
COMPARATIVE STATICS

MARCIN PĘSKI

Please let me know about any typos, mistakes, unclear or ambiguous statements
that you find.

1. Comparative statics

In many economic problems, we are interested in how the maximizers of a certain
function change with some parameters of the function. Let X be a space of choices,
and T be a space of parameters. Let f : X×T → R be a function. We want to know
how the utility maximizers

x∗ (t) = arg max
x

f (x, t) (1.1)

change with parameters t. If the maximizer is not unique, then x∗ (t) is a set.
Examples include: utility maximization given some parameter, game theory (x is

the best response, and t is the action of the opponent.)

Example 1. Neoclassical firm chooses capital k and labor l to maximize profits and
to produce target output y:

max
k,l

py − rk − wl st. F (k, l) = y.

How does the amount of l depend on y? It seems natural to expect that l increases
with y - what assumptions on F are necessary to show it?

Another cute example comes from (Quah and Strulovici, 09)

Example 2. Optimal stopping problem. Suppose that u (t) is a flow of payoffs in
time t from certain activity. The agent discounts future payoff with discount factor δ.
The agent may decide to terminate the activity in period x; in such case, his payoff
is equal to

Vδ (x) =
ˆ x

0
eδtu (t) dt.

1
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The optimal stopping time is an element of a set arg maxx Vδ (x) . How does the
optimal stopping change with the agent’s patience? The intuition says that more
patient agents wait longer. Is it correct?

2. Implicit Function Theorem

If everything is nice and differentiable, and the maximizer is unique we can ana-
lyze the derivative dx∗(t)

dt
. Assume that X,T ⊆ R and that u is twice continuously

differentiable, and fxx < 0. Then, fx (x, t) = 0 characterizes the x-maximizer of u. In
particular,

fx (x∗ (t) , t) = 0 and fxx (x∗ (t) , t) < 0.

(The second condition is a strong version of the second order condition, and sufficient
condition for the maximum.) By differentiating the first identity, we get

fxx (x∗ (t) , t) dx
∗ (t)
dt

+ fxt (x∗ (t) , t) = 0,

which implies that
dx∗ (t)
dt

= − fxt (x
∗ (t) , t)

fxx (x∗ (t) , t) .

Thus, the change of the maximizer depends on the second derivatives of function f.
Problems:

• We need lots of assumptions: differentiability, uniqueness, the existence of
inverse of fxx (with more than one variables, this means that the matrix
• There are some context in which some of these assumptions are strong.
• Sometimes, they are impossible (in games, where f is an endogenous object,
like best response).

3. Univariate case

Things are not always nice and differentiable, and the optimal solutions are not
always unique. In order to deal with such situations, we need a better, more robust
theory of comparative statics.

We develop this theory in two stages. First, we assume that X and T are subsets
of the real line R. This is the most familiar case, and arguably, having most decision-
theoretic applications.
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Because the maximizers (1.1) might not be unique, we need to define what we mean
that one set of maximizers is larger than the other. We use so-called strong set order
(Topkis). Take any two subsets A,B ⊆ X : we say that A is (weakly) dominated
by B in the strong set order sense, write A ≤S B, if for each a ∈ A, and b ∈ B,

min (a, b) ∈ A and max (a, b) ∈ B.

Example 3. On real line [3, 5] ≤S [6, 7], [3, 5] ≤S [4, 7], but not [3, 5] ≤S [2, 7] nor
{3, 5} ≤S {4, 7}.

Say that correspondence x∗ : R ⇒ R is (weakly) increasing if for any t < t′,
x∗ (t) ≤S x∗ (t′).

3.1. Single crossing condition (Milgrom and Shannon). Say that family of
functions f (., t) is ordered by the single crossing condition, if

f (x′, t)− f (x, t) ≥ 0 implies f (x′, t′)− f (x, t′) ≥ 0, and

f (x′, t)− f (x, t) > 0 implies f (x′, t′)− f (x, t′) > 0

for all t < t′ and x < x′.

Theorem 1. Let x∗ (t) be a solution to (1.1). If family f (., t) is ordered by the single
crossing condition, then, x∗ (t) is increasing.

