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Abstract. We study a reputational war-of-attrition bargaining over a pie with het-
erogeneous parts, incomplete information over preferences, and behavioral types. To
screen across preference types, each player may demand that the opponent chooses
from an arbitrary menu of offers. When there is one-sided uncertainty about prefer-
ences (and two-sided about the behavioral type), there is a unique limit equilibrium,
in which the player with known preferences proposes a menu of all allocations that
give him at least his worst complete information bargaining payoff. The outcome is
ex ante and ex post efficient. Being able to commit to a menu instead of a single-
offer increases equilibrium payoffs of the player with known preferences. Multiple
equilibria are possible with two-sided incomplete information about preferences.

1. Introduction

This paper studies bargaining over a heterogeneous pie, when the preferences over
the relative value of the components of the bargaining object are unknown. Such
uncertainty is a common feature of complex negotiations. For instance, the EU officials
likely began the Brexit talks without fully understanding the relative value for their
British counterparts of the Irish border issue, the access to the common market, or
fishing rights. An employer negotiating wage and/or employment reduction may not
know which of those two is more acceptable for a labor union.

A typical feature of complex negotiations is that parties make sophisticated offers,
like presenting a menu of options to choose from.1 For instance, British negotiators
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were offered a choice between full control over their borders but excluding N. Ireland
or reduced sovereignty over larger area. With an incomplete information about pref-
erences, menus have a natural advantage over simple offers. A simple offer can be
acceptable to some, but not all preference types of the opponent; menus can be ac-
ceptable regardless of what is her true preference type. By relying on static screening
methods, menus may reduce or eliminate complications and inefficiencies due to delay
that comes with dynamic revelation of information.

The goal of this paper is to study consequences, costs and benefits of using menus as
offers under uncertainty over opponent preferences. We are interested in the following
questions. First, is uncertainty advantageous in bargaining? On one hand, the revela-
tion of private information might help to identify Pareto-optimal trades (i.e., “deals” in
the language of Jackson et al. (2020)). At the same time, players may want to conceal
or misreport their private information to improve their bargaining position. Second,
what is the role of menus? Do they change the outcome of the bargaining? Are they
beneficial for the parties? And how does their role interact with uncertainty? Finally,
we are interested in the Nash program and connections between strategic and coopera-
tive bargaining models. A typical axiomatic solution under uncertainty is presented as
a mechanism, rather than an simple offer (Harsanyi and Selten 1972, Myerson 1984).
Does expanding of the space of offers pushes strategic models of bargaining towards
their axiomatic counterparts?

We study these questions in a reputational model of war-of-attrition bargaining,
where players build reputation for being stubborn, in order to increase the likelihood
that their opponent concedes to their offer (Kambe (1999), Abreu and Gul (2000)).
The behavior in such models has a very intuitive interpretation and it is also quite
tractable. Such models have also proved very successful in fulfilling the Nash program
in the case of complete information about preferences.

In our model, Alice and Bob want to divide a heterogeneous pie with N ≥ 2 parts
(chocolate, vanilla, etc.). See Figure 1.1; here, Alice’s utility increases in the NE

the parties negotiated the size of the spousal benefit, early retirement options, inflation indexation,
etc. It was understood that the universities care only about the total actuarial cost. The preferences
of the labor side were uncertain, mostly due to the heterogeneity of the labor side (for instance, the
staff, but not the faculty, valued the early retirement more than the spousal benefit). The negotiations
were preceded by months of meetings and consultations. The bargaining itself was very fast and it
took a weekend in a hotel in downtown Toronto. In the end, the universities proposed a menu of
options, and the labor side chose one of the options.
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direction, and Bob’s utility in the SW direction. For the main result, we assume that
Bob’s preferences are publicly known and he has beliefs about Alice’s preferences. The
players, one after another, choose their demands. Each demand takes form of a menu
of allocations, with the interpretation that, if accepted, the opponent is free to choose
any allocation in the menu. After the menu choice, the players learn whether they are
rational or stubborn (Kambe (1999)). Next, a war-of-attrition bargaining commences.
The first player to concede accepts the menu of the opponent, in which case the game
ends. The stubborn type never concedes. Importantly, once chosen, the players do
not have an opportunity to revise their demands. We believe that this is a reasonable
assumption in situations when the object of bargaining is very complicated, preparing
an offer takes significant resources (time, lawyers, consultations with stakeholders),
and the bargaining process itself is fast (see footnote 1). We are interested in the
limit, where the discrete time decisions in the war of attrition are taken more and
more frequently. Further, we focus on the rational limit, where the probability of the
stubborn type is arbitrarily small. The role of the behavioral types is to provide an
equilibrium selection in the war of attrition.

A special case of the model is when there is a complete information about Alice’s
preference type (with an incomplete information about players’ behavioral types re-
maining). In such a case, like in the earlier reputational literature (Kambe (1999),
Abreu and Gul (2000)), in the unique limit of equilibria, both players receive their
Nash solution payoffs.

The main result of the paper characterizes the limits of equilibrium payoffs when the
distribution of Alice’s types has a full support. There is essentially unique equilibrium
outcome. The limit behavior does not depend on any details of the distribution, apart
from its support. There is no significant delay in equilibrium, and the outcome is ex
ante and ex post efficient.

The limit equilibrium outcome has a simple description: Bob proposes a menu of
all allocations that gives him at least his worst complete information payoff across all
Alice’s types, and Alice chooses her favorite allocation from the menu. If we normalize
Bob’s payoffs so that he values the whole pie at 1, then his worst payoff is equal to 1

2 ,
and we refer to Bob’s equilibrium menu as m1/2. When N = 2,̇ the equilibrium menu
is drawn on Figure 1.1.
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Figure 1.1. Bargaining environment.

In the limit, neither Alice’s or Bob’s payoffs depend on his beliefs, as long as the
beliefs have full support. Comparing to the complete information case, Alice’s benefits
and Bob loses from uncertainty about her preferences.

We describe the intuition for the result. Abreu and Gul (2000) define a strength of
a player as the ratio of the payoff from winning divided by the payoff from losing the
war of attrition. The stronger player must concede fast to make the weaker opponent
indifferent; to compensate, the weaker opponent must begin the game with an atomic
concession. We can extend the notion to one-sided incomplete information. Alice’s
types sort by strength, with weaker types conceding first. Bob’s strength is a priori
not well-defined as his payoff from winning depends on which allocation in his menu is
chosen by Alice, that, in turn, depends on her type. Instead, we define Bob’s strength
as if he faces the strongest type of Alice. This definition works because most of the war-
of-attrition learning is spent when Bob believes that her preference type is close to her
strongest type (see Fanning (2016) and Abreu et al. (2015) for a similar observation).
In the rational limit, the weaker player must concede with a probability close to 1 in
the initial periods of the game. We show that, if the demand of the other player is
incompatible, Bob’s choice of menu m1/2 or Alice’s choice of her favorite allocation
from this menu always makes them stronger.

Because in the limit equilibrium Bob ignores his beliefs and behaves as if facing
the worst (for him) type of Alice, the result has a “Coasian” flavor (Gul et al. 1986).
At the same time, there are important differences. First, in the Coasian bargaining
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literature, the ordering of types is exogenous, typically from the highest to the lowest
value. Here, the sorting by strength as well as the strongest type of Alice depends
endogenously on the menus demanded by each player. It is only in the equilibrium
that the strongest type coincides with the ex ante worst type for Bob. Second, because
the concession game is two-sided, both players keep some amount of bargaining power
and Bob receives positive share of surplus.

Third, the Coasian result from this paper arises in a setting with some commit-
ment power due to reputational types. Interestingly, this commitment power seems
important. In a companion paper Peski (2019), we analyze the same bargaining en-
vironment with one-sided incomplete information, but with two differences: (a) there
are no reputational types and (b) the bargaining protocol takes the form of alternating
offers, where an offer takes form of an arbitrary mechanism. (If the offer is accepted,
the players implement the offered mechanism, which determines the final allocation.
The mechanisms include singleton offers, menus, but can be more general.) There
is essentially a unique equilibrium outcome, which is non-Coasian: Bob proposes an
optimal (for him) screening menu m∗ that gives each type of Alice at least the same
payoff as under complete information about her type. Bob is better-off under m∗ than
under m1/2; each Alice’s type is worse off. In other words, Bob is better-off without
reputational commitment.

To understand the role of menus, we consider a version of the model where players
are only able to make singleton offers. In such a case, Bob’s payoff is generically strictly
less than 1

2 . Thus, Bob suffers from not being able to offer a menu. There is a simple
intuition for this result: Bob must commit himself to an offer before learning Alice’s
type. If Bob is only able to commit to a single offer, he faces a risk that the offer
is not acceptable or efficient against the true Alice’s type. This risk eliminates his
commitment power and reduces his bargaining payoff.

With two-sided incomplete information about preferences, there is no natural notion
of strength and no a priori sorting. In fact, we show with a two-type example that the
war-of-attrition stage can have multiple equilibria. On the other hand, when N = 2
and the types are drawn from a continuum, and each player’s menu is linear, we show
that partial sorting can be restored and there is a unique equilibrium in the war-of-
attrition. We define the strength of a player as the winning/concession ratio under the
restriction that, when conceding, the player must choose an allocation that belongs
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to the diagonal (i.e., each part of the pie is divided using the same ratio). Because
of linearity of preferences, the strength does not depend on the player’s type. In
the equilibrium, the weaker player concedes in the early periods of the game with a
probability arbitrarily close to 1.

A substantial literature studies bargaining under uncertainty. The strategic litera-
ture either focuses on one-dimensional or two-type cases, with a special kind of uncer-
tainty, including the uncertainty about values (Gul et al. 1986), the discount factor and
time preferences (Rubinstein 1985, Abreu et al. 2015), or bargaining postures (Myerson
(1991), Abreu and Gul (2000), Kambe (1999), Fanning 2016).

Abreu and Gul (2000) study a generalized protocol of the alternating-offer bargaining
(Rubinstein 1982) with a two-sided possibility of behavioral types who never accept
any offer worse than their fixed demand. The behavior in the game looks like the war
of attrition that ends when one of the players reveals herself to be rational. When
that happens, an earlier result by Myerson (1991) shows that the revealed player will
concede quickly in any equilibrium. Kambe (1999) studies a model where players learn
their commitment type after the initially chosen menu and the strategic types are not
able to revise their offers upwards. The main difference with our model is that we
assume that the (rational) players cannot revise their offers. We do not know whether
a version of Myerson’s result holds in our context.

The Nash program (originated in Nash (1953)) studies strategic foundations of co-
operative games. Among others, the papers from Rubinstein 1982 through Myerson
1991 to Abreu and Gul (2000) provide such foundations for the complete information
Nash bargaining solution Nash Jr (1950) (see Serrano (2004) for the overview of the
literature). Recently, de Clippel et al. (2019) proposed a strategic model to implement
the solution from Myerson 1984 under the assumption of verifiable types. The message
coming from this paper is more confusing. First, the menu m1/2 is not part of the ax-
iomatic solutions proposed in Harsanyi and Selten 1972 and Myerson 1984; we do not
know of any axiomatic model with one-sided incomplete information for which m1/2

arises as a solution. Second, as we explain above, the companion paper (Peski (2019))
shows that an alternating-offer bargaining without reputational types have yet a dif-
ferent solution. We conclude that the incomplete information breaks the connections
between the axiomatic approaches as well different versions of the bargaining game.
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Our paper is not the first one to use menus in bargaining. In the context of the
Coasian bargaining, Wang 1998 studies a similar bargaining environment with two-
dimensional allocations, two types for Alice, and with Bob (the uninformed side) mak-
ing all offers. He shows that, in the unique equilibrium, Bob separates the two-type
of Alice by using an optimal screening contract. In particular, the Coase conjecture
fails as Bob keeps all power subject to the incentive compatibility constraints. More
recently, Strulovici 2017 works with a closely related model, but he assumes that,
instead of ending the game, any accepted offer becomes a status quo for future bar-
gaining. He shows that the uninformed player is unable to offer an inefficient payoff to
type u′1 in order to screen out the more extreme type u′′1 and a Coasian result prevails.
An alternating-offer bargaining with menus is studied in Sen 2000 (see also Inderst
2003), who studies the two-type case and establishes the uniqueness of equilibrium
that satisfies a perfect sequential refinement of Grossman and Perry (1986).

