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Abstract

This paper considers a dynamic economy in which agents are repeatedly matched with

one another and then decide whether or not to enter into profitable partnerships. Each agent

has a physical colour and a social colour. The social colour of an agent acts as a signal,

conveying information about the physical colour of agents in his partnership history. Before

an agent makes a decision, he observes his match’s physical and social colours. Neither the

physical colour nor the the social colour is payoff-relevant. We identify environments where

equilibria arise in which agents condition their decisions on the physical and social colours of

their potential partners. That is, they discriminate.

1 Introduction

This paper proposes a new theory of racial discrimination. According to our theory, discrimination

can arise spontaneously in the form of a social norm, without any intrinsic tastes for race or any

differences between individuals. Individuals discriminate against the other race because they would

otherwise face discrimination from their own race. In order for this behaviour to arise, the crucial

requirement is that before one decides whether to interact with another individual, he observes

some coarse information about the other’s past social interactions, and specifically the race of

those that other person has chosen to associate himself with directly or indirectly. Agents can then

condition their decisions on this information. One consequence, and indeed the main result of this

paper, is that even if each individual is basically tolerant of other races, agents might prefer to

interact only with those of the same race, and might also avoid those who even indirectly associate

themselves with the opposite race. In other words, being associated with one’s own race becomes

valuable through the equilibrium play.

In the specific model analysed in this paper, agents are repeatedly matched with one another.

After being matched, each agent must decide whether or not to enter into a profitable relationship
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with his match. Each agent maximizes the discounted present value of expected monetary payoffs.

Every relationship formed immediately generates positive payoffs for both parties. Each agent has

a physical colour, either black or white. Before an agent decides whether or not to enter into a

business relationship, he observes the physical colour of his potential partner and an additional

piece of information about his match’s past partners. We model this information as a binary signal,

either black or white, and refer to it as the social colour of the agent. If an agent decides to enter

into a partnership, there is a chance that his social colour will switch to the physical or social

colour of his partner.

The main result of this paper is that there exist equilibria which involve discrimination under

certain conditions. In such environments we prove the existence of three types of discriminatory

equilibria. One type involves segregation: members of each race discriminate against those of a

different colour. In the other two types of equilibria, discrimination is one-sided: one race strongly

discriminates against the other, while members of the persecuted race either use colour-blind

strategies or only weakly discriminate.

The two prevalent economic theories of discrimination, taste-based and statistical, are based

on attributes which directly affect payoffs either through preferences or production. Our theory is

perhaps more related to a sizable literature in sociology which points to an alternative explanation

of racial discrimination. This explanation is based on social norms rather than on payoff relevant

characteristics. According to this theory, as in our model, members of a certain group practice

prejudice and discrimination toward non-members because such behaviour is tolerated, and indeed

expected, by other group members. Next, we discuss some evidence consistent with this theory.

A series of experiments conducted by Henri Tajfel suggests that discrimination and group

identity might not be related to payoff relevant characteristics. Subjects developed a preference for

their own group members even if the groups were artificially created (see Tajfel (1970), Tajfel and

Turner (1979), Tajfel, Billig, Bundy, and Flament (1971), and Haslam (2004)). Teenage boys were

assigned to one of two groups, 1 and had to choose between various monetary allocations among

individuals. Most subjects exhibited a strong bias toward their own group. In particular, many

subjects were willing to increase their group’s allocation at the cost of reducing the total amount of

money to be allocated. Some subjects were still willing to increase the difference between the total

monetary payoffs allocated to the two groups even at the cost of reducing their group’s allocation.

The famous Robbers Cave Experiment (see Sherif (1961)) also showed that prejudice and

discrimination could be artificially created and manipulated by varying the social environment.

In this experiment, teenage boys were randomly divided into two groups. In the first phase of

the experiment, the groups were placed in competition with each other. After the competition

started, subjects soon began to exhibit hostile behaviour towards members of the other group such

as name-calling, singing derogatory songs, and refusing to eat together. In the second phase of

1 In one of these experiments, for example, the subjects were asked to estimate the number of dots flashed on a

screen. Then they were assigned one of two labels: “underestimators” and “overestimators.”
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the experiment, the two groups had to solve tasks cooperatively. This phase led to a dramatic

improvement of the relationship between the two groups.

Minard (1952) finds that racial attitudes change according to the social environment. Black

and white coal miners in West Virginia were monitored, and it was documented that they exhibited

less hostility toward each other in their working environment than otherwise. For example, white

workers were happy to sit next to black ones on miners’ buses but they refused to sit next to

the same workers on interstate buses. Pettigrew (1958) makes a similar observation about the

difference between the attitudes of white southern military men while serving in the army and

after they were discharged.