Proof. Take any x ∈ x∗ (t) and x′ ∈ x∗ (t′) for some t < t′ and suppose that x > x′.

We will show that x′ ∈ x∗ (t) . Indeed, if not then f (x′, t) < f (x, t) . Because x′ < x,

the single crossing condition implies that f (x′, t′) < f (x, t′) , which contradicts the
fact that x′ ∈ x∗ (t′) .

Similarly, we show that for any x ∈ x∗ (t) and x′ ∈ x∗ (t′) such that t < t′ and x > x′,
it must be that x ∈ x∗ (t′) . Because x ∈ x∗ (t) , it must be that f (x′, t) ≤ f (x, t) .
Because x′ < x and by the single crossing condition, f (x′, t′) ≤ f (x, t′) , which implies
that x ∈ x∗ (t′) . �

One shows that the single-crossing property is necessary for the monotone compar-
ative statics in the following (very strong!) sense. For any set of constraints Y ⊆ R,
consider the constrained problem

x∗Y (t) = arg max
x∈Y

f (x, t) .
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Theorem 2. The following statements are equivalent:

(1) Family f (., t) is ordered by single crossing condition.
(2) For each set Y ⊆ R, each t < t′,

x∗Y (t) ≤S x∗Y (t′) .

Proof. Direction (1) to (2) follows from the proof of Theorem 1 without any modifi-
cations. (Notice that theorem 1 asserted somehow weaker claim).

Direction (2) to (1). We prove by contradiction. Suppose that (2) holds and (1)
does not hold. Then, there exist x < x′ and t < t′ that violates one of the two
conditions from the definition of the SCC. Assume that the first condition is violated
(the proof in the case of the second condition is similar). Then,

f (x′, t) ≥ f (x, t) and f (x′, t′) < f (x, t′) .

Let Y = {x, x′}. Then, the first inequality implies that

x′ ∈ x∗Y (t) ,

and the second inequality implies that

x′ /∈ x∗Y (t′) = {x} .

Thus,
not x∗Y (t) ≤S x∗Y (t′) .

Contradiction. �

(See also a similar result below about increasing differences).

3.2. Increasing differences. Function f : R2 → R has increasing differences, if for
each x′ > x, the difference

f (x′, t)− f (x, t)

is (weakly) increasing in t. Function f has strictly increasing differences if the differ-
ence is strictly increasing.

Consider maximization problem

x∗Y (t) = max
x∈Y

f (x, t) + g (x) . (3.1)
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The next result shows that increasing differences is a sufficient and necessary condition
for the set of maximizers to be increasing.

Theorem 3. (RCS) The following statements are equivalent:

(1) Function f has increasing differences.
(2) The solution x∗Y (t) to maximization problem (3.1) is (weakly) increasing in t

for all functions g and sets Y .

Proof. The first direction follows from Theorem 1. (Check that if f has increasing
differences, then also f + g, which implies that f (., t) + g (.) is ordered by the single
crossing-condition). For the other direction, suppose that there exists t < t′ and x <
x′ such that

f (x′, t)− f (x, t) > f (x′, t′)− f (x, t′) .

Let Y = {x, x′} and find function g such that g (x) = 0 and g (x′) = f (x, t)−f (x′, t).
Then,

x′ ∈ x∗Y (t) = arg max
y∈Y

f (y, t) + g (y)

(because f (x, t) + g (x) = f (x′, t) + g (x′)), but

x′ /∈ x∗Y (t′) = arg max
y∈Y

f (y, t′) + g (y)

(because f (x, t′) + g (x) > f (x′, t′) + g (x′)). This contradicts (2). �

Remark 1. (Quah and Strulovici, 09) point that the second part of the above result
heavily depends on the fact that we allow any set Y in the optimization problem (3.1).
If, instead, we restrict Y to be intervals, then the sufficient and necessary conditions
are weaker than increasing differences.

The next result provides a simple way to check condition that ensures increasing
differences in the differentiable case.