Jackson et al. (2020) studies an alternating offer bargaining game and with menus as
offers. Similarly as in our paper, the equilibrium outcome is efficient, but for different
reasons. Although the authors allow for incomplete information on both sides, they
make a strong assumption that the total value of bargaining surplus is commonly
known. This assumption implies that there are no incentive problems that stop agents
from truthfully revealing their information. In the unique equilibrium, the agents use
menus to implement information revelation in a single round of bargaining.

2. Model

Two players, Alice and Bob, i = A,B, bargain over a heterogeneous pie with N ≥ 2
parts. An allocation is defined as x ∈ X := [0, 1]N . Each player has a linear preference
over allocations ui ∈ U :=

{
u ∈ RN+ : ∑un = 1

}
. (The normalization is w.l.o.g.) The

payoffs from allocation x is equal to uA (x) = ∑
n u

n
Axn for Alice’s type uA and uB (x) =

1 −∑n u
n
Bxn for Bob’s type uB . We assume that spaces X and U are equipped with

the “sup” metric.

2.1. Bargaining. In the baseline model, Bob’s preferences uB are publicly known.
Initially, Alice has private and partial information about her preferences in the form
of a signal s ∈ U drawn from distribution πA.

The game has two stages: a menu choice followed by a war-of-attrition bargaining. In
the first stage, player k = A,B, followed by −k publicly chooses her or his bargaining
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demand. The demand of each player i takes form of a menu mi ⊆ X, with the
interpretation that −i is offered to pick any allocation in mi. After the choice of menu,
Alice privately learns her preference type uA drawn from distribution πS (.|s) ∈ ∆U .
Simultaneously and independently, each player learns whether she or he is the stubborn
type. The probability of the stubborn type is the same and equal to λ ∈ (0, 1).

Next, the war of attrition commences. In alternating periods, starting with player k
in period 1, the normal type of each player i decides whether to continue or concede.
If he or she continues, the game moves to the next period and the other player. If she
or he concedes, she must choose an allocation x from menu m−i. The stubborn type
never concedes. The players maximize the expected utility and they discount with a
common factor e−∆, where ∆ represents the length between two subsequent decision
points.

Alice’s imperfect information about her own type alleviates the signaling problem
inherent to bargaining with private information. We make the following assumption:

Assumption 1. (Common support) For each s, suppπA = suppπS (.|s) = UA ⊆ U for
some closed convex set UA. There K <∞ such that for each s, πS (.|s) has a Lipschitz
continuous density with constant K with respect to the Lebesgue measure on U .2

The first part of the assumption says that the support of Alice’s type distribution
given signal does not depend on the signal. It follows that the support of Bob’s posterior
beliefs after she chooses her menu does not depend on the menu. The second part of
the assumption ensures that the posterior beliefs are sufficiently regular: the posterior
belief over Alice’s types is Lipschitz.3 The regularity plays an important role in the
proofs of subsequent results, including the proof of Lemma 2. The assumption does
not eliminate signaling completely, as Bob’s beliefs may (and, typically, will) depend
on Alice’s choice.

Because UA can be a singleton, a complete information about Alice’s preferences is
a special case of the model.
2For each convex subset U ⊆ RN , one can find its affine hull, i.e., the intersection of all affine spaces
that contain U . The Lebesgue measure on the affine hull assigns positive mass to U . Whenever we
mention “the Lebesgue measure on U”, we refer to the restriction of such a measure to set U.
3Indeed, suppose that p (.|m) ∈ ∆U are the posterior beliefs over Alice’s signals after her choice of
menu m. Belief p will typically depend on Alice’s strategy in the menu choice game. Bob’s beliefs
about Alice’s preference type are given by π (W ) =

´
πS (W |s) p (ds|m) for each measurable set

W ⊆ UA. Clearly, π have support equal to UA and Lebesgue density that is continuous and Lipschitz
with constant K.
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The role of the behavioral types is to pin down the equilibrium in the war-of-attrition
stage; it is well known that, without them, the war-of-attrition games have a continuum
of equilibria. See Kambe (1999) for a similar approach to the behavioral types.

2.2. Equilibrium. Let CX be the space of closed subsets of X with the topology of the
Hausdorff distance. LetMi ⊆ CX be a compact set of possible menu choices. A strategy
profile in the menu choice game is a pair of measurable mappings mk : Uk → ∆Mk,
m−k : U−k ×Mk → ∆M−k, where we take UB = {uB}. After Alice chooses her menu,
Bob updates his beliefs about her prior signal and forms beliefs about Alice’s true
preferences.

Let Ti be the set of periods in which player i makes a decision in the war of attrition.
A strategy of the (normal type of) player i is a pair σi =

(
σTi , σ

M
i

)
of measurable

stopping time σTi : Ui → ∆Ti and a choice σMi : Ui → ∆m−i. In each period, each
player has a belief about the probability that the opponent is stubborn; Bob also has
beliefs about Alice’s type.

A Perfect Bayesian equilibrium is a profile of strategies and beliefs such that players
best respond to each other and the beliefs are derived from strategies through the
Bayes formula whenever possible and player’s beliefs do not change after his or her
own out-of-equilibrium action.

Let Ei (ui; ∆, λ,M., π, πS, k) be the set of equilibrium payoffs of player i type ui in
the game where player k makes the first choice. We are interested in the following
limits:

• the initial information becomes approximately perfect: πS (.|s) → δs, weakly,
for each s ∈ UA; we write πS → δ,
• the game approximates continuous time ∆ → 0, and players become fully ra-
tional, λ→ 0.

Define the limit set of equilibrium payoffs of type uiof player i as

Ei (ui;M., π, k) = lim sup
πS→δ

lim sup
λ→0,∆→0

Ei (ui; ∆, λ,M., π, πS, k) .

The order of the last two limits is not important.

2.3. Nash allocations and Coasian menu. Before we proceed with the analysis of
the model, we define two important objects. For each type uA of Alice, define a Nash
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Figure 2.1. Nash allocations.

allocation xNash (uA) as the maximizer of the product of Alice’s and Bob’s utilities:

xNash (uA) ∈ arg max
x∈X

uA (x)uB (x) .

Nash Jr (1950) proposed such an allocation as the unique solution to the bargaining
problem that satisfies a series of axioms. Later, Rubinstein (1982) showed that Nash
allocations arise in a strategic alternating-offer bargaining model.

It is instructive to illustrate Nash allocations in a special case when N = 2. See
Figure 2.1. Assume w.l.o.g. that u1

B > u2
B. There are four distinct cases:

• If u1
A = u1

B, i.e. Alice preferences are the same as Bob, then the Nash solution
awards payoff of 1

2 to each player; any allocation on Bob’s indifference line
corresponding to payoff 1

2 (the dashed line between allocations p =
(

1
2u1
B
, 0
)

4

and q =
(

1− 1
2u1
B
, 1
)
) is a solution to the Nash bargaining problem.

• If u1
A > u1

B„ i.e. Alice likes the first part of the pie more than Bob, she is going
to get her favorite allocation subject to the constraint that Bob’s payoff is at
least 1

2 , i.e., allocation p. In such a case, Bob’s payoff is 1
2 and Alice gets a

payoff that is strictly larger than 1
2 .

4Here, and in the rest of the paper, unwasteful allocations are described by Alice’s shares.
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• If 1
2 ≤ u1

A < u1
B, i.e. Alice prefers the first part of the pie to the second, but the

intensity of her preference for the first part is smaller than Bob’s, Bob receives
his favorite allocation subject to the constraint that Alice’s payoff is at least 1

2 ,
i.e., allocation r =

(
1− 1

2uc , 1
)
. The allocation and Bob’s payoff depends on

Alice’s preference; Alice’s payoff is 1
2 .

• Finally, if u1
A <

1
2 , i.e., Alice prefers the second part, each player receives his or

her favorite part of the pie (allocation s).

Notice that if Alice’s preference type is in the third and fourth cases above, i.e., u1
A <

u1
B, Alice prefers allocation q to allocations r or s. Because allocation q can be obtained

as an outcome of Nash bargaining if Bob thinks that Alice preferences are the same as
his, such types of Alice could benefit from Bob not knowing their true preferences.

The incentive problem is also present more generally, when N > 2. In such a case,
each Nash allocation leads to a payoff of at least 1

2 for Bob. The worst Bob’s payoff
is attained when Alice’s types has exactly the same preferences as Bob. Each type of
Alice would like Bob to believe that her preferences are as close to his as possible.

Suppose that we ignore the incentive problem, ask Alice to report her type, and
then implement the Nash allocation given her report. This is equivalent to allowing
Alice to mimic arbitrary preference type, including a type with the same preferences
as Bob’s. If N = 2, a generic type of Alice would choose between allocations q or p.
More generally, when N ≥ 2, Alice would choose optimally from menu

m1/2 =
{
x : uB (x) ≥ 1

2

}
.

Menu m1/2 consists of allocations in which Bob receives at least his worst payoff among
all Nash allocations and types of Alice. If implemented, such a menu has three features:
(a) if Alice chooses optimally, the final allocation is ex-post efficient, (b) the chosen
allocations are the worst Nash allocations from Bob’s point of view, and (c) for Alice,
they constitute the best choices among all allocations that can be obtained as Nash
solution for some Alice’s preference type. Such an outcome resembles the famous
result from the Coasian bargaining literature on the durable good monopolist without
commitment (Gul et al. (1986)). In that literature, in the gap case, the solution shares
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the same three features. For this reason, we refer to menu m1/2 as the Coasian menu
and 1/2 as the Coasian payoff. 5

3. Analysis

This section is divided into four parts. First, we characterize the solution in the
special case of complete information. Second, we turn into incomplete information
case. We define a notion of strength for each player that is appropriate for incomplete
information game. That notion will be useful in the analysis of the war-of-attrition
game in the second part. Finally, we prove our main result - the characterization of
the limit equilibrium payoffs in the menu-choice game.

3.1. Complete information about Alice preferences. We start with discussing
the special case of our model, where UA = {uA} for some preference type uA, or, in
other words, where Alice’s preferences are known to both agents before the choice of
menu.

Theorem 1. Suppose that UA = {uA}. Then, for each player k = A,B, each j = A,B,

Ek (uk; CX , π, j) = uk
(
xNash (uA)

)
. (3.1)

If Alice’s preferences are known, then in the continuous time and rational limit,
both players receive their Nash payoffs. This result coincides with the message of
reputational literature, including Kambe (1999) and Abreu and Gul (2000). The earlier
papers only allow players to make simple offers. Allowing for more sophisticated offers
in the form of menus does not change the outcome of bargaining.

The proof is standard. We remind it in order to draw the comparison with the
incomplete information case. Abreu and Gul (2000) define a strength of a player as
the ratio of the payoff from winning (i.e., the payoff if the opponent concedes) divided
by the payoff from losing (i.e., conceding) the war of attrition. The stronger player
must concede fast to make the weaker opponent indifferent; to compensate, the weaker
opponent must begin the game with a large probability concession. The notion of
strength extends to menus as offers in a natural way, where a winning and losing
payoff depends on the optimal choice from a menu.
5The Coasian literature focuses on bargaining models where all the offers are made by the uninformed
party (i.e., Bob). We believe that it is worthwhile to separate bargaining power from incomplete
information, and it is the latter that is central to the Coasian logic.
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Suppose that one of the players chooses a single-element menu
{
xNash (uA)

}
. If the

other player responds with a menu that gives the first player payoff not much smaller
than the payoff from the Nash allocation, the first player receives her Nash payoff.
Alternatively, if the other player chooses a menu in which the best payoff of the first
player is significantly smaller than her Nash payoff, we can show that the first player
is stronger, and the second player must start with a concession. In the rational and
patient limit, the probability of the initial concession is arbitrary close to 1. On the
other hand, if the first player makes an offer that does not guarantee the second player
his Nash payoff, the second player has a counter-offer that ensures him the Nash payoff
and simultaneously makes him stronger, ensuring his victory in the bargaining game.