In our model, a white agent discriminates against black workers because he fears that if he did

not, other white agents may refuse to hire him in the future. In other words, racist behaviour is

sustained by the possibility of punishment by one’s own group members. Indeed, peer pressure

and the threat of social rejection are often mentioned as an explanation for bigotry (see Chapter

18 of Allport (1979)). Crossing group lines is often punished by stigmatization (see Austen-Smith

and Fryer (2005) and the references therein), and sexual relationships or marriages outside of the

community may lead to exclusion and even violence (Root (2001), Fryer (2007)).

In our theory, it is crucial that the social colour of a white agent can turn to black even

if he employs another white agent with black social colour. In other words, one might become

associated with the other race only indirectly. Such a technology makes it possible to punish not

only those who do not discriminate but also those who do not punish non-discriminators. Are

there social institutions with similar features? The Indian caste system, for example, prescribes

several rules which prohibit certain kinds of relationships between members of different castes

(see Pruthi (2004)). These rules are often enforced using the idea of pollution. Some castes are

considered inherently polluted. A person who accepts a favour or food from a polluted person

becomes polluted himself. That is, pollution is treated as something contagious which can only be

cured by performing costly rituals.

The existing literature on taste-based discrimination is ample, see Becker (1971) and Schelling

(1971). These approaches explain racial discrimination by assuming that individuals derive disu-

tility from interacting with members of a different race. Such preferences may be the result of

group selection; perhaps one group gains an advantage over other groups when its members co-

operate only with each other and not with outsiders. Alternatively, a taste for discrimination

might develop as an outcome of group formation processes. Similar people tend to have similar

backgrounds, equipping them with similar tastes, values, and attitudes, and these shared qualities

might facilitate collective decision making (Baccara and Yariv (2008), see also Alesina and Ferrara

(2005)). Chapter 4 of Jones (1984) proposes a model involving a specific taste for conformism and

which can be used to explain the dynamics of discrimination in the workplace.

A common critique of taste-based theories of discrimination is that employers who do not

discriminate make larger profits than those who discriminate, hence the latter would not succeed
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in competitive markets (see Becker (1971)). In our model, an employer who does not discriminate

also has higher instantaneous profits. However, these short-term gains from a colour-blind hiring

policy are offset by the boycott an employer will face from members of his own race in the future.

That is, it is precisely the employer’s profit-maximizing behaviour that leads to discrimination in

equilibrium.

According to theories of statistical discrimination, employers believe that observable physical

attributes of workers are correlated with unobservable but payoff-relevant characteristics. For an

overview of statistical discrimination, see Fang and Moro (2010). Phelps (1972) explains differences

in the wages of black and white workers by assuming that the unobservable productivity of a worker

is correlated with his colour; employers use colour as a signal of employee productivity.

Arrow (1973) shows that discrimination can be a result of self-fulfilling expectations even if

all agents are identical ex-ante. In his model, workers can decide how much to invest in human

capital. These decisions are not observable. Employers expect black workers to invest less than

white workers and, hence, they offer lower wages to black workers. Anticipating this, black workers

rationally invest less in human capital than white workers. As a result, workers of different colours

are different ex-post. Various extensions of the statistical discrimination theory include Coate and

Loury (1993), Moro and Norman (2004), Rosén (1997), Mailath, Samuelson, and Shaked (2000)

and Lang, Manove, and Dickens (2005).

In Gneezy, List, and Price (2012), field experiments across several market and agent-characteristics

are used to identify the source of discriminatory behaviour. They find that when the object of

discrimination is perceived to be controllable, discrimination is taste-based. If the object of dis-

crimination is exogenous, discrimination is of statistical nature.

In our model, workers are identical both ex-ante and ex-post. Unlike the vertical discrimination

caused by statistical discrimination, our setup might result in a mutual bias, with each race dis-

criminating against the other. Such a phenomenon is inconsistent with statistical discrimination

because the signal value of colour must be the same for any employer, regardless of his own colour.

Ours is not the first model in which discrimination arises without the presence of payoff-relevant

differences between agents of different colours. Eeckhout (2006) considers a dynamic marriage

market involving random matching of individuals. Once a marriage is formed, the two partners

repeatedly play the Prisoner’s Dilemma game. If either partner defects, both individuals return to

the market and receive new matches. In order to induce some cooperation, the equilibrium play

must involve defection with positive probability at the beginning of a marriage. Otherwise, agents

would defect and search for a new partner immediately. The author shows that any colour-blind

equilibrium is Pareto dominated by strategies in which the probability of defection depends on the

colour of the partner.

