find yn = (y1, ..., yl,n, ..., yL) ∈ Y ∗ such
that yn,l → −∞ and p∗ · yn →∞, which would contradict the above inequality.

Because of the second part of Lemma 8, we have

p∗ · x̃ ≤ sup
y∈Y ∗

p∗ · y and inf
x∈X∗

p∗ · x ≤ p∗ · x̃,
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which, together with (5.1) implies that

sup
y∈Y ∗

p∗ · y = p∗ · x̃ = inf
x∈X∗

p∗ · x. (5.2)

5.5.3. Transfers. We define transfers

τ ∗i = p∗ · x∗i − p∗ ·

ωi +
∑

j

θij

(
p∗ · y∗j

) .
These transfers make sure that the wealth of agent i is w∗i = p · x∗i .

Because x∗is feasible, this concludes the proof of the existence of Walrasian equi-
librium with transfers.

5.5.4. Firms. We show that each firm is maximizing profits: y∗j ∈ arg maxy∈Yj
p∗ · y.

If not, then there is a production plan (y1, ..., yJ) ∈ ∏j Yj such thatp · yj ≥ p · y∗j , with
at least one inequality strict. But then, let y = ω +∑

j yj. We have

p∗ · y = p · ω +
∑

j

p · yj > p · ω +
∑

j

p · y∗j = p ·

ω +
∑

j

y∗j

 ≥ p · x̃,

where the last inequality comes from the aggregate feasibility (i.e., x̃ ≤ ω + ∑
j y
∗
j )

and the fact that the prices must be positive (see Step 1).

5.5.5. Consumers. Finally, we show that each consumer i is optimizing at p∗. On
the other hand, suppose that for some player i, there is xi such that x∗i ≺ xi and
p · xi ≤ p · x∗i . By Lemma 6 and the continuity of preferences, there exists x′i ∈ Xi

such that x∗i ≺ x′i and p · xi < p · x∗i . Let

x = (x∗1, .., x′i, ..., x∗I) .

Then, x∗ ≺P x, which implies that ∑j 6=i x
∗
j + x′i ∈ X∗. But,

p ·

∑
j 6=i

x∗j + x′i

 < p ·

∑
j 6=i

x∗j + x∗i

 = p · x∗,

which contradicts the second inequality in (5.2).
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5.6. Core. There are other ways of selecting a feasible allocation in the economies
apart from the Walrasian equilibrium. One of them is a core.

In this subsection, we assume that we have a pure exchange economy.

Definition 5. Say that a feasible allocation x can be blocked by coalition S ⊆ I if
there is an “S−allocation” (x′i)i∈S ∈

∏
i∈S Xi that (a) satisfies (weak) S- aggregate

feasibility: ∑
i∈S

x′i ≤
∑
i∈S

ωi,

and such that (b) for each i ∈ S, ui (x′i) > ui (xi). A core is a set of feasible allocations
in the whole economy that cannot be blocked by any coalition.

To understand this definition, think about group of agents S removing themselves
from the global economy, and reallocating their private endowments. An original
allocation can be blocked, if there is a reallocation that improves the utility of every
single agent in the group.

Exercise 11. Show that under the hypothesis of Proposition 1,

Theorem 9. An allocation in a Walrasian equilibrium with non-negative prices (i.e.,
p > 0) belongs to the core.

Proof. The proof follows the proof of the First Welfare Theorem. Suppose that (x, p)
is a Walrasian equilibrium. Suppose that there is an “S−allocation” (x′i)i∈S ∈

∏
i∈S Xi

that (a) satisfies (weak) S- aggregate feasibility:∑
i∈S

x′i ≤
∑
i∈S

ωi,

and such that ui (x′i) > ui (xi). Because of the latter, it must be that none of the
bundles x′i is available at prices p:

p · x′i > p · ωi.

By summing over i ∈ S, we get ∑
i∈S

p · x′i >
∑
i∈S

p · ωi.

But this contradicts S-feasibility. �
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Remark 2. The proof and assumptions of Theorem 9 are very similar to the proof
and assumptions of Theorem 6. Here, we do not require the Walras Law - the reason
is that the definition of blocking allocation is stronger than the Pareto-improvement:
we require that each member of the coalition is strictly better off (this ensures that
the blocking allocation must be strictly outside of the budget for each consumer;
something that we would not necessarily have in the proof of Theorem 6 without the
Walras Law).

Converse does not hold. Picture in 2×2 economy, Edgeworth box (18B1 of MWG):
show that there can be continuum of core allocations.

5.7. Core convergence. TBA.
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