In any case, both players are able to guarantee the Nash payoffs. Because the Nash
payoffs are efficient, none of the players can do better. The details can be found in
Appendix B.

3.2. Strength. Next, we turn to the incomplete information case and we assume that
set UA has a non-empty interior. We begin with the war-of-attrition stage. A generic Al-
ice’s menu mA contains the unique Bob’s optimal allocation xA ∈ arg maxx∈mA uB (x).
In such a situation, xA is the only allocation chosen by Bob when he concedes and
that plays any role in the bargaining game. As a first approximation, we assume that
Alice’s menu consists of a single element, mA = {xA}; we deal with the non-generic
case later. We refer to xA as Alice’s winning allocation.

Given the assumption, we define the strength of Alice’s type uA as

SA (uA) = uA (xA)
maxx∈mB uA (x) .

As in Abreu and Gul (2000), the strength is defined as a ratio of the payoff from
winning the war of attrition (i.e., from the winning allocation xA) versus the payoff
from losing, that is equal to the best payoff that type uA can attain in menu mB.

Define the strength of Alice the player as the strength of the strongest type in her
support:

S∗A = max
uA∈UA

SA (uA) .

A geometric intuition on how to find the strongest type is illustrated on the left side
of Figure 3.1. The dashed ray connects allocations 0A (i.e., Alice gets nothing) and
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Figure 3.1. Alice’s strength and general menus.

the winning allocation xA. The win/loss ratio is equal to the ratio of the length of
the ray and the distance between allocations 0A and the intersection of the ray and
Alice’s indifference hyperplane that corresponds to her losing payoff. By moving the
losing indifference hyperplane along the menu boundary, we can see that the ratio is
maximized when the indifference hyperplane touches the menu exactly at the ray. More
formally, let

m∗B =
⋂

uA∈UA

{
x : uA (x) ≤ max

x′∈mB
uA (x′)

}
(3.2)

be the largest menu that gives each of Alice’s types exactly the same utility as the
menu mB. We say that m∗B is a completion of mB. Further, let

κ∗ = sup {κ ∈ [0, 1] : (1− κ) 0A + κxA ∈ m∗B} , and (3.3)

x∗ = (1− κ∗) 0A + κ∗xA.

Allocation x∗ is the optimal allocation that belongs to menu m∗B and to the ray con-
necting allocations 0A and xA (see the right panel of Figure 3.1).

Given the above preparation, notice that the strength of an arbitrary type uA is
equal to

SA (uA) = uA (xA)
maxx∈m∗B uA (x) =

1
κ∗
uA (x∗)

maxx∈m∗B uA (x) ≤
1
κ∗
,
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where the inequality follows from the fact that maxx∈m∗B uA (x) ≤ uA (x∗) (due to x∗ ∈
m∗B). The upper bound is reached by a type u∗A ∈ UA such that x∗ ∈ arg maxx∈m∗B u

∗
A (x).

(Such a type exists, due to the menu m∗B being complete.) Thus, x∗ is a (possibly, one
of many) allocation(s) of the (possibly, one of many) strongest type(s), and

S∗A = 1
κ∗
. (3.4)

We define Bob’s strength as the ratio of the payoff from allocation x∗ (i.e., the
winning allocation against the strongest type) and his losing payoff:

S∗B = uB (x∗)
uB (xA) . (3.5)

As we show soon (see Lemma 2 below), the strength comparison plays an important
role in determining the outcome of the war-of-attrition. The next result describes an
important special case. Alice is stronger when she makes an arbitrary Coasian offer to
Bob (i.e., an offer that belongs to the Coasian menu) and that offer is not included in
his (completed) menu.

Lemma 1. Suppose that Alice’s offer mA =
{
xA
}
consists of a single allocation such

that xA ∈ m1\2 and xA /∈ m∗B. Then, S∗A > S∗B > 1.

Proof. The assumptions imply that there is r > 0 such that B
(
xA, r

)
∩m∗B = ∅, where

B
(
xA, r

)
is a ball with center at xA and radius r. Let x∗ and κ∗ be defined as above.

Then, κ∗ ≤ 1− r and uB (x∗) = 1− κ∗ + κ∗uB (xA). (To see the latter, notice that

1− uB (x∗) = 1−
∑
n

unB (1− x∗n) =
∑
n

unBx
∗
n

=
∑
n

unBκ
∗xA,n = κ∗ −

∑
n

unBκ
∗ (1− xA,n) = κ∗ (1− uB (xA)) .)

We compute Bob’s strength:

S∗B = uB (x∗)
uB (xA) = (1− κ∗) + κ∗uB (xA)

uB (xA) = 1− κ∗
uB (xA) +κ∗ ≤ 1− κ∗

1/2 +κ∗ = 2−κ∗ ≥ 1 + r.

The inequality comes from the fact that xA ∈ m1/2, hence uB (xA) ≥ 1
2 . But because

κ∗ ≤ 1− r, we have

S∗A − S∗B = 1
κ∗
− 2 + κ∗ ≥ 1

1− r + 1− r − 2 = r2

1− r > 0.

�
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Remark. The proof of the Lemma establishes a slightly stronger claim: for each r > 0,
there exists δ > 0 such that if mA = {xA} for some allocation xA such that B (xA, r)∩
m1/2\m∗B = ∅, then S∗A > S∗B > 1 and min (S∗A − S∗B, S∗B − 1) > δ.

Remark. An equally simple argument shows that if m∗B ⊇ m1/2 and mA = {xA} for
some xA /∈ m∗B, then S∗A < S∗B.

3.3. War of attrition. The notion of strength leads to the following simple partial
characterization of the behavior during the war-of-attrition.

Lemma 2. Suppose that Assumption 1 holds, UA has an open interior, uB ∈ UA, and
Bob’s beliefs about Alice’s type in the beginning of the war-of-attrition are derived from
Alice’s behavior in the menu choice game. Additionally, suppose that mA = {xA},
xA /∈ m∗B, and that 0 � xA � 1. If S∗A > S∗B > 1, then, for each δ > 0, there
exist λ∗,∆∗ > 0 such that if λ ≤ λ∗ and ∆ ≤ ∆∗, then, there is T < ∞ such that
e−∆T > 1− δ and, in any equilibrium, Bob concedes with a probability of at least 1− δ
before the end of period T .

The Lemma is a generalization of the argument sketched in section 3.1 to an incom-
plete information. If Alice is stronger, S∗A > S∗B, Bob loses the war of attrition, i.e.,
there is a high probability that he concedes in the initial periods of the game. The
payoffs depend on the support (through the definition of Alice’s strength), but not on
any other details of Bob’s beliefs.

3.3.1. Proof intuition. We describe the intuition behind the Lemma 2. Initially, we
make a simplifying assumption that, as in the right panel of Figure 3.1, the strongest
of Alice’s types is unique and it has the unique optimal allocation x∗. In such a case,
types that are close to the strongest one pick an allocation that is close to x∗.

We start with reminding the basic structure of equilibria in the war-of-attrition
games. In each period, a player who has not yet revealed herself or himself to be
stubborn must concede with a positive probability. The last concessions take place in
two consecutive periods and occur in finite time.

While concessions take place. players learn about the rationality of their opponent;
additionally, Bob learns about Alice’s preference type. Let pB (t) be Bob’s concession
rate, i.e., the probability that Bob concedes in period t ∈ TB conditionally on reaching
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t. Alice’s type uA gain from waiting from period t− 1 to t+ 1 is equal to[
e−∆pB (t) (uA (xA)) + e−2∆ (1− pB (t)) max

x∈m∗B
uA (x)

]
− max

x∈m∗B
uA (x)

=
[
e−∆pB (t)

(
SA (uA)− e−∆

)
−
(
1− e−2∆

)]
max
x∈m∗B

uA (x) , (3.6)

and it is single-crossing in strength. It follows that her weaker types must concede
before the stronger ones. Note that the strength order as well as the identity of the
strongest type depends on the menu.

Let SA (t) be the strength of Alice’s weakest type who has not conceded before and
including period t. In equilibrium, the concession rate pB (t) makes the type SA (t)
indifferent between conceding now and waiting till the next opportunity.

In the second step, we divide the time in the game into two parts. For each η > 0,
let T ηA = min {t : SA (t) ≥ S∗A − η} be the first period after which all remaining types of
Alice are η-close to her strongest type. We refer to the time after T ηA as the late game.
We refer to the time before T ηA as the early game. The late game ends in period T ∗,
when both players learn that their opponent is stubborn (standard arguments from the
war-of-attrition literature show that it must happen at the same time for both players).
As λ→ 0, the logic of the Bayesian updating implies that the late game is arbitrarily
long, and it dominates the initial stages, i.e., (T ∗ − T ηA)� T ηA.

The idea why the late game dominates the early game is not new and was clearly
described in Abreu et al. (2015) and Fanning (2016). For a simple intuition, assume
(incorrectly) that Alice’s concession rate is constant and approximately equal to' pA∆.
The Bayes formula implies that

(1− pA∆)T
η
A ' λ+ (1− λ)π (u : SA (u) ≥ S∗A − η) ,

(1− pA∆)T
∗−T ηA ' λ

λ+ (1− λ) π (u : SA (u) ≥ S∗A − η) .

The equalities lead to an estimates for the lengths of different phases. If λ is very small,
then T ∗ − T ηA � T ηA and the late game dominates. In our case, this intuition needs
to be modified by the fact that Alice’s concession rate is not constant and becomes
close to constant only in the late game (see below). The argument relies heavily on
the ability to keep the probability π (u : SA (u) ≥ S∗A − η) bounded away from 0, or, in
other words, on the Assumption 1.
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Next, we estimate the concession rates in the late game. Formula (3.6) implies that
the concession rate of player i is inversely related to the strength of the opposing player
−i. By the definition of the late game, the strength of all Alice’s late-game types is
close to S∗A. By the simplifying assumption, the losing allocations of late-game Alice’s
types are close to x∗, which implies that Bob’s strength is well-approximated by S∗B. If
Bob is weaker, S∗A > S∗B, Alice will concede at a faster rate. Familiar arguments from
Abreu and Gul (2000) imply that the ratio of the mass of surviving Alice’s rational
types to the mass of Bob’s rational types at the outset of the late game becomes
arbitrarily large as λ→ 0.

Finally, we bound the concession rates of the two players in the early game: the
bounds show that the ratio of masses of the surviving types of Alice to Bob in the
initial periods of the game (after, perhaps, a small number of initial periods) remains
arbitrarily high as λ → 0. To make up for the missing probability, Bob must concede
in the initial periods with a probability that is arbitrarily close to 1. This step of the
argument is complicated by the need to deal with the possibility that some Alice’s
types may prefer to lose and get an allocation xA rather than win and pick from menu
mB , in which case they are going to try to concede as early as possible.

3.3.2. Complications. The estimate of Bob’s concession rate in the late game relies
on the assumption that the late-game types lose with an allocation close to x∗. This
assumption is satisfied for menus mB, for which there is the unique strongest type of
Alice and that such a type has the unique optimal allocation.

There are two complications. The first one arises when the strongest type is in the
boundary of the type distribution UA. See the left panel of Figure 3.2, where Alice
chooses from a single-element menu {xB}. In such a case, the optimal choice of each
Alice’s type is xB, and not x∗. Nevertheless, the thesis of the Lemma holds. The reason
is that replacing x∗ by xB does not affect Alice’s strength, hence Bob’s concession rates
in the late game. (To make this argument general, we need to assume that uB ∈ UA.)
At the same time, because Bob prefers x∗ to xB, to keep Bob indifferent, Alice must
concede at an even faster rate. Hence, the original argument applies. (The fact that
uB ∈ UA is necessary to deal properly with this complication.)