The model presented by Mailath and Postlewaite (2006) involves a population of men and

women who, each period, are matched and produce offspring. Agents differ in their non-storable

endowments, and care about the consumption of their descendants. In addition, some agents have
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a particular physical attribute, such as blue eyes, which is inherited by offspring. There exist

equilibria in which the attribute has a value, that is, agents with the attribute are better off than

agents without it. In this type of equilibrium, high-endowment agents without the attribute prefer

to match with low-endowment agents with the attribute rather than with high-endowment agents

without it. Such preferences arise from risk-aversion among agents; high-endowment individuals

are willing to forgo present consumption in order to increase the expected consumption of their

offspring by equipping them with the attribute. In other words, the biological attribute is used

to transfer wealth to future generations. Because in our setup agents are risk-neutral, they have

no incentive to transfer wealth across periods. However, while our concept of social colour is

payoff-irrelevant, it acquires a value in equilibria, similar to the biological attribute in Mailath and

Postlewaite (2006).

Peski and Szentes (2012) takes the analysis of our model one step further and characterizes

the set of stable equilibria. They call an equilibrium stable if, after perturbing the equilibrium

strategies slightly, myopic best-response dynamics imply convergence back to the equilibrium. The

main result of Peski and Szentes (2012) is that each stable equilibrium involves discrimination under

certain conditions. In particular, the colour-blind equilibrium is unstable. Under their assumed

conditions there are three stable equilibria. One equilibrium involves segregation: members of each

race discriminate against those of a different colour. In the other two equilibria, discrimination is

one-sided: only one race discriminates against the other.

The social colour allocated to each agent in our model plays a role which is similar to the

labels in Kandori (1992). Kandori considers a model in which members of two communities have

repeated interactions. In every period, each member of a community is randomly matched with

a member of the other community, and the pair plays a game. Players only observe the actions

played in their past matches. However, each player is able to observe his partner’s label, which

contains some information about his past actions. An individual’s label is updated each period,

and is determined by his previous label, his partner’s label, and the action he takes. Players might

choose to condition their behaviour on labels, despite the fact that they are not directly payoff-

relevant. The author proves a Folk Theorem for this setting. The label in our model, the social

colour, does not only depend on actions but also on the physical characteristics of the players. Our

paper also shows that acting on payoff-irrelevant information is a possibility. In addition, if one

embraces the concept of myopic best-response stability, Peski and Szentes (2012) shows that in

certain environments, stable equilibria necessarily involve discrimination.

2 The Model

Consider a population of agents, normalized to have unit mass. Each agent lives forever and is

risk-neutral. Time is continuous, and the common discount rate is r.

Agents randomly receive opportunities to participate in production. These opportunities ar-
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rive independently across agents and time according to a Poison distribution with arrival rate δ.

Agents with opportunities are matched into pairs instantaneously. Within a match, each agent is

designated as either the employer or the worker with equal probability.2 The two agents observe a

match specific shock, s, which is exponentially distributed, that is, G (s) = 1−e−λs. The employer

then decides whether or not to employ the worker. If he does employ the worker, he receives a

payoff of s, and the worker receives a constant wage M (> 0).3 Otherwise, both agents receive a

payoff of zero. Every agent maximizes the discounted present value of monetary payoffs.

Each agent has a two-dimensional type; the first coordinate is the physical colour of the agent

and the second is his social colour. The physical colour is either black (b) or white (w) , and is

immutable. A fraction µw of the population is white, while the remaining fraction µb (= 1− µw)

is black. An agent’s social colour is also either black or white, and evolves as follows. The social

colour of a worker remains unaffected by his match.4 If an employer employs a worker with type

(c1, c2), the employer’s social colour remains unchanged with probability 1− γ, changes to c1 with

probability γα and becomes c2 with probability γ (1− α). If the employer decides not to employ

the worker, his social colour remains unchanged with probability (1− γ) and becomes his physical

colour with probability γ.

Prior to making a decision, an employer observes the type of the worker, but nothing else. Note

that the social colour of an agent carries information about his past employees. An agent’s social

colour is more likely to be white if, in the past, he hired white workers or workers with white social

colour.

Agents’ types are payoff irrelevant in the following sense. An agent’s payoff depends only on

the history of shock realizations and employment decisions in his past relationships, but not on his

type, nor on the types of agents with whom he interacts. If there were no types, this model would

have a unique equilibrium in which employers always choose to employ whichever workers they are

matched with. In fact, this is true even if agents have physical colours but no social colours; an

employer receives a positive payoff if he employs the worker and, in the absence of social colour,

such a decision cannot affect his future employment.

