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Each question has the same value. You need to provide arguments for each
answer. If you cannot solve one part of the problem, don't give up and try to
solve the next one. If the question explicitly asks you to prove a result from the
class, you must carefully describe the proof. Otherwise, you may use any result
from the class given that you clearly state the assumptions, thesis and verify
that the assumptions hold in your application. You have 110 minutes.

An advice: It is always a good idea to start each �proof� answer with writing
precisely what is that you want to show. It will help you to make it precise when
thinking about solution. It will also allow me to give you a tiny bit of partial
credit if the rest of the answer turns out to be wrong.

Good luck!
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1. Quasi-linear and homothetic preferences. Consider a consumer with Wal-
rasian demand x (p, w) ∈ RL. Let

Dpx =


∂x1

∂p1
∂x1

∂p2
∂x1

∂pL
∂x2

∂p1
∂x2

∂p2
∂x2

∂pL

∂xL

∂p1
∂xL

∂p2
∂xL

∂pL


be the matrix of the derivatives of x.

(a) State the Slutsky equation and brie�y (no more than 1 sentence)
describe each term.

∂hl (p, u)

∂pk
=
∂xl (p, w)

∂pk
+
∂xl (p, w)

∂w
xk (p, w) ,

or
∂xl (p, w)

∂pk
=
∂hl (p, u)

∂pk
− ∂xl (p, w)

∂w
xk (p, w) .

The Slutsky equation decomposes the Walrasian demand into the
change into the Hicksian demand (compensated to attain the same
utility level) and the wealth e�ect.
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(b) Show that if the consumer's preferences are quasi-linear in good L,
the restriction of the matrix Dpx to the �rst L−1 terms is symmetric
and positive semi-de�nite.

Suppose that the preferences of the consumer are represented by
quasi-linear utility

u (x) = ψ (x1, ..., xL−1) + xL = ψ (x) + xL,

where we write x = (x1, ..., xL−1). We assume that the consump-
tion space is X = RL−1+ × R (in particular, the consumption of the
numeraire can be negative). Function ψ is continuous, strictly incre-
asing, and strictly quasi-concave. Finally, we normalize the price of
numeraire at pL = 1.

Due to Walras Law, xL = w − p · x and the consumer problem is
equivalent to unconstrained problem :

v (p, w) = max
x,xL:p·x+xL≤w

ψ (x) + xL

=Walras Law max
x,xL:p·x+xL=w

ψ (x) + xL

= max
x

ψ (x) + w − p · x

=w + max
x

ψ (x)− p · x.

Let x (p) denote the solution to the above problem. Notice that the
solution does not depend on w.

It follows that the wealth e�ect term disappears and the Dpx̄ = Dph.
The latter matrix is symmetric as and negative semi-de�nite as the
second derivative matrix of the convex expenditure function.
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(c) Show that if the consumer's preferences are homothetic, the matrix
Dpx is symmetric and positive semi-de�nite.

Suppose that the consumer has homothetic preferences, ie. the pre-
ferences can be represented by utility function such that for each
α > 0, u (αx) = αu (x). Then,

• x (p, αw) = αx (p, w) = αx
(
1
αp, w

)
. The second equality co-

mes from homogeneity of degree 0 of Walrasian demand and
the �rst equality. We will show the �rst. Indeed, suppose that
x ∈ x (p, w). Then,

arg max
x∈B(p,w)

u (x) = arg max
x∈B(p,w)

αu (x)

= arg max
αx∈αB(p,w)

u (αx)

=
1

α
arg max

y∈αB(p,w)
u (y)

=
1

α
arg max

y∈B(p,αw)
u (y)

which implies that

x (p, w) =
1

α
x (p, αw) .

• Denote x∗ (p) = x (p, 1). Then, x (p, w) = wx∗ (p).

• Slutsky equation:

∂hl (p, u)

∂pk
= w

∂x∗l (p)

∂pk
+ wx∗l (p)x∗k (p) .

In particular, matrix

Dpx = wDpx
∗ = Dph− w (x∗ (p)) (x∗ (p))

T

is symmetric and negative semi-de�nite.
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2. Non-linear budget sets. In some countries, anti-poverty government pro-
grams provide for distribution of certain amounts fi ≥ 0 of basic goods
(food, fuel, etc.) free to all individuals. If an individual wants to consu-
mer more than the free amount, he or she can purchase the good on the
market for price pi. We can model the consumer's choice as a non-linear
budget set:

Bi (p, w, f) =

{
x ∈ (R+)

L
:
∑
i

pi max (0, xi − fi) ≤ w

}
.

Here, L is the number of goods and f = (f1, ..., fL) ∈ (R+)
L
is the �free�

bundle.

(a) Suppose that L = 2, f1, f2 > 0, p1 = p2 and w > 0. Describe the
budget set graphically on a diagram.
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(b) From now on, assume that the consumer has a strictly monotone,
strictly convex utility. De�ne the indirect utility in the standard way

v (p, w, f) = max
x∈B(p,w,f)

u (x) .

Show that v (., w, f) is quasi-convex.

Find (p, w)and (p′, w′) such that v (p, w) , v (p′, w′) ≤ v∗. Take any
α ∈ [0, 1] .Let xα ∈ x (α (p, w) + (1− α) (p′w′)). Then,

(αp+ (1− α) p′) · (xα − f)
+ ≤ (αw + (1− α)w′) .

This implies that either

p · (xα − f)
+ ≤ w,

or
p′ · (xα − f)

+ ≤ w′

W.l.o.g. suppose the latter. In such a case, xα is an a�ordable bundle
at (p, w), and

v (α (p, w) + (1− α) (p′w′)) = u (xα) ≤ u (x (p, w)) ≤ v∗.
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(c) De�ne the expenditure function as

e (p, u, f) := min
x

∑
i

pi max (0, xi − fi) st. u (x) ≥ u.