Because of the complication, the converse to Lemma 2, i.e., a claim that Bob wins
the war of attrition if he is stronger, does not generally hold. However, the converse
holds in a special case. The next result shows that if Bob’s menu is close to the Coasian
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menu m1/2 and Alice’s demand gives Bob a payoff that is significantly lower than 1
2 ,

then Alice loses the war of attrition. (Notice that Bob is stronger in such a case, due
to the Remark after Lemma 1.)

Lemma 3. For any η > 0, there is ε > 0 such that for each δ > 0, there exist
λ∗,∆∗ > 0 such that if λ ≤ λ∗ and ∆ ≤ ∆∗, and if

max
x∈mA

uB (x) < 1
2 − η and dH

(
mB,m

1/2
)
≤ ε,

then Alice concedes with a probability of at least 1− δ in his first period of the game.

The second complication is when the menu is linear in the neighborhood of x∗. In
such a case, the optimal allocation of almost all types can be significantly far away
from x∗i , even during the late game. Nevertheless, we show that in such a case, the
average allocation chosen by Alice, conditional on her conceding, converges to x∗. The
intuition is described on the right panel of Figure 3.2. Almost all types of player i
pick one of two y1, y2 optimal allocations. The dotted lines represent the indifference
hyperplanes of the strongest types of player i that concede in periods t−2, t, and t+2.
The areas between the hyperplanes contain Alice’s types who concede in periods t and
t + 2. The intersection of the indifference curves belongs to the dashed ray because,
as we explained above, the strength of any type can be parameterized by the distance
between the zero allocation and the intersection of the ray with an indifference curve. In
the late game, only the types with strength close to S∗A survive. Due to the regularity
assumptions, and specifically to the continuity of the density, in the late game, the
conditional probabilities of the two optimal allocations are proportional to the angles
between the two consecutive indifference curve. A simple geometric intuition shows
that, in such a case, the weighted average concession allocation is close to x∗.

Our proof in the Appendix deals with two complications at the same time and it
necessarily differs from 2-dimensional intuitions described above. We show that a
strength of a type is monotonically decreasing in the value of a certain convex function
of a type (see equations (A.2) and (A.3) in the Appendix), and at each period, the
remaining Alice’s types belong to the lower contour sets of this function. Then, Lemma
7 uses convex analysis techniques to show that, in the late game, Alice concedes not
slower than as if she had strength S∗A.
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0A

1A
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vanilla
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xB
xA

x∗
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xA

x∗

t-period concessions

t+ 2-period concessions

Figure 3.2. Special cases.

3.4. Menu choice game. The above results lead to a straightforward characterization
of the limit payoffs at the menu choice stage.

Theorem 2. Suppose that Assumption 1 hold, UA has an open interior, and uB ∈ UA.
Then, for each uA ∈ UA, each π ∈ ∆U , each initial player k = A,B

EA (uA; CX , π, k) = max
x∈m1/2

uA (x) and EB (uB; CX , π, k) = 1
2 . (3.7)

Theorem 2 says that Alice receives her optimal payoff from the Coasian menu, i.e.,
the optimal payoff subject to the constraint that Bob receives at least 1

2 . The latter is
equal to his worst payoff in a game in which Alice’s type is known (or Nash solution
payoff) across all possible Alice’s types.6 Analogously, each of her opponent types
receives her best payoff across all possible outcomes in complete information equilibria
(i.e., across all Alice’s types). The equilibrium payoffs are ex post efficient.

Although the statement focuses on the payoffs, note that the only way to obtain
such payoffs is when Bob proposes menu m1/2 , which is accepted.

The assumption that UA has non-empty interior ensures a non-trivial incomplete
information about preferences.
6For u−i,1 ≥ u−i,1, the Nash allocations are presented in Figure 1.1, and the Nash payoffs are given
by function

NA (ui) = max
(

1
2u−i,

u1,
1
2 ,

1
2 (1− u1)

)
. (3.8)
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The assumption uB ∈ UA plays an important role in the proof of Lemma 2. Without
it, the thesis of Theorem 2 may not hold. (To see why, suppose that UA → {uA} in
the Hausdorff sense. Then, we expect Bob’s equilibrium payoff to converge to his Nash
payoff from bargaining with type uA. For a large set of Alice’s types uA, Bob’s Nash
payoff is strictly larger than 1

2 .) In such a case, we hypothesize that a generalized
version of Theorem 2 may hold, in which Bob’s equilibrium payoff is the worst Nash
payoff across all possible types of Alice. We leave this hypothesis for future research.

Proof. We sketch the proof when k = B, or when Bob is the first to propose a menu.
The details and the remaining part is in the Appendix. We are going to show that
Alice can guarantee herself any payoff from any allocation in the Coasian menu m1/2.
In particular, her payoff cannot be smaller than (3.7).

Indeed, Lemmas 1 and 2 show that either Bob’s offer includes all allocations in m1/2,
or Alice can pick any allocation in m1/2\m∗B and expect that Bob will concede and
accept her offer. In any case, she is guaranteed to receive her best payoff from m1/2.

On the other hand, Lemma 3 implies that either Alice’s offer gives Bob a payoff that
is arbitrarily close to 1

2 , or Bob has a counteroffer mB = m1/2 which leads to Alice’s
concession and payoff of 1

2 . In any case, Bob is guaranteed the payoff of 1
2 .

4. Discussion

4.1. Relation to axiomatic solutions. The solution obtained in Theorem 2 can
be compared with axiomatic solutions to bargaining under incomplete information.
Harsanyi and Selten (1972) consider the space G feasible (incentive compatible and in-
dividually rational) allocation mechanism g with an equilibrium with expected interim
payoffs gj (uj) to player j and type uj.7 They propose that such a solution should
maximize

log gB (uB) +
ˆ

log gA (uA) dρA (uA) (4.1)

7In an allocation mechanism, players choose actions, and the mechanism determines an allocation. In
the context of the bargaining environment of this paper, it is easy to show (see, for instance Peski
(2019)) that, g is a feasible allocation mechanism if and only if there exists a menu m ⊆ X such that
gi (ui) = maxx∈m ui (x) and g−i (u−i) ≤

´ (
maxx∈arg maxx′∈m ui(x′) u−i (x)

)
dµ (ui), where µ are Bob’s

beliefs, and, alternatively, only if (a) gi (.) is convex, (b) if Dui
gi is the set of supporting hyperplanes

of gi (.) at ui (i.e., l is affine, l (ui) = gi (.) and l (.) ≤ gi (.)), then l (u′i) ∈ [0, 1] for each l ∈ Dui
gi and

each ui, u
′
i, and (c) g−i (u−i) ≤

´ (
1−maxl∈Dui

gi
l (u−i)

)
dµ (ui).
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among all g ∈ G. They derive the formula as an extension of the Nash solution (which
maximizes log gA + log gB in the complete information analogue).

Myerson (1984) proposes an alternative bargaining solution that avoids some issues
with handling state-dependent utility present in Harsanyi and Selten (1972) (these
issues are irrelevant for the known-own payoff environment that we study in this paper).
The solution is presented as a certain fixed point problem.

The Coasian menu m1/2 is feasible. Nevertheless, it is easy to show that m1/2 is
neither part of the Harsanyi-Selten nor Myerson’s solutions. Both solution concepts rely
on axioms that compare bargaining problems across various environments, including
interdependent value cases. Hence, because our solution is only defined for the known-
own payoff heterogeneous pie case, it is difficult to point out a single axiom that is
violated.

4.2. Simple offers. A natural question in our model is whether the ability to commit
to menus is valuable, as compared with a more standard model, where players can
only demand simple allocation. Consider a version of the model where players can
only choose singleton menus, Mi = {{x} : x ∈ X} ' X.

Proposition 1. Suppose that (a) Bob moves first, (b) Bob’s preferences are known,
UB = {uB}, (c) Bob likes at least two parts of the pie, uiB, u

j
B > 0 for i 6= j, and (d)

Alice’s preferences have full support, supp π = U . Then,

supEB (uB;X, π,B) < 1
2 . (4.2)

Comparing to Theorem 2, Bob is strictly worse off and his equilibrium payoff is
strictly below his worst possible complete information payoff. Thus, Bob values being
able to use menus rather than singletons.

The result is a straightforward corollary to the proof of Theorem 2, which shows
that Bob can ensure a payoff of 1

2 only if he offers m1/2. But Bob cannot offer such a
menu if he is restricted to singletons and he likes at least two different parts of the pie.
(If he liked only one part of the pie, then an offer where he keeps half of that part for
himself and leaves the rest of the pie to Alice would be accepted.)

To see this intuition a bit more clearly, consider an arbitrary Bob’s offer x. We can
find a set Y (x) of offers y such that, if offered by Alice, there is at least one type
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x

Y1(x)

Y2(x)

0A

1A

x1

x2

(1
2 ,

1
2)

uB

Figure 4.1. Allocations in sets Y1 (x) (blue) and Y2 (x) (red).

uA ∈ U of Alice who is stronger than Bob:
uA (y)
uA (x) ≥

uB (x)
uB (y) .

It is easy to see that, if there is a type that satisfies the above inequality, then there is
also an extreme type that does so; we can replace the left-hand side by maxn yn

xn
. Thus,

Y (x) =
⋃
n

{y : ynuB (y) ≥ xnuB (x)} =
⋃
n

Yn (x) ,

where sets Yn (x) are defined as the sets of allocations y such that ynuB (y) ≥ xnuB (x),
or Alice’s offers for which the Alice preference type who only likes part n is stronger.
Figure 4.1 illustrates on an example.

Any allocation from set Y (x) makes Alice at least as strong as Bob in the following
war-of-attrition. If λ and ∆ are small, then any such choice y (or, more precisely,
any choice in the interior of set Y (x)) will ensure that Alice wins and receives payoff
uA (y), with a payoff uB (y) for Bob. Lemma 2 implies that Alice’s menu choice and
the continuation equilibrium in the war-of-attrition must result in a payoff that is not
much smaller than maxy∈Y (x) uA (y).

Calculations like in Lemma 1 show that, if uB (x) > 1
2 , then, for each Alice’s type,

there is an allocation y in set Y (x) that gives her more than her best payoff from menu
m1/2. If uB (x) ≤ 1

2 , then, depending on x, some types are better, or strictly better
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off by accepting allocation x, but there are others, who have a stronger counteroffer.
In short, each Alice’s type is able to ensure herself a payoff that is no worse, and
sometimes strictly better than her best payoff from menu m1/2. But because menu
m1/2 was efficient, Bob’s payoff must be strictly smaller than 1

2 .

4.3. Two-sided incomplete information. With two-sided incomplete information
about preferences, there is no natural notion of strength and no a priori sorting. In
fact, it is possible to construct an example with two types for both players, where the
war-of-attrition stage has two equilibria with different payoffs and different order of
conceding types.

At the same time, when N = 2, the types are from a continuum, and when each
player’s menu is linear, some partial sorting can be restored. If menu m−i is linear
and there are only two dimensions, conceding player i picks one of the two extreme
allocations from the menu. One shows that types that choose the same allocation
can be sorted: the types that care strongly about one or the other part of the pie
concede first; the type with an indifference curve aligned with the boundary of the menu
concedes the last. The war-of-attrition stage has a unique equilibrium, and it has a
simple characterization. Define the strength of a player as the winning/concession ratio
under the restriction that, when conceding, the player must choose an allocation that
belongs to the diagonal of the allocation space X. Because of linearity of preferences,
the strength does not depend on the player’s type. In the equilibrium, the weaker
player concedes in early periods of the game with a probability arbitrarily close to 1.

Details on the two-type example and the above result can be found in the online
Appendix.

Appendix A. Proof of Lemma 1

We start with an overview of the proof of the Lemma.
Subsection A.2 is devoted to notation and some preparatory results. Subsection

A.2 introduces a convenient re-normalization of Alice’s preference types so that the
payoff of each type from allocation x∗ is constant. Lemma 6 in Section A.3 lists basic
properties of the war-of-attrition game, including sorting by strength of Alice’s types
and a characterization of concession rates. The next two results establish bounds in
the late game. First, the key step of the proof is contained in Lemma 7, where we show
that Bob’s payoffs from Alice’s concessions in the late game are not much higher than
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the payoff from x∗. Second, this observation is used in Lemma 8 to show that Alice’s
concedes at rates that are not slower than as if Bob was facing a type who always
chooses x∗ as her optimal choice. Lemma 9 deals with the early game and shows that
either Bob or all Alice’s types with a strength smaller than 1 + ε concede very fast.
Subsection A.7 uses these results to finish the proof of Lemma 1.