Lemma 1. If function f is twice differentiable, then family f (., t) has increasing
differences iff fxt ≥ 0.
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Proof. For each x < x′, each t, define

gx,x′ (t) = f (x′, t)− f (x, t) =
x′ˆ
x

fx (u, t) du.

Increasing differences implies that function gx,x′ must be (weakly) increasing for each
x < x′ and t. In the differentiable case, this means that g′x,x′ (t) ≥ 0 for each t, or

x′ˆ
x

fxt (u, t) du ≥ 0

for each t. Because the above holds for each x < x′, it must be that fxt ≥ 0. �

3.3. Some applications. In another example, we show a simple proof that monop-
olist always produces less than socially optimal.

Example 4. Suppose that the one-to-one demand curve for a good produced by a
monopolist is x(p) so that the consumer surplus is equal to

CS(p) =
ˆ ∞
p

x (r) dr.

(Precisely, that comes from a model in which the consumer chooses demand when
maximizing utility with quasi-linear preferences over money.) Then, the consumer
surplus function is non-decreasing. Let p (x) be the inverse demand function, i.e.
p (x (p)) = p. The monopolist’s profits are equal to

π (x) = xp (x)− c (x) ,

where c (x) is the cost of producing quantity x.The maximization problem for the
monopolist is

max
x

π (x) .

The maximization problem for the society is

max
x

π (x) + CS (p (x)) .

For each x and t ∈ [0, 1], define

f (x, t) = π (x) + tCS (p (x)) .
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We can check that function f satisfies single-crossing condition (Check !). Hence,
x (0) < x (1) and the monopolist produces less then it is socially optimal!

The next problem is savings-consumption problem

Example 5. An agent chooses consumption in two periods, c1 = w − s and c2 = s,
where s are the first-period savings. She has a discounted and separable utility over
two period consumption

u1 (w − s) + βu2 (s) ,

where we assume that functions ui are weakly increasing. We emphasize: monotonic-
ity of u is the only assumption that we are going to use!

Consider function
f (s; β) = u1 (w − s) + βu2 (s) .

In an exercise, you are supposed to show that the function has increasing differences.
By Theorem 1, this implies that the savings increase in the discount factor (or, more
precisely, in how much the agent weighs the future). This is good and expected, but
notice that we managed to obtain this result without any differentiability or convexity
assumptions on the utility function!

4. Multivariate case

In many applications, the choice variable is multidimensional. For example, con-
sider the profit maximization problem

max
k,l

pf (k, l, t)− r (k)− w (l) ,

where the cost of capital and labor are some, possibly, non-linear, functions of the
inputs. We would like to know how the optimal level of inputs changes with some
parameter t.

4.1. Order and Lattices. This and the subsequent sections develop the theory of
comparative statics for more general spaces X and T.

Recall that set X is partially ordered by ≤ if for each x, y, z ∈ X (a) x ≤ x, (b) if
x ≤ y and y ≤ x, then x = y, and (c) if x ≤ y and y ≤ z, then x ≤ z. We say that
the order is total, if for each x,y∈ X, either x ≤ y or y ≤ x.
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Definition 1. Set X with partial order ≤ is a lattice, if for each x, y ∈ X, there exist
• the unique element z such that x ≤ z, y ≤ z, and for each z′ so that x ≤
z′, y ≤ z′, it must be that z ≤ z′. We say that z is the join (or “least upper
bound”, or “maximum) of x and y, and write z = x ∨ y,
• the unique element z such that z ≤ x, z ≤ y, and for each z′ so that z′ ≤
x, z′ ≤ y, it must be that z′ ≤ z. We say that z is the meet (or “greatest lower
bound”, or “minimum”) of x and y, and write z = x ∧ y.

Definition 2. Suppose that (X,≤) is a lattice. For all subsets A,B ⊆ X, write
A ≤S B iff for each x ∈ A, y ∈ B, x ∧ y ∈ A, and x ∨ y ∈ B.