Show that e (., u, f) is concave.

Take α ∈ [0, 1] and hα ∈ h (ap+ (1− α) p′, u). Then, u (hα) ≥ u and
hα is one of the bundles that can be chosen in the dual problems
(p, u) and (p′u). In particular,

p · (hα − f)
+ ≥ e (p, u) and p′ · (hα − f)

+ ≥ e (p′, u) .

This implies that

e (αp+ (1− α) p′, u) = (αp+ (1− α) p′)·(hα − f)
+ ≥ αe (p, u)+(1− α) e (p′, u) .
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3. Investment choice. Consider a consumer who lives for two periods. The
consumer has �xed wealth w, no other source of income, and decides how
much of his wealth to invest. The consumer maximizes the lifetime utility

max
s
u1 (w − s) + u2 (γs)

where s is the choice level of savings and γ > 0 is the return rate on the
investment.

(a) Suppose that the second period utility u2 is twice continuously di�e-
rentiable, increasing and concave, and the Arrow-Pratt relative me-
asure of risk aversion is strictly smaller than 1.

−x (u′′2 (x))

u′2 (x)
≤ 1.

Does function
u2 (γs)

have increasing di�erences in γ and s.

The cross-partial derivative is equal to

∂2

∂s∂γ
u2 (γs) =

∂

∂γ
γu′2 (γs) = u′2 (γs) + γsu′′2 (γs)
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(b) Conclude that the optimal level of savings changes monotonically
with the return rate in the strong set order sense. (For full credit, do
not rely on the results from the class.)

By the previous answer, we know that

V (s, γ) = u1 (w − s) + u2 (γs)

has increasing di�erences in γ and s. Suppose that s ∈ s∗ (γ) and
s′ ∈ s∗ (γ′) for some γ < γ′. We want to show that max (s, s′) ∈
s∗ (γ′) and vice versa. If s ≤ s′, there is nothing to prove. Suppose
that s > s′. Then,

0 ≤ V (s, γ)− V (s′, γ) ≤ V (s, γ′)− V (s′, γ′) ,

where the �rst inequality comes from the fact that s is the optimal
choice at γ and the second one comes from the increasing di�eren-
ces and the fact that s > s′and γ < γ′. Simiarly, we show that
min (s, s′) ∈ s∗ (γ).
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(c) What is the comparative statics of the optimal savings if the relative
measure of risk aversion is strictly larger than 1?

Then, u (γ (−θ)) has increasing di�erences in γ and θ. It will follow
that the optimal level of savings is decreasing with the return rate.
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4. Prize State Independence. Consider an agent with preferences � over
Anscombe-Aumann acts f : S → ∆Z, where S is the state space, and Z
is the space of prizes. For any act f , any state s, and any prize z, let

fsz = (f1, f2, ..., fs−1, z, fs+1, ..., fn)

be an act obtained from f by replacing the state s lottery by prize z. Say
that � satisfy Prize State Independence (PSI) if for any act f , any
two states s, s′, and any prizes z, z′, we have

fsz � fsz′ ⇐⇒ fs′z � fs′z′.

(a) Explain the di�erence between the PSI and the State Independence
(SI) axiom from the class.

The SI is stated in the same way, but for all lotteries, instead of only
prizes.
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(b) Describe a concrete example of State-Dependent Expected Utility
(SDEU) preferences that violate PSI.

S={0, 1}, Z = {a, b}. u0 (a) = 1 = 1− u0 (b), u1 (b) = 1 = 1− u1 (a).
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(c) Show that if |Z| = 2 (i.e., there are only two prizes), then the any
SDEU preferences that satisfy PSI have State-Independent Expected
Utility (SIEU) representation.

Let {us} be the SDEU representation that satis�es PSI. WE will
show that there exists π ∈ ∆S and u : Z → R such that � has SIEU
representation (π, u).

Let Z {a, b} be the space of prizes. Because of the PSI, it must be
either that (a) us (a) > us (b) for all states s, (b) us (a) < us (b) for
all states s, or (c) us (a) = us (b) for all states s. IN the latter case,
there argument is simple (take any prob. distribution π ∈ ∆S and
any constant utility function u. Cases (a) and (b) are analoguous.
Assume w.l.o.g. (a). Take

πs =
us (a)− us (b)∑
s′ us′ (a)− us′ (b)

= A (us (a)− us (b)) ,

where we take A =
∑
s′ us′ (a) − us′ (b). Also, let B =

∑
s u (b).

Then, πs > 0 and
∑
πs = 1. Let u (a) = 1and u (b) = 0. Then, for

any act f ,∑
s

∑
z

f (s, z)us (z) =
∑
s

(u (b) + f (s, a) (us (a)− us (b)))

= B +A
∑
s

πsf (s, a)

= B +A
∑
s

πs
∑
z

f (s, z)u (z) .

There is an alternative inderect proof that with two prizes, PSI is
equivalent to SI. Then, the theroem from the class implies that Axi-
oms 1-3 plus PSI implies SIEU.
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(d) Does the above observation remain true if |Z| > 2? Prove it or
disprove it using a counterexample.

No. Let S = {0, 1} and Z = {a, b, c} and take

u0 (a) = 0, u0 (b) = 1, u0 (c) = 2,

u1 (a) = 0, u1 (b) = 1, u1 (c) = 100.

Then, SI will be violated. In state 0, the agent prefers price b to
lottery a2/3c1/3, and she has opposite preferences in state 1.
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