The assumption that 0 � xA � 1 implies that d = minn (xA,n, 1− xA,n) > 0. Let
rX = 1

4d
2 > 0. We divide the proof of the Lemma into two cases: either B (0A, rX) ⊆

m∗B, or not. The bulk of the proof is devoted to the former case; the latter case is dealt
with in Subsection A.8.

A.1. Constants. The assumptions of the Lemma imply that S∗A−S∗B, S∗B−1, uB (xA) >
0. (Note that uB (xA) ≥ d.) In the course of the proof, we define various constants, all
of which depend only on the parameters of the model and

m0 = min (rX , S∗A − S∗B, S∗B − 1, d) > 0,

but not on any other properties of menu mB, allocation xA, or Bob’s beliefs. From
now on, we assume that ∆ is sufficiently small so that e∆ − 1 < 1

2m0.
Let diam (UA) be the diameter of set UA. Because UA has nonempty interior, there

exists rU > 0 and u0 ∈ UA such that B (u0, rU) ⊆ UA.
Let Λ be the Lebesgue measure on UA (it exists, as UA is a convex subset of RN

with a non-empty interior). Let Π ∈ ∆UA be Bob’s beliefs. By the assumption, Bob’s
beliefs in the war-of-attrition stage are derived from updating on Alice’s choice in the
menu game. Let µ ∈ ∆S would be Bob’s posterior beliefs about Alice’s signals. Then,
the density of Bob’s beliefs Π wrt. Λ is equal to π (.) =

´
πS (.|s) dµ (s). Assumption

1 implies that π is strictly positive on UA and Lipschitz continuous.
For each player j = A,B, define the “limit” concession rates as if facing the oppo-

nents with strengths S∗−j:

p∗j = 1− e−2∆

e−∆
1

S∗−j − e−∆ > 0, (A.1)

A.2. Re-normalization. It is convenient to re-normalize Alice’s preference types.
Recall that UA ⊆ U =

{
u ∈ RN+ : ∑un = 1

}
. Define function ρ : UA → U ′ =
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u′ ∈ RN+ : ∑u′nx

∗
n = 1

}
by ρ (u) = 1∑

unx∗n
u. The re-normalization allows us to rep-

resent the strength (see Section 3.2) of a type u′ = ρ (u) as

SA (u) = u (xA)
maxx∈m∗B u (x) = u (xA)

u (x∗)
1

maxx∈m∗B
1

u(x∗)u (x) = 1
κ∗

1
h (ρ (u)) + 1 , (A.2)

where we use the fact that, by construction, κ∗ = u(xA)
u(x∗) , and where we define function

h : U ′A → R+ by
h (u′) = max

x∈m∗B
u′ · (x− x∗) . (A.3)

The strength of a type is decreasing with h (ρ (u)), i.e., the value of function h computed
for the re-normalized type.

Because of the properties of mapping ρ, the support U ′A = ρ (UA) of Bob’s induced
beliefs Π′ is convex, and Π′ has a strictly positive density π′. The next result summa-
rizes some properties and bounds on re-normalized objects.

Lemma 4. Let U (rX) = {u ∈ U ′A : h (ρ (u)) ≤ rX}. There are constants 0 < πmin, πmax, cr, Cr, Kr, cΠ <

∞ such that

(1) U (rX) ⊆ {u ∈ U ′A : u · x∗ ≥ rX}.
(2) For each u ∈ U (rX), we have πmin ≤ crπ (ρ (u)) ≤ π′ (ρ (u)) ≤ Crπ (ρ (u)) ≤

πmax.
(3) The induced (re-normalized) density π′ is Lipschitz with a constant Kr < ∞

on U (rX).
(4) For each η ≤ rX , Π {u : h (ρ (u)) ≤ η} ≥ cΠη

N−1.

Proof. For property 1, notice that B (0A, rX) ⊆ m∗B implies that u · xu ≥ rX for each
preference type u. Hence, if h (u) = u · (xu − x∗) ≤ rX , then u · x∗ ≥ rX . Properties
2 and 3 follow from the fact that mapping ρ has an inverse with continuous derivative
with non-disappearing Jacobian and from the fact that Bob’s beliefs are derived under
Assumption 1, hence, they have continuous density with respect to Lebesgue measure
with uniform strictly positive lower and upper bounds.

For property 4, take any u∗ ∈ U such that x∗ is an optimal choice of u∗ in the set
m∗B (such a preference type exists, because x∗ belongs to the boundary of set m∗B).
Then h (ρ (u∗)) = 0 and for each u ∈ B (u∗, η) we have h (ρ (u)) ≤ η. Consider a
convexification of set A = con ({u∗} ∪B (u0, rU)). Simple calculations show that there
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is u and r = rU
rU+diamUAη such that B (u, r) ⊆ A ⊆ UA. By the assumption,

Π {u : h (ρ (u)) ≤ η} ≥ Π (B (u, r)) ≥ πminΛ (B (u, r)) = const
(

rU
rU + diamUA

η
)N−1

for some constant. �

From now on, we are going to work with the re-normalized space of preference types
(including Bob type uB). In the interest of saving on notational clutter, we drop the
primes ”′” from the re-normalized notation.

The reason for the re-normalization is that function h, that is used above to express
the strength of Alice’s types, has some nice properties. These properties are stated in
the subsequent Lemma.

Lemma 5. Properties of function h:
(1) Function h is continuous, convex, non-negative, and it attains a minimum of 0

at u∗ ∈ UA.
(2) For almost all u ∈ UA, there exists unique xu that solves maxx∈m∗B u · (x− x

∗)
and a derivative Dh (u) = xu − x∗ ∈ RN such that for almost all u ∈ UA,

uB · (xu − x∗) = h (u)−Dh (u) · (u− uB) .

(3) For each η > 0,

Λ {u : h (u) = η} = 0, and Λ {u : h (u) ≤ η} ≤ 2N−1Λ
{
u : h (u) ≤ 1

2η
}
.

Proof. Property 1 is immediate. Property 2 is a consequence of the Envelope Theorem.
Property 3 is a standard property of convex functions. �

A.3. War-of-attrition equilibrium. For each player i = A,B, let t0i ∈ {1, 2} be the
first decision period for player i. Fix player’s strategies σi. Define

fσ (U |t) = (1− λ)
ˆ

U

σTA (t|u)π (du) for each t ∈ TA and measurable U ⊆ UA,

fσ (t) = (1− λ)σTB (t) for each t ∈ TB.

For t ∈ TB, fσ (t) is Bob’s concession probability. Let fσ (t) = fσ (UA|t) be the overall
Alice’s probability of concession in period t ∈ TA. For each i = A,B and t ∈ Ti, let

F σ (t) = λ+
∑

s∈Ti:s≥t
fσ (t) , and pσi (t) = 1

F σ (t)f
σ (t) ,
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be, respectively, the probability that player i has not conceded before period t and the
concession rate in period t. Let T ∗,σi = max {t ∈ Ti : fσ (t) > 0} be the last period in
which a strategic type of player i concedes.

For each t ∈ TA, let

wσ (t) =
ˆ
σMA (u) 1

fσ (t)f
σ (du|t) ∈ X for each t ∈ TA,

be the expected allocation that Bob obtains in period t, conditional on Alice’s conces-
sion in that period.

The superscripts σ in the above notation denotes the dependence on the strategy
profile σ; the subscript i - on the player i. We drop the superscripts and/or the
subscripts from the above notation whenever it does not lead to confusion.

The next result summarizes basic properties of the war-of-attrition game.

Lemma 6. Suppose that σ is an equilibrium.

(1) Support of the concession behavior:
(a) in each period before the last concession, a concession occurs with a positive

probability: for each t ≤ maxi T ∗,σi , fσ (t) > 0.
(b) players last concession are in the consecutive periods: |T ∗,σi − T ∗,σ−i | = 1.
(c) last concession happens in finite time: for each i, T ∗,σi <∞,
(d) only stubborn types never concede: for each i, F σ

i (T ∗,σi + 2) = λ.
(2) Sorting: There exists T 0 and a strictly decreasing sequence ηt0A > ηt0A+2.... >

ηT 0 = 0 such that in each equilibrium σ, σTA (u) = t if ηt−2 > h (u) > ηt, and
σTA (u) ≥ T 0 if h (u) = 0. Moreover, if π (h−1 (0)) =

´
h−1(0) dπ (u) = 0, then

T 0 = T ∗,σA .
(3) Concession rates:

pσA (t) = 1− e−2∆

e−∆
1

uB(wσ(t))
uB(xA) − e−∆

for each t ∈ TA,

pσB (t) = 1− e−2∆

e−∆
1

1
κ∗

1
ηt−1+1 − e−∆ for each t ∈ TB.
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Proof. Characterization of a best response behavior : We start with a preliminary step.
For each t ∈ TB, let wσ (t) = xA. Further, for each type u ∈ UA of Alice, let

LA (u) = max
x∈mB

u (x) for each u ∈ UA, LB (uB) = uB (xA) , and

Si (ui, t) = ui (wσ (t))
Li (ui)

for each player i and t ∈ T−i.

Here, Li (u) is the payoff received upon concession and Sσi is the strength ratio. Note
that Bob’s strength, but not Alice’s, depends on time and the equilibrium behavior.
The expected payoff of player i type u from conceding in period t ∈ TA given opponent
strategies (σ) is equal to

Uσ
i (u, t) =

∑
s:s<t,s∈T−i

e−s∆fσ−i (s) (ui (wσ (s))) + e−t∆F σ
−i (t+ 1)LA (uA) .

For each t ∈ Ti, we have

et∆ [Uσ
i (ui, t+ 2)− Uσ

i (ui, t)] (A.4)

=e−∆fσ−i (t+ 1) (ui (wσi (t+ 1))) +
[
e−2∆

(
F σ
−i (t+ 1)− fσ−i (t+ 1)

)
− F σ

−i (t+ 1)
]
Li (ui)

=F σ
−i (t+ 1)

[
e−∆pσ−i (t+ 1) (ui (wσi (t+ 1)))−

(
e−2∆pσ−i (t+ 1) + 1− e−2∆

)
Li (ui)

]
.

We have the following corollary to the above formula and the definition of strength:
For each type ui of player i, each t ∈ Ti, Uσ

i (ui, t+ 2) ≥ (≤)Uσ
i (ui, t) if and only if

pσ−i (t+ 1) ≥ (≤)1− e−2∆

e−∆
1

Sσi (u, t+ 1)− e−∆ . (A.5)

Part 1. The above implies that, iffσ (t) = 0 for some t ∈ T−i, then it is a strictly
better response for almost any type u of player i to concede in period t − 1 rather
than to wait to period t+ 1. It follows that fσ (t+ 1) = 0. An induction implies that
fσ (t′) = 0 for each t′ > t. This implies claims (1a) and(1b).

To see claim (1c), we take UB = {uB} and let Lmin
i = infu∈Ui Li (u). The serious

offer assumption ensures that Lmin
i > 0. Because fσi (t) > 0 for each t ≤ T ∗,σi , it must

be that for each t ∈ Ti, if t < T ∗,σi , there is a type u ∈ U−i of player −i such that
Uσ
−i (u−i, t− 1) ≤ Uσ

−i (u−i, t+ 1). Inequalities (A.5) implies that for each t < T ∗,σi ,

pσi (t) ≥
(
1− e−∆

) 1 + e−∆

e−∆
1

maxu∈A−i Sσ−i (u−i, t)− e−∆ ≥
(
1− e−∆

)
Lmin
−i > 0.
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Hence, for each t ≤ T ∗,σi

F σ
i (t) = (1− pσi (t− 2))F σ

i (t− 2) ≤
(
1−

(
1− e−∆

)
Lmin
−i

)
F σ
i (t− 2)

≤
(
1−

(
1− e−∆

)
Lmin
−i

)(t−t0i )/2
.