Example 6. Let X1, X2 ⊆ R be two closed intervals. Let X = X1 × X2 ⊆ R2

be a subset of R2 that is equipped with the partial order of coordinatewise vector
comparison, i.e., for each x = (x1, x2) , y = (y1, y2) ∈ X, we have x ≤X y if and only
if xn ≤ x′n for each n. We will show that X is a lattice.
Indeed, for each x = (x1, x2) , y = (y1, y2) ∈ X,

• let x ∨ y = (max (x1, y1) ,max (x2, y2)) and notice that (a) x ∨ y ≥X x, y

and (b) for each z ≥X x, y, it must be that zi ≥ xi, yi, which implies that
zi ≥ max (xi, yi), and z ≥X x ∨ y. Thus, x ∨ y is a well-defined and unique
join of the lattice,
• Let x ∧ y = (min (x1, y1) ,min (x2, y2))and notice that (a) x ∧ y ≤X x, y and
(b) for each z ≤X x, y, it must be that zi ≤ xi, yi, which implies that zi ≤
min (xi, yi), and z ≤X x ∧ y,Thus, x ∧ y is a well-defined and unique meet of
the lattice.

See Fig. 4.1. We refer to (X1 ×X2,≤X1×X2) as a product lattice.

Exercise 1. We extend the above example to multiple dimensions. Suppose that
X1, ..., Xn ⊆ R are closed intervals. Show that the product set X∗ = X1 × ...Xn is
a lattice under the partial order of coordinatewise vector comparison (i.e., for each
x, y ∈ X∗, we have x ≤ y if and only if xi ≤ yi for each i ≤ n.). What is the joint
and the meet in this lattice? Explain what the set order means.
This example can be generalized even further. Even more generally, suppose that
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x1

x ∧ y

x

y1

y

x ∨ y
y2

x2

x′ = x′ ∨ y′

y′ = x′ ∧ y′

Figure 4.1. Two-dimensional Euclidean lattice. Here, (a) neither x ≤
y nor y ≤ x, and (b) y′ ≤ x′.

(X1,≤1) , ..., (Xn,≤n) is a collection of lattices. Let X = X1× ...×Xn be a Cartesian
product of the lattice spaces. Define a binary relation ≤X on X: for each x =
(x1, ..., xn) , y = (y1, ..., yn) ∈ X, let x ≤ y if and only if xi ≤i yi for each i. Show
that (X,≤) is a lattice. (Is it necessary that spaces (Xi,≤i) are lattices? Would it
be enough to assume that they are partial orders?) We refer to (X,≤) as a product
lattice.

4.2. Supermodularity. Suppose that (X,≤) is a lattice. Function f : X → R is
supermodular if for all x, y ∈ X,

f (x) + f (y) ≤ f (x ∧ y) + f (x ∨ y) .

It is strictly supermodular, if the inequality is strict for all x, y that cannot be com-
pared (i.e., so that neither x ≤ y nor y ≤ x).

Intuition:

• the effect of the increase in one variable is larger if the other variable also
increases,
• one way to think about supermodularity is that it gives a precise mathematical
definition for complementarities.

Example 7. Show that function f (x, y) = axy for constant a ≥ 0 is supermodular.
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Exercise 2. Suppose that X1, ..., Xn ⊆ R are open intervals and assume that X =
X1 × ...Xn is the product lattice from Example 1. Show that function f is (strictly)
supermodular if and only if for each x0 ∈ X∗, for each k, l ≤ n,

δ2f

δxkδxl
(x0) ≥ (>) 0.

Definition 3. Suppose that (X,≤X) and (T,≤T ) are partially ordered sets. Say that
function f : X × T → R has increasing differences, if for each x ≤ x′, and t ≤ t′,

f (x′, t)− f (x, t) ≤ f (x′, t′)− f (x, t′) .

The next exercise shows that increasing differences assumption is a weaker version of
supermodularity (for example, it does not require sets to be lattices)

Lemma 2. Suppose that (X,≤X) and (T,≤T ) are lattices, (X × T,≤∗) is the product
lattice, and f : X × T → R is supermodular. Then, f has increasing differences.

Proof. Exercise. �

Recall that for any function f : X × T → R,

x∗ (t) = arg max
x

f (x, t) .

