SEPARATING HYPERPLANE THEOREM

The material in this notes can be partailly found in MWG Appendix M.G. The following two results are closely related.

Theorem 1. (Separating Hyperplane Theorem, th. M.G.2. from MWG) Let $B \subseteq \mathbb{R}^N$ be a convex set and $x \notin B$. Then, there exists a $p \in \mathbb{R}^N$ such that $p \neq 0$ and $p \cdot x > \sup_{y \in B} p \cdot y$.

Theorem 2. (Supporting Hyperplane Theorem, th. M.G.3) Suppose that $B \subseteq \mathbb{R}^N$ is convex, and that $x \notin intB$. Then, there is a $p \in \mathbb{R}^N$ such that $p \neq 0$ and $p \cdot x \geq \sup_{y \in B} p \cdot y$.

If x is an extreme point of B (i.e., x cannot be represented as a convex combination of elements of B), then we can find $p \neq 0$ such that $p \cdot x > p \cdot y$ for each $y \in B, y \neq x$

We are going to use the following application to the consumer demand theory:

Corollary 1. Suppose that u(x) is a continuous, strictly quasi-conveave, and monotonic (i.e., increasing) utility function. Then, for each x, there exists a price vector $p \gg 0$ and wealth level $w = p \cdot x$ such that $\{x\} = x(p, w)$.

Proof. Fix x. Consider set $B = \{y : u(y) \ge u(x)\}$. Because the utility is strictly quasi-concave, (a) set B is convex, and (b) $x \in B$ is an extreme point of B (for the latter, notice that if $y \ne y'$ and $y, y' \in B$, then

$$u(\alpha y + (1 - \alpha) y') > \alpha u(y) + (1 - \alpha) u(y') \ge \alpha u(x) + (1 - \alpha) u(x) = u(x),$$

so $x \neq \alpha y + (1 - \alpha) y'$.) Becuase the utility is increasing, if $y \geq x$, then $y \in B$.

By the Supporting Hyperplane, there exists $q \neq 0$ such that $q \cdot x > q \cdot y$ for each $y \in B, y \neq x$. Let p = -q. Then, $p \cdot x for each <math>y \in B, y \neq x$.

We are going to show that $p \gg 0$. Suppose that $p_l \leq 0$ for some l. For each $\varepsilon > 0$, let

$$y_{\varepsilon} = (x_1, ..., x_{l-1}, x_l + \varepsilon, x_{l+1}, ..., x_L).$$

Then, $p \cdot y_{\varepsilon} = p \cdot x + \varepsilon p_l \leq p \cdot x$. However, $y_{\varepsilon} \geq x$ and $x \neq y_{\varepsilon}$, which implies that $y_{\varepsilon} \in B$. This leads to a contradiction with $p \cdot x for each <math>y \in B, y \neq x$.

Let $w = p \cdot x$. Then, $x \in B(p, w)$. Moreover, for each $y \neq x$ st. $u(y) \ge u(x)$, we have $y \notin B(p, w)$. It follows that $x(p, w) = \{x\}$.