Because F σ
i (t) ≥ λ, it must be that T ∗,σi − t0i ≤ log λ

log(1−(1−e−∆)Lmin
−i ) .

Claim (1d) follows from the fact that, because offers are serious, if there are no
further concession from the other player, each player prefers to concede and receive a
strictly positive payoff.

Part 2. We show first that Bob’s concession rates must be decreasing. Take any type
u for whom it is the best response to concede in period t + 1. Hence, it must be that
UA (u, t+ 1) ≥ max (UA (u, t− 1) , UA (u, t+ 3)). By the preliminary step, and due to
the re-normalization and equality (A.2), we have

pσB (t) ≥ 1− e−2∆

e−∆
1

1
κ∗

1
h(u)+1 − e−∆ ≥ pσB (t+ 2) .

By the first part, in each period t ∈ TA, a strictly positive mass of Alice’s types
must concede. By Lemma 5, either pσB (t) = pσB (t+ 2) = 1−e−2∆

e−∆
1

1
κ∗−e−∆ ,or pB (t) >

1−e−2∆

e−∆
1

1
κ∗−e−∆ and pB (t) > pB (t+ 2). In the latter case, a 0 mass of Alice’s types is

indifferent between conceding in period t rather than in the preceding or subsequent
periods. The rest of the claim follows from the characterization of the best response
behavior.

Part 3 follows from part 1. �

The mass of conceding Alice’s types in period t ∈ TA and Alice’s concession rate are
equal to, respectively,

fσ (t) = Π
(
h−1 [ηt, ηt−2]

)
and pσA (t) = Π (h−1 [ηt, ηt−2])

Π (h−1 [0, nt−2]) .

We let ηt = 0 for each t > T 0
i and t ∈ Ti. The above proof implies that types

u ∈ h−1 (ηt) are indifferent between stopping in period t and t+ 2.

A.4. Late game: payoff bounds. The next result is a key step of this part of the
Appendix. It says that, in the late game, the average winning payoff for Bob is not
significantly larger than uB (x∗).
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Let T ηA = min {t ∈ TA : ηt ≤ η} be the period after which the value of function h for
all remaining Alice’s types is smaller than η. Let |x|+ = max (x, 0).

Lemma 7. There exists a constant C0 <∞ such that for each 0 < η < rX ,∑
t∈TA:t>T ηA

|uB (wσB (t))− uB (x∗)|+ f
σ (t) ≤ C0η (F σ (T ηA)− λ) .

Proof. For each η ≥ 0, let U (η) = {u ∈ UA : 0 ≤ h (u) ≤ η}. By Lemma 5, for each
t ∈ TA, we have

(uB (wσB (t))− uB (x∗)) fσ (t)

=
ˆ

u∈UA:ηt≤h(u)<ηt−2

uB · (x∗ − xu) π (u) du

=
ˆ

u∈UA:U(ηt−2)\U(ηt)

[Dh (u) · (u− uB)− h (u)]π (u) du. (A.6)

The first equality comes from the fact that uB (x) = 1− uB · x.
Polar coordinates. The goal of the main part of the proof is to provide bounds on the

the integral in the last line of (A.6). For this purpose, we switch to polar coordinates
with center at uB. Let SN−2 =

{
ν ∈ RN : ν · ν = 1, ν (x∗) = 0

}
be a N −2-dimensional

sphere. Let |SN−2|be the Lebesgue measure of the sphere SN−2. For each vector
ν ∈ SN−2, each η ≥ 0, let αmin (ν, η) and αmax (ν, η) be defined as

αmin (ν, η) = inf {a ≥ 0 : uB + aν ∈ U (η)} ,

αmax (ν, η) = sup {a ≥ 0 : uB + aν ∈ U (η)} .

In other words, these quantities are the distance coordinates of the first and the last
preference type along vector v from set U (η). If the set of such αs is empty, we take
αmin (ν, η) = αmax (ν, η) = 0. Then, due to the convexity of function h, up to 0-measure
sets, set U (ηt) is equal to the union of the line segments {uB + aν : αmin (ν, η) ≤ a ≤ αmax (ν, η)}
for all ν ∈ SN−2. Also, let

α (ν, η) = αmax (ν, η)− αmin (ν, η) = |{a : uB + aν ∈ U (η)}| .
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Notice that

α (ν, ηt−2)− α (ν, ηt) = αmax (ν, ηt−2)− αmax (ν, ηt) + αmin (ν, ηt)− αmin (ν, ηt−2)

= |{a : uB + aν ∈ U (ηt−2) \U (ηt)}| .

For each v ∈ SN−2, each a ≥ 0, define

hv (a) = h (uB + av) , (A.7)

gv (a) = π (uB + aν) aN−2,

g∗ν (a) = agν (a) .

Then, g is Lipschitz with constantKg = (diam (UA))N−3 (Kr (diam (UA)) + (N − 2) πmax),
where Kr is the Lipschitz constant from Lemma 4. For future reference, note that for
each s = min,max,

hν (αs (ν, η)) ≤ η, (A.8)

|hν (αs (ν, ηt−2))− hν (αs (ν, ηt))| ≤ηt−2 − ηt,

|ag′v (a) + 2g (a)| ≤ DaN−2.

for D = (N − 2) πmax +Kr.
Computing (A.6). The integral in the last line of (A.6) is equal to

= 1
|SN−2|

ˆ

SN−2


αmin(ν,ηt)ˆ

αmin(ν,ηt−2)

(ah′v (a)− hv (a)) gv (a) da+
αmax(ν,ηt−2)ˆ

αmax(ν,ηt)

(ah′v (a)− hv (a)) gv (a) da

 dν.
By the integration by parts, the above is equal to

=− 1
|SN−2|

ˆ

SN−2


αmin(ν,ηt)ˆ

αmin(ν,ηt−2)

hv (a) (ag′v (a) + 2gv (a)) da+
αmax(ν,ηt−2)ˆ

αmax(ν,ηt)

hv (a) (ag′v (a) + 2gv (a)) da

 dν
+ 1
|SN−2|

ˆ

SN−2

(
hv (a) g∗v (a) |α

min(v,ηt)
αmin(v,ηt−2) + hv (a) g∗v (a) |α

max(v,ηt−2)
αmax(v,ηt)

)
dν. (A.9)

Bounding the terms. Due to inequalities (A.8), the first term is not larger than

1
|SN−2|

Dηt

ˆ

SN−2


αmin(ν,ηt)ˆ

αmin(ν,ηt−2)

aN−2da+
αmax(ν,ηt−2)ˆ

αmax(ν,ηt)

aN−2da

 dν ≤ D
1

πmin
ηt (F (t− 2)− F (t)) .
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In order to find an upper bound on the second term of (A.9), we introduce the
following notation: for any function f , each t, let

∆s
tf = f (αs (ν, ηt−2))− f (αs (ν, ηt)) , for s = min,max,

∆tf = f (αmax (ν, ηt))− f
(
αmin (ν, ηt)

)
, and

∆t (∆f) = ∆max
t f −∆min

t f.

The expression in the brackets of the second term of (A.9) is equal to

∆t (∆ (hvg∗v)) = ∆max
t (hvg∗v) − ∆min

t (hvg∗v)

=∆max
t (hv) g∗v (αmax (ν, ηt−2)) − hv (αmax (ν, ηt)) ∆max

t (g∗v) − ∆min
t (hv) g∗v

(
αmin (ν, ηt−2)

)
+ hv

(
αmin (ν, ηt)

)
∆min
t (g∗v)

=∆max
t (hv) g∗v (αmax (ν, ηt−2)) − ∆min

t (hv) g∗v
(
αmin (ν, ηt−2)

)
−
[
hv (αmax (ν, ηt)) ∆max

t (g∗v) − hv
(
αmin (ν, ηt)

)
∆min
t (g∗v)

]
=
(
∆max
t hv − ∆min

t hv
)
g∗v (αmax (ν, ηt−2)) +

(
∆min
t hv

) (
∆t−2g∗v

)
−
[(

∆thv
)

(∆max
t (g∗v)) + hv

(
αmin (ν, ηt)

) (
∆max
t g∗v − ∆min

t g∗v
)]

=∆t (∆hv) g∗v (αmax (ν, ηt−2)) +
(
∆min
t hv

) (
∆t−2g∗v

)
−
(
∆thv

)
(∆max

t (g∗v)) − hv
(
αmin (ν, ηt)

)
∆t (∆g∗v) ,

(A.10)

Notice that function g∗v is Lipschitz with a Lipschitz constantK (ν) = (N − 1) (αmax (ν, ηt−2))N−2 πmax

on the interval α ∈ [αmin (ν, ηt−2) , αmax (ν, ηt−2)]. This, and the properties of function
hv imply that∣∣∣∆min

t hv
∣∣∣ , ∣∣∣∆min

t hv
∣∣∣ ≤ ηt−2 − ηt,∣∣∣∆thv

∣∣∣ , ∣∣∣hv (αmin (ν, ηt)
)∣∣∣ ≤ ηt,∣∣∣∆t−2g∗v
∣∣∣ ≤ K (ν)α (ν, ηt−2) ,

|∆max
t (g∗v)| ≤ K (ν) |αmax (ν, ηt−2)− αmax (ν, ηt)| ≤ K (ν) (α (ν, ηt−2)− α (ν, ηt)) ,

∆t (∆g∗v) ≤ K (ν) (α (ν, ηt−2)− α (ν, ηt)) .

Out of all terms of the last line of (A.10), we still need to bound the first term,
∆t (∆hv) g∗v (αmax (ν, ηt−2)). We consider the following cases:

• if hv (uB) > ηt−2, then, because uB ∈ UA (this is the only place in the proof
where this assumption is used), αmin (ν, ηt−2) > 0, and hv (αmin (ν, ηt−2)) = ηt−2:
– if αmin (ν, ηt) = 0, then αmax (ν, ηt) = 0, and h (αmax (ν, ηt)) = h (αmin (ν, ηt)),
– if αmin (ν, ηt) > 0, then h (αmin (ν, ηt)) = ηt. If h (αmax (ν, ηt−2)) ≥ ηt, then
h (αmax (ν, ηt)) = ηt, in which case h (αmax (ν, ηt)) = h (αmin (ν, ηt)),

– otherwise, i fαmin (ν, ηt) > 0, and h (αmax (ν, ηt−2)) < ηt, then h (αmax (ν, ηt−2)) =
h (αmax (ν, ηt)).
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In each of the above sub-cases, we have

∆t (∆hv) = hv (αmax (ν, ηt−2))−hv (αmax (ν, ηt))+hv
(
αmin (ν, ηt)

)
−hv

(
αmin (ν, ηt−2)

)
≤ 0,

which implies that ∆t (∆hv) g∗v (αmax (ν, ηt−2)) ≤ 0,
• if hv (uB) ≤ ηt−2, then αmin (ν, ηt−2) = 0, and αmax (ν, ηt−2) = α (ν, ηt−2). In
such a case,

∆t (∆hv) g∗v (αmax (ν, ηt−2))

≤2 (ηt−2 − ηt) g∗v (αmax (ν, ηt−2)) ≤ 2 (ηt−2 − ηt) (αmax (ν, ηt−2))N−1 πmax

=2 (ηt−2 − ηt) (α (ν, ηt−2))N−1 πmax ≤ K (ν)α (ν, ηt−2) (ηt−2 − ηt) .

Ultimately, collecting all the bounds, we obtain that the expression in the brackets
of the integral of the second term of (A.9) is not larger than

2K (ν)α (ν, ηt−2) (ηt−2 − ηt) + 2K (ν) ηt (α (ν, ηt−2)− α (ν, ηt)) .

Note that the above is non-negative.
Finishing the proof. Putting all the bounds together, we obtain∑
t∈TA:t>T ηA

|uB (wσB (t))− uB (x∗)|+ f
σ (t)

≤D 1
πmin

η (F (T ηA)− λ) + 4 (N − 1) πmaxη
1

|SN−2|

ˆ

SN−2

α (ν, η) (αmax (ν, ηt−2))N−2 dν.