Theorem 4. (Topkis) Suppose that (X,≤X) is a lattice, (T,≤T ) is a partially ordered
set, and f : X×T → R is a function with increasing differences and such that f (., t)
is supermodular for each t. Then, for each t ≤ t′, x∗ (t) is a lattice (i.e., for each
x, x′ ∈ x∗ (t) , x ∧ x′ ∈ x∗ (t) and x ∨ x′ ∈ x∗ (t) , and

x∗ (t) ≤Strong x
∗ (t′) .

Proof. We start with the first claim. Suppose that x, x′ ∈ x∗ (t) and x ∧ x′ /∈ x∗ (t) .
Then,

f (x ∨ x′) ≥ f (x) + f (x′)− f (x ∧ x′) > f (x) ,

which contradicts the fact that x ∈ x∗ (t) .
Next, we show the second claim. Take any x ∈ x∗ (t) and x′ ∈ x∗ (t′) . By super-

modularity,
0 ≤ f (x, t)− f (x ∧ x′, t) ≤ f (x ∨ x′, t)− f (x′, t) .
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By increasing differences,

f (x ∨ x′, t)− f (x′, t) ≤ f (x ∨ x′, t′)− f (x′, t′) .

Because x′ ∈ x∗ (t′) , the two inequalities imply that f (x ∨ x′, t′) − f (x′, t′) ≥ 0 and
x ∨ x′ ∈ x∗ (t′) . In a similar way, we show that x ∧ x′ ∈ x∗ (t) . �

4.3. Example. A monopolist chooses quantity q and quality e of its product. The
profit function is equal to

q (A (e) + P (q))−W (e)− cC (q) .

We assume that function A is increasing in e and it can be interpreted as a measure of
the shift in the demand induced by the quality level e. W (e) is the cost of quality e.
The cost of producing quantity q is equal to cC (q), where C is strictly increasing and
we use parameter c > 0 to analyze the impact of changing costs on the monopolist’s
decisions.

Notice that in order to guarantee that the monopolist problem has a unique solu-
tion, we need to make lots of assumptions about the shape (convexity) of functions
W and C. Nevertheless, we can say quite a lot about the monopoly problem without
making any of these assumptions. In particular, we will show, without any further as-
sumptions, that the optimal quantity, and the optimal choice of quality are decreasing
with the marginal cost c.

To see that, let θ = −c, and define function

f (q, e; θ) = q (A (e) + P (q))−W (e) + θC (q) .

Consider a standard product partial ordering of couples: (q, e) ≤∗ (q′, e′) if and only
if q ≤ q′ and e ≤ e′. We will show below that function f (., .; θ) is supermodular for
each θ and it is ordered by increasing differences. (As it will be clear soon, the reason
we change the variable from c to θ = −c is to ensure the increasing differences).

Before that, notice that this observation, together with Theorem 4 proves our
comparative statics observation. Indeed, let

D∗ (θ) = arg max
(q,e)

q (A (e) + P (q))−W (e) + θC (q)
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be the set of optimal decisions over quantity q and quality e . Then, Theorem 4
implies that D∗ (θ) increases in the strong set order in θ. Because of the definition
of θ, it means that Deach∗ (θ) decreases in c. (Be careful that you understand what
exactly is the definition of the strong set order used here.)

Next, we will show that function f(., .; θ) is supermodular. We need to show that
for each q, e and q′, e′,

f (q, e; θ) + f (q′, e′; θ) ≤ f (min (q, q′) ,min (e, e′) ; θ) + f (max (q, q′) ,max (e, e′) ; θ) .

Indeed, let’s compute the difference between the right- and the left-hand side. After
cancelling bunch of terms, we get

max (q, q′)A (max (e, e′)) + min (q, q′)A (min (e, e′))− qA (e)− q′A (e′) .

Suppose w.l.o.g. that e < e′. Then, the above is equal to

(max (q, q′)− q′)A (e′) + (min (q, q′)− q)A (e)

(if q < q′) =0,

(if q ≥ q′) = (q − q′) (A (e′)− A (e)) ≥ 0,

where the last inequality comes from the fact that A is increasing.
Finally, we check that family f (., .; θ) is ordered by increasing differences. Notice

that for each q ≤ q′ and e ≤ e′,

f (q′, e′; θ)− f (q, e; θ) = θ (C (q′)− C (q)) .