In this model, only employers make decisions. An employer’s strategy is a mapping from

his private history, his type, the type of the worker, and the realization of the shock into an

employment decision. In what follows, we restrict our attention to steady state equilibria. That

is, we characterize equilibria in which (i) the agents’ strategies depend neither on time nor on his

private history, and (ii) the distribution of types is constant over time.

2Following the convention of the literature on racial discrimination, we adopt the employer-employee terminology.

However, we interpret a parnership as any mutually beneficial social or economic interaction.
3Since s is always positive, the total surplus generated in a relationship, s+M , is strictly positive.
4Recall that workers do not make decisions. Any change in the social colour of a worker would be just noise from

his point of view. We avoid dealing with this randomness by making this assumption.
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3 Best Responses

This section characterizes the employers’ best-response decisions. An employer’s optimal hiring

decision is a complicated object even in a stationary environment because it might depend on his

type, the type of the worker and the realization of the shock. Nevertheless, we are able to reduce

the complexity of the employer’s problem appreciably. First, note that the optimal hiring decision

can always be characterized by cutoffs; if an employer with a given type is better off employing a

worker given a certain realization of the shock then he would be strictly better off employing the

same worker if the realization of the shock was higher. These cutoffs can depend on the types of

both the employer and the worker, so there might be sixteen of them. Second, we will show that the

employer’s social colour does not affect these cutoffs. So, four cutoffs characterize the strategy of a

white employer, and another four cutoffs define the strategy of a black employer. Finally, we will

prove that the various cutoffs of a black (white) employer are linearly dependent on one another,

with coefficients determined by the parameters of our model. This implies that any one of the

cutoffs completely determines the values that the other three cutoffs will take. As a consequence,

the best-response decision of a black (white) agent can always be represented as a one-dimensional

variable. This result is significant in the sense that finding a stationary equilibrium is now reduced

to a two-dimensional problem; we need to characterize one cutoff for each race.

In the remainder of this section, we characterize the equilibrium values in terms of the two

relevant cutoffs and express the best-response cutoffs of black and white agents as a function of

the cutoffs used by black and white employers. Finally, we derive an explicit formula for these

best-response functions and investigate their analytical properties.

3.1 Optimal Cutoffs

In what follows, we derive the initial best-response cutoffs of an agent against an arbitrary popu-

lation strategy. To this end, we fix a population strategy and a distribution of types at time zero.

Let Vc1,c2 denote the value of an agent with type (c1, c2)
(
∈ {b, w}2

)
at time zero, before he knows

whether a production opportunity has arrived. That is, Vc1,c2 is the maximum discounted present

value of the payoffs that a type-(c1, c2) agent can achieve given the strategy and type-distribution

of the others. This value depends only on type and not on the identity of the agent, because two

agents with the same type face the same environment.

For example, the optimal cutoff for a white employer with social colour c who presently faces

a worker with type (b, w) is computed as follows. Suppose that the value of the shock is s. If

he employs the worker, he receives an instantaneous payoff of s. His social colour remains c with

probability (1− γ) and changes to b or w with probabilities γα and γ (1− α) respectively. Hence,

if the worker is hired, the discounted present value of the employer’s payoffs is

s+ (1− γ)Vw,c + γαVw,b + γ (1− α)Vw,w. (1)
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If he does not employ the worker, his discounted present value is equal to

(1− γ)Vw,c + γVw,w. (2)

The employer is better off hiring the worker whenever (1) is larger than (2). The cutoff, above

which the worker is employed, is the shock realization, s, which makes (1) and (2) equal. That is,

the best-response cutoff is γα (Vw,w − Vw,b). Since the shock is always positive, having a negative

cutoff is equivalent to having a zero cutoff. Therefore, one can restrict attention to weakly positive

cutoffs, in which case, the best-response cutoff is uniquely defined by max {0, γα (Vw,w − Vw,b)}.

Note that this cutoff does not depend on the social colour of the employer, c. In both (1) and

(2), the only term which depends on c is (1− γ)Vw,c, which cancels out in the computation of

the cutoff. In fact, an employer’s social colour only affects his payoff in the event that his social

colour remains unchanged, and this event is independent of his decision. Therefore, while the

best-response cutoff of an agent may depend on his physical colour, it cannot depend on his social

colour.