The last term can be bounded by

1
|SN−2|

ˆ

SN−2

α (ν, η) (αmax (ν, ηt−2))N−2 dν ≤ 1
|SN−2|

ˆ

SN−2


αmax(ν,η)ˆ

αmin(ν,η)

αN−2dα

 dν,
where we use the fact thatˆ αmax

αmin
aN−2da = 1

N − 1
(
(αmax)N−1 − (αmax)N−1

)

=
(
αmax − αmin

) 1
N − 1

(
N−2∑
k=0

(
αmin

)k
(αmax)N−2−k

)
≤
(
αmax − αmin

)
(αmax)N−2 .
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Because the density is not smaller than πmin and αmax ≤ diam (UA), the above is not
larger than

≤ 1
|SN−2|

1
πmin

ˆ

SN−2


αmax(ν,η)ˆ

αmin(ν,η)

αN−2π (uB + aν) da

 dν = 1
πmin

ˆ

U(η)

π (u) dν

= 1
πmin

(F σ (T ηA)− λ) .

Hence, using the definition of the constant D, we get∑
t∈TA:t>T ηA

|uB (wσB (t))− uB (x∗)|+ f
σ (t) ≤ 1

πmin
(Kπdiam (UA) + 5 (N − 1)πmax) η (F (T ηA)− λ)

�

A.5. Late game: bounds on concession rates. The next result shows that, in the
late game, the average concession rate is not significantly slower than the limit rate p∗A
(see definition (A.1) above).

Lemma 8. There exists a constant C1 <∞ such that for each 0 < η < rX ,∏
t∈TA:T ηA<t≤T

∗,σ
A

(1− pσi (t)) ≤ eC1η
∏

t∈TA:T ηA<t≤T
∗,σ
A

(1− p∗A) .

Proof. By Lemma 6, if t ∈ Ti and t < T ∗,σB , Bob must be indifferent between conceding
in periods t− 1 and t+ 1. Moreover,

pσA (t) =1− e−2∆

e−∆
1

uB(wσB(t))
uB(xA) − e−∆

=1− e−2∆

e−∆
1

S∗B − e−∆ + uB(wσB(t))−uB(x∗)
uB(xA)

.

Let D = uB (x∗)− e∆uB (xA) = uB (xA)
(
S∗B − e∆

)
≥ 1

2m
2
0 > 0. Using the definition of

p∗i from (A.1), we compute that
1− pσA (t)

1− p∗A
= 1 + p∗A − pσA (t)

1− p∗A

≤ 1 + 1
D
pσA (t) (uB (wσB (t))− uB (x∗)) .
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Thus,∏
t∈TA:T ηA<t≤T

∗,σ
A

(1− pσA (t))

(1− p∗A)
1
2(T ∗,σA −T ηA) ≤

∏
t∈TA:T ηA<t≤T

∗,σ
A

1− pσA (t)
1− p∗A

≤
∏

t∈TA:T ηA<t≤T
∗,σ
A

(
1 + 1

D
pσA (t) |uB (wσB (t))− uB (x∗)|+

)

≤ exp

 1
D

∑
t∈TA:T ηA<t≤T

∗,σ
A

pσA (t) |uB (wσB (t))− uB (x∗)|+

 .
Finally, we show that if η is sufficiently small, then the summation expression in the

brackets becomes arbitrarily small. Inductively, define a sequence: t0 = T ηi , and for
each l,

tt = max
(
t > tl−1 : t ∈ Ti, ηt >

1
2ηtl−1

)
.

The definition implies that ηtl+1 < ηtl , and that ηtl+2 ≤ 1
2ηtl . Hence,

∑
l≥1 ηtl−1 ≤ 2ηt0 ≤

2η.
By Lemma 5, the Lebesgue mass of set

{
u : h (u) ≤ 1

2ηtl−1

}
is at least 2−(N−1) of the

Lebesgue mass of set
{
u : h (u) ≤ ηtl−1

}
. It follows that

F σ (tl−1)
F σ (tl)

≥ πmin

πmax

Λ
{
u : h (u) ≤ 1

2ηtl−1

}
Λ
{
u : h (u) ≤ ηtl−1

} ≥ πmin

2N−1πmax
,

where Λ is the Lebesgue measure. Using the above bound and Lemma 7, we obtain
for each l ≥ 1, ∑

t∈TA:tl−1<t≤tl
pσA (t) |uB (wσB (t))− uB (x∗)|+

≤ 1
F (tl−1)

∑
t∈TA:tl−1<t≤tl

F σ (tl−1)
F σ (t) |uB (wσB (t))− uB (x∗)|+ f

σ (t)

≤2N−1πmax

πmin

1
F (tl)

∑
t∈TA:tl−1<t≤tl

|uB (wσB (t))− uB (x∗)|+ f
σ (t)

≤2N−1πmax

πmin
C0ηtl−1 .
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Hence,
∑

t∈TA:T ηA<t≤T
∗,σ
A

pσA (t) |uB (wσB (t))− uB (x∗)|+ ≤
2N−1πmax

πmin
C0
∑
l≥1

ηtl−1 ≤
2Nπmax

πmin
C0η.

�

A.6. Early game. The next result discusses the concession behavior when Alice may
still have very weak (i.e., with strength not much higher than 1) types. It says that,
essentially, either Bob concedes early with a probability arbitrarily close to 1, or all
the weak Alice’s types concede early, where “early” here means with a small amount
of discounting.

Lemma 9. For each δ ∈
(
0, 1

2

)
, there exists ∆∗ > 0 such that if ∆ ≤ ∆∗, then there

exists T0 such that e−∆T0 ≥ 1− 2δ and for each equilibrium σ, either (a) F σ
B (T0) ≤ δ,

or (b) σT0
A (uA) ≤ T0 for all uA ∈ UA st. supt∈TB S

σ
A (uA, t) ≤ 1 + 1

2δ
2.

Proof. Let k∗ = d− log2 δe ≤ − log2 δ + 1. Notice that δ (1− log2 δ) ≤ 1 for δ < 1
2 ,

which implies that
1− δ2 ≥ 1− δ

1− log2 δ
≥ (1− δ)

1
k∗ .

Fix ∆∗ > 0 so that 2∆∗ (1− log2 δ) ≤ log 1−δ
1−2δ . For each ∆ ≤ ∆∗, let n∆ be the

smallest even integer such that e−∆n∆ ≤ 1 − δ2. Then, e−∆n∆ ≥ (1− δ2) e−2∆. Take
T0 = k∗n∆. Then,

e−T0∆ ≥
(
1− δ2

)k∗
e−2∆k∗ ≥ (1− δ) e−2∆(1−log2 δ) ≥ 1− 2δ.

Suppose that there is a type uA ∈ UA such that SσA (uA, t) ≤ 1 + 1
2δ

2 for each t ∈ TB,
and suppose that T ≥ T0 is a best response stopping time for such type uA. Then, it
must be that for each t ∈ TA,t < T , type uA prefers to continue waiting till period T
rather than conceding in period t:

FA (t)LA (uA) ≤
∑

t<s<T :s∈TB
fB (s) e−(s−t)∆ [SA (uA, s)LA (uA)]+FA (T ) e−(T−t)∆LA (uA) .

After some algebra, and taking into account that SA (uA, s) ≤ 1 + 1
2δ

2, we get

0 ≤
∑

s>t:s∈TB
fB (s)

(
e−(s−t)∆

(
1 + 1

2δ
2
)
− 1

)
.
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Due to the choice of n∆, for each t ≤ T − n∆, the above is not larger than

≤
∑

t<s<t+n∆:s∈TB
fB (s) 1

2δ
2 +

∑
s>t+n∆:s∈TB

fB (s)
(

e−n∆∆
(

1 + 1
2δ

2
)
− 1

)

≤ ε

 ∑
t<s<t+n∆:s∈TB

fB (s)−
∑

s>t+n∆:s∈TB
fB (s)

 .
In the second inequality, we used the fact that e−∆n∆

(
1 + 1

2δ
2
)
≤ (1− δ2)

(
1 + 1

2δ
2
)
≤

−1
2δ

2 − 1
2δ

4 ≤ −1
2δ

2. Thus, for any such t,

∑
t<s<t+n∆:s∈TB

fB (s) ≥ 1
2

 ∑
t<s<t+n∆:s∈TB

fB (s) +
∑

s>t+n∆:s∈TB
fB (s)

 = 1
2

∑
t<s<T :s∈TB

fB (s) .

It follows that

1− FB (s) =
∑

s<T0:s∈TB
fB (s) ≥

k∗∑
l=1

1
2l = 1− 1

2k∗ ≥ 1− δ.

�

A.7. Proof of Lemma 2. The idea of the proof is to divide the time in the game
between the first and the last periods in which the rational types concede into three
zones: early game (when Alice’s types strength is not much higher than 1), late game
(when the remaining types of Alice have strength close to the strongest type), and
middle game (everything else). Lemma 9 implies that if Bob does not concede early,
then all weak types of Alice must concede early. This allows us to bound from below
Alice’s probability of concession in the middle game. Next, we use the above-derived
bounds to show that Alice must concede at a faster rate in the late game. We put
those observations together to conclude that Bob does not concede sufficiently fast in
the middle and late games; hence, he must concede with a large probability early.

We start with some notation. Recall that we assume that ∆ is sufficiently small so
that 1

2 (S∗B − 1) <
(
S∗B − e∆

)
. Let

η = min
(1

2 (S∗A − S∗B) , rX ,
1
C1

)
and x = S∗B − 1

S∗A − η − 1 < 1,

where C1 <∞ is the constant from Lemma 8 .
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Lemma 6 implies that for each t ∈ TA st. t < T ∗,σB , we have

pσA (t) ≥ 1− e−2∆

e−∆
1

1
uB(xA) − e−∆ =: pmin

A (∆) .

Note that pmin
A (∆) ≤ 4∆ uB(xA)

1−uB(xA) for sufficiently small ∆ > 0.
For each sufficiently small δ > 0, let

y (δ) = 2
1

uB(xA) − 1
1
2δ

2 ≥ 1,

Find ∆0 (δ) such that for each ∆ ≤ ∆0 (δ), we have (a) 1
2
S∗B−e−∆

S∗B−1 ≤
3
4 and

1− 1− e−2∆

e−∆
1

1
2δ

2 = 1− y (δ) 1
2

1
uB(xA) − e−∆

1
uB(xA) − 1

1− e−2∆

e−∆
1

1
uB(xA) − e−∆

 (A.11)

≥ 1− y (δ) 3
4p

min
A (∆) ≥

(
1− pmin

A (∆)
)y(δ)

,

(the latter inequality holds if ∆ is sufficiently small because 1 − y (δ) 3
4p ≥ (1− p)y(δ)

for a sufficiently small p), and (c) 1−xp∗A ≥ (1− p∗A)x, where recall that p∗A ≤ 4∆ 1
S∗B−1

has been defined in (A.1).

• Early game: By Lemma 9, for each δ > 0, there exists ∆1 (δ) ∈ (0,∆0 (δ)), such
that for each ∆ ≤ ∆1 (δ), there exists T0 such that e−∆T0 ≥ 1−2δ and either (a)
F σ
B (t) ≤ δ, or (b) σTA (u) ≤ T0 for all types u ∈ UA such that SA (u) ≤ 1 + 1

2δ
2.

If (a), the thesis of the Lemma holds. On the contrary, from now on, assume
(b) and F σ

B (T0) ≥ δ.
• Middle game in periods t st. T0 ≤ t < T ηA. In the middle game, SA (t) ≥ 1+ 1

2δ
2.

Hence, by Lemma 6, we have

pσA (t) ≥pmin
A (∆) , and pσB (t) ≤ 1− e−2∆

e−∆
1

1
2δ

2 .

Then, inequality (A.11) implies that

1− pσB (t) ≥
(
1− pmin

A (∆)
)y(δ)

. (A.12)

• Late game in periods t st. T ηA ≤ t < T ∗. By Lemma 8,∏
t∈TA:T ηA<t≤T

∗,σ
A

(1− pσA (t)) ≤ e1 ∏
t∈TA:T ηA<t≤T

∗,σ
A

(1− p∗A) .