Because C is increasing, the term in the bracket is positive, and the above expression
is increasing in θ.

4.4. Application: Global Le Chatelier Principle. The Le Chatelier principle
says that the short-run effects of the wage increase on the labor demand are smaller
than the long-run effects. The principle applies only locally, to small changes in wage.
Given some stronger (supermodularity) assumptions on the production function, we
can show a global version of the Le Chatelier principle. We follow Milgrom-Roberts
(96).
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Suppose that (X1,≤X) and (X2,≤Y ) are compact lattices,X = X1×X2 is a product
lattice (with partial order defined as in Example 1), and (T,≤T ) is a partially ordered
set. Let fX×T → R be a continuous function. Consider two optimization problems:

Problem A: x∗1 (x2, t) = arg max
x1∈X

f (x1, x2, t) ,

Problem B: x∗ (t) = arg max
x∈X

f (x1, x2, t) .

In problem A, we maximize the value of function f by choosing optimal x1 and keeping
x2. In Problem B,we allow to vary both x1 and x2.

Lemma 3. If function f is continuous and supermodular for each t, then there exists
a unique element

(xsup1 (t) , xsup2 (t)) =
∨

x∈x∗(t)
x ∈ x∗ (t) .

Proof. Notice that x∗ (t) is compact lattice, which implies that it contains the largest
element. �

Theorem 5. Suppose that continuous function f : X × Y × T → R is supermodular
in (x, y) for each t and it has increasing differences in (x, y) and t. is continuous and
supermodular (given the partial order on lattice R3) . Then, for each t < t′,

x∗1 (xsup2 (t) , t) ≤S x∗1 (xsup2 (t) , t′) ≤S x∗1 (xsup2 (t′) , t′) .

Here,
x∗1 (xs2 (θ0) , θ1)

is the set of optimal choices of x1 in the problem A given θ1 if the value of the
constrained variable is set at the level that is the largest possible among optimal
choices given the parameter θ0.

The first inequality corresponds to the short-run effect of the change in t on x:
if t increases, more x1 is optimal. The second inequality corresponds to the long-
run effect. If the optimization criterion is supermodular, then the short-run effect is
smaller than the long-run effect.

Proof. By Theorem 4,
x∗ (t) ≤S x∗ (t′) ,
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which implies that
xsup2 (t) ≤ xsup2 (t′) .

Because f is supermodular in (x1, x2), it is also supermodular in x1 when the value
of x2 is fixed. Also, it has increasing differences in x1 and t for fixed value of x2.
Thus, we can apply Theorem 4 to the constrained problem, where the value x2 is set
at level xsup2 (t). We obtain

x∗1 (xsup2 (t) , t) ≤S x∗1 (xsup2 (t) , t′) .

Because f is supermodular in (x1, x2) for fixed t, it is also supermodular in x1 when
the values of x2 and t are fixed. Thus, we can apply Theorem 4 to a problem, where
the parameter is fixed at t′ and we treat x2 as a new parameter, the value of which
changes from xsup2 (t) to xsup2 (t′). An application of the Theorem shows that

x∗1 (xsup2 (t) , t′) ≤S x∗1 (xsup2 (t′) , t′) .

The result follows. �

Corollary 1. (Global Le Chatelier Principle) Consider a two-input production
function g (k, l) and suppose that either g (or −g) is supermodular or (in the latter
case, we say that g is submodular). Let l∗ (k, w, r) be the short-run optimal level of
labor given the level of capital and factor prices, and let ksup (w, r) be the long-run
largest optimal level of capital. Then, for each w > w′, (or, w < w′)

l∗ (ksup (w, r) , w, r) ≤ l∗ (ksup (w, r) , w′, r) ≤ l∗ (ksup (w′, r) , w′, r) .

Proof. If g is supermodular, then let f (k, l, w) = g (k, l)−wl−rk. If g is submodular,
then let f (k, x, w) = g (k,−x) + wx− rk. Apply Theorem 5. �
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