40 MARCIN PĘSKI

Moreover, the fact that x < 1 implies that for each period t in the late game

1− pσB (t) ≥ 1− 1− e−2∆

e−∆
1

S∗A − η − e−∆

≥ 1− S∗B − e−∆

S∗A − η − e−∆p
∗
A ≥ 1− xp∗A ≥ (1− p∗A)x

where the third inequality holds for ∆ ≤ ∆0 (δ, η).
Notice that for each player l and each t, λ = F σ

l (T ∗) = F σ
l (t)∏s∈Tl:t≤s≤T ∗ (1− pσl (s)).

The late-game estimates imply that

F σ
B (T ηA) = λ∏

s∈TB :T ηA≤s≤T ∗ (1− pσB (s)) ≤
λ∏

s∈TB :T ηA≤s≤T ∗ (1− p∗A)x = λ1−x (F σ
A (T ηA))x ex.

Further,
F σ
B (T0)

F σ
B (T ηA) = 1∏

s∈TB :T0≤s≤T ηA (1− pσB (s)) ≤
∏

s∈TB :T0≤s≤T ηA

(
1− pmin

A

)−y

≤
(
F σ
A (T0)

F σ
A (T ηi )

)y
≤ (F σ

A (T ηA))−y ,

Together, we obtain,

F σ
B (T0) = F σ

B (T0)
F σ
B (T ηA)F

σ
B (T ηA) ≤ λ1−x (F σ

A (T ηA))x−y(δ) ex ≤ λ1−x
(
cπη

N−1
)x−y(δ)

ex

where the last inequality comes from the fact that F σ
i (T ηi ) ≥ Π {u : h (u) ≤ η} ≥

cπη
N−1 by Lemma 4. Because x < 1, if λ is sufficiently small, we obtain the contradic-

tion with F σ
B (T0) ≥ δ for each ∆ ≤ ∆1.

A.8. If not B
(
0A, 1

4d
2
)
⊆ m∗B. Here, we show how the proof works if B

(
0A, 1

4d
2
)
⊆

m∗B. We show that the elements of the above proof apply in this case and can be
used to finish the proof of Lemma 2. Notice that Lemmas 6 and 9 do not require the
assumption that B

(
0A, 1

4d
2
)
⊆ m∗B. In particular, the proof Lemma 6 implies that

Alice’s types will sort by strength.
The fact that B

(
0A, 1

4d
2
)
* m∗B. implies that there is a type u0 ∈ UA such that

u0 · xu0 ≤ 1
4d

2. Let W0 =
{
u ∈ UA : ∑ |un − u0,n| ≤ 1

4d
2
}
. For each type u ∈ W0, we

have SA (u) = u(xA)
u(xu) ≥

d
1
2d

2 = 2
d
. Hence, W0 ⊆ W =

{
u ∈ UA : SA (u) ≥ 2

d

}
. Because

W0 ⊆ W is a subset of UA with a nonempty interior, it has a non-zero mass Π (W ) ≥
Π (W0) > 0. On the other hand, SσB (t) ≤ maxx∈X uB(x)

uB(x) ≤ 1
d
for any period t and any
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strategy σ. The latter implies that Lemma 6 implies that for each t ∈ TA st. t < T ∗,σB
, we have

pσB (t) ≥ 1− e−2∆

e−∆
1

2
d
− e−∆ = plate

B .

Let T late
A be the first period in which the first type u ∈ W concedes. The estimates

of Alice’s strength imply that∏
t∈TA:T ηA<t≤T

∗,σ
A

(1− pσi (t)) ≤
∏

t∈TA:T ηA<t≤T
∗,σ
A

(
1− plate

A

)
,

where
plate
A = 1− e−2∆

e−∆
1

1
d
− e−∆ > plate

B .

This yields an equivalent of Lemma 8 for this case. An analogous argument as in the
previous case finishes the proof of Lemma 2.

Appendix B. Proof of Theorem 1

Given the discussion in main body of the paper, the proof of Theorem is a conse-
quence of the following result.

Lemma 10. For each ε > 0 and δ > 0, there is ∆∗, λ∗ > 0 such that if ∆ < ∆∗, λ < λ∗,
then for each player k, if mk =

{
xNash (u)

}
and

max
x∈m−k

uk (x) < uk
(
xNash (u)

)
− ε,

then player −k concedes with a probability of at least 1 − δ in his first period of the
game.

To prove the Lemma, define players’ strengths as the ratios between winning and
losing payoffs:

Sk =
uk
(
xNash (u)

)
maxx∈m−k uk (x) , S−k =

maxx∈arg maxy∈m−k uk(y) u−k (x)
u−k (xNash (u)) .

In case of player −k’s strength, we choose as the winning payoff the best possible
payoff that player −k gets when player k concedes. (That plays a role for some, non-
generic, menus, in which player k is indifferent between multiple optimal choices. Such
a definition maximizes −k’s strength, and by the subsequent analysis, it creates the
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worst-case scenario for the Lemma. Also, we can assume that S−k > 1, otherwise
player −k prefers to concede immediately.

Because the Nash allocation is unique, for each ε > 0, there is rε > 0 such that

Sk
S−k

=
uk
(
xNash (u)

)
u−k

(
xNash (u)

)
maxx∈m−k uk (x) maxx∈arg maxy∈m−k uk(y) u−k (x)

≥
uk
(
xNash (u)

)
u−k

(
xNash (u)

)
maxx∈X st. uk(x)≤uk(xNash(u))−ε uk (x)u−k (x) ≥ 1 + rε.

Hence, Sk ≥ S−k + rε.
A simplified version of Lemma 6 holds. In particular, in each period in which a

player i is still considered as potentially normal, the player concedes at rate

pσ−k (t) = p∗−k = 1− e−2∆

e−∆
1

Sk − e−∆ for each t ∈ T−k,

pσk (t) ≥ p∗k = 1− e−2∆

e−∆
1

S−k − e−∆ for each t ∈ Tk.

It follows that, for sufficiently small ∆,

pσk (t) ≥ pσ−k (t) Sk − e−∆

S−k − e−∆ ≥ pσ−k (t)
(

1 + rε
S−k

)
.

At this moment, the proof of Lemma 2 as stated in Section A.7 applies, which concludes
the proof of the Lemma.

Appendix C. Proof of Lemma 3

Let XB = arg maxx∈mA uB (x) be the set of Bob’s optimal choices from Alice’s menu.
Let υB = maxx∈mA uB (x) < 1

2 − η be Bob’s optimal concession payoff. Assume that
ε > 0 is small enough that (1

2 − ε
)2

> υB (1− υB) .

For each v, let X (v) = {x ∈ X : uB (x) ≥ v} = {x ∈ X : uB · x ≤ 1− v} be the set
of player i’s allocations of player i that leaves Bob with a payoff of at least v. (Recall
that Bob’s payoff is equal to uB (x) = 1 − uB · x.) Notice that XB ⊆ X (υB) ⊆
1−υB
1/2 X

(
1
2

)
, where the last set is a subset of RN obtained by multiplication of vectors
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in X
(

1
2

)
by a constant 1−υB

1/2 . Then, for each uA ∈ UA, uA (x) = uA · x, and

max
x∈XB

uA (x) ≤ max
x∈X(υB)

uA · x ≤ max
x∈ 1−υB

1/2 X( 1
2)
uA · x = 1− υB

1/2 max
x∈X( 1

2)
uA (x) = 1− υB

1/2 max
x∈m1/2

uA (x) .

Suppose that Bob’s offer mB is ε-close to m1/2. The above inequality implies that
for any strategy profile, for each t ∈ TB, and each uA ∈ UA,

SσA (uA, t) ≤
maxx∈XB uA (x)
maxx∈mB uA (x) ≤

1− υB
1/2− ε.

Additionally, for each t ∈ TA,

SσB
(
uBi , t

)
≥ min

uA∈UA

minx∈arg maxx∈mB uA(x) uB (x)
maxx∈mA uB · x

≥
1
2 − ε
υB

>
1− υB
1/2− ε,

where the last inequality comes from the choice of ε. By Lemma 6, in each period,
Alice’s concession rate is strictly smaller than Bob’s concession rate.

pσA (t) ≤ p∆
A = 1− e−2∆

e−∆
1

1
2−ε
υB
− e−∆

< p∆
B = 1− e−2∆

e−∆
1

1−υB
1
2−ε
− e−∆ ≤ pσB (t) .

It follows (see, for instance, the proof of Lemma 2) that

F σ
A (t0A + 2)

F σ
B (t0B + 2) =

λ/
∏
t∈TA:t0A≤t≤T

∗
A

(1− pσA (t))
λ/
∏
t∈TB :t0B≤t≤T

∗
B

(1− pσB (t)) <
(

1− p∆
B

1− p∆
A

) 1
2T
∗

→ 0,

as T ∗ → ∞. Similar arguments to those used in the proof of Lemma 2 show that T ∗

is arbitrarily large if ∆ and λ are small. Thus, for a sufficiently small ∆ and λ, fσA (t0A)
is arbitrarily close to 1.

Appendix D. Proof of Theorem 2

The order in which the two players choose menus in the menu choice game is not
important for this argument. By a remark after Lemma1 1 and by Lemma 2, for each
d > 0 and each δ > 0, there is λ∗,∆∗ such that for each λ ≤ λ∗,∆ ≤ ∆∗, by choosing
an arbitrary allocation xA ∈

{
x ∈ m1/2 : ∀nd ≤ xn ≤ 1− d

}
, Alice with a signal s ∈ UA

can ensure herself a payoff of at least (1− δ) (ES (u (xA) |s)− d) (either because Bob
will concede with probability 1− δ, or because Bob will propose a menu with a payoff
of at least u (xA)− d for Alice. The proof of Lemma 2 shows that constants λ∗,∆∗ > 0
can be chosen in a way that depends only on d and δ. By taking d→ 0 and δ → 0, we
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observe that Alice’s payoffs converges to maxx∈m1/2 ES (u (x) |s). Hence, As πS → δ,
we obtain EA (uA; CX , π, k) = maxx∈m1/2 uA (x).

Lemma 3 shows that for each η > 0 and δ > 0, there exists λ∗,∆∗ > 0 such that for
each λ ≤ λ∗,∆ ≤ ∆∗, by choosing a menu m1/2, Bob can ensure a payoff of at least
(1− δ)

(
1
2 − η

)
. It follows that EB (uB; CX , π, k) ≥ 1

2 . This concludes the proof of the
Theorem.

Appendix E. Proof of Proposition 1

For each menu m, each Alice’s type uA, let uA (m) = maxx∈m uA (x). The proof of
Theorem 2 shows that, for any Bob’s offer mB, Alice’s type uA can ensure a payoff

max
(
uA (mB) , uA

(
m1/2

))
.

If uA (mB) < uA
(
m1/2

)
, then Alice’s counteroffer arg maxx∈m1/2 uA (x) (which gives

her payoff uA
(
m1/2

)
) makes her stronger; by making her offer a bit more attractive for

herself, she remains stronger and wins the war of attrition with a payoff strictly higher
than uA

(
m1/2

)
). In other words, unless uA (mB) = uA

(
m1/2

)
, Alice is going to get a

payoff that is strictly higher than uA
(
m1/2

)
.

Now, the claim follows from two simple observations. First, because menu m1/2 is
efficient, if a positive mass of Alice types gets a payoff that is strictly higher uA

(
m1/2

)
,

Bob gets an expected payoff that is strictly lower than 1
2 . Second, if Bob likes at least

two parts of the pie, uiB, u
j
B > 0 for i 6= j, then there is no simple offer mB = {xB} such

that uA (xB) ≥ 1
2 and uA (mB) = uA

(
m1/2

)
for every single Alice type uA. To see that

notice that, for any offer xB st. uB (xB) = 1
2 , there is offer x′B that redistributes parts

i and j in a way that keeps Bob’s payoff the same and increases payoff of at least one
of Alice’s types. Hence the original allocation could not have been optimal for such
Alice’s type.
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