Let xcc1,c2 denote the cutoff value of an employer with physical colour c if the type of the worker

is (c1, c2). We denote the colour which is not c by −c for c ∈ {w, b}. Above, we have shown

that xwb,w = max {0, γα (Vw,w − Vw,b)}. The other cutoffs can be computed similarly and they are

summarized by the following

Lemma 1 The following equations establish the relationship between best-response cutoffs and the

value functions:

xc−c,−c = max {0, γ (Vc,c − Vc,−c)} ,

xcc,−c = max {0, γ (1− α) (Vc,c − Vc,−c)} ,

xc−c,c = max {0, γα (Vc,c − Vc,−c)} ,

xcc,c = 0.

An employer with physical colour c who is considering hiring a worker will be concerned about

the effect it will have on his social colour. Having a social colour c instead of −c provides the agent

with an additional value of Vc,c − Vc,−c. This difference can be interpreted as a bias the agent

has towards his own physical colour.5 The above lemma implies that the best-response cutoffs are

proportional to this bias, up to the requirement that the cutoffs be non-negative. The coefficients

of the bias corresponding to various cutoffs are determined by the probabilities of the social colour

becoming c and −c, which in turn, depend on the type of the worker.

Let xc = xc−c,−c and note that

xcc,−c = (1− α)x
c, xc−c,c = αx

c, and xcc,c = 0. (3)

5This bias may well be negative, that is, an agent is better off if his physical colour does not coincide with his

social colour.
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Since agents of the same type have identical values, Lemma 1 implies that any stationary equi-

librium is symmetric. That is, employers with the same physical colour use the same strategies.

Also note that, by (3), an equilibrium strategy of a colour-c employer is identified by xc. In what

follows, we refer to the cutoff xc as a strategy or cutoff while keeping in mind that the cutoffs used

against different types of workers are defined by (3).

In order to show that a cutoff profile (xc∗, x
−c
∗ ) constitutes an equilibrium, we need to prove

that there is a distribution of social colours such that (i) xc∗ is a best response cutoff of an agent

with colour c against the population strategy profile (xc∗, x
−c
∗ ) for c ∈ {b, w} given the distribution

of types, and (ii) the distribution of social colours does not change over time. The next section

characterizes the best response correspondence, and in particular, shows that the best response of

an agent only depends on the cutoffs of others but not on the distribution of social colours.

3.2 The Best-Response Curves

Our next goal is to explicitly characterize the best responses of black and white agents as functions

of the cutoffs of others. We denote the best response cutoff of an agent with colour c by bc (xc, x−c)

if each employer with physical colour c (−c) always uses cutoff xc (x−c). This notation presumes

that the best responses, bc (xc, x−c), does not depend on the distribution of social colours. The

next lemma implies that this is indeed true.

Lemma 2 The best response curve of an agent with colour c is defined by the following equation:

bc
(
xc, x−c

)
= Kmax

{
0, µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))}
, (4)

where K =Mδγ/ (2r + γδ).

The proof of this lemma is relegated to the appendix and requires the computation of the bias,

Vc,c−Vc,−c, for c ∈ {b, w} given
(
xb, xw

)
. These objects then identify the best-response cutoffs by

Lemma 1. Before we establish some formal results concerning the function bc, it is worth discussing

a few of its attributes.

The function bc is decreasing in the discount rate r. An agent might elect to not hire a worker,

sacrificing an instantaneous payoff, in order to affect his social colour, which in turn impacts his

future payoffs. The more patient an agent is, the larger the payoff he is willing to forgo at present

in exchange for a higher continuation payoff.

The social colour of an agent only matters in the event that he is a worker. If the wage of a

worker,M , increases, it becomes more beneficial to have the social colour desired by employers. So,

the higher the wage, the larger are the cutoffs used by an agent in order to increase the probability

of his future employment. Therefore, the function bc is increasing in M .

An agent does not care directly about the others’ cutoffs, he only cares about the probability of

being hired. Recall that G (s) = 1− e−λs. It is easy to verify that bc is increasing in λ. The larger

the parameter λ, the more likely it is that the realization of the shock is small. Therefore, given
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(xc, x−c), a larger λ increases the likelihood that an agent will actually be affected by the cutoffs

of the others. Hence, if λ is large, the agent is willing to use large cutoffs in order to increase the

probability of future employment.

A notable feature of the best response function, bc, is that it does not depend on the distribution

of social colours. Recall from Lemma 1 that the best-response cutoff of an agent with physical

colour c only depends on the bias Vc,c − Vc,−c. Note that bc defines the best-response cutoff of

an agent with colour c if each employer with physical colour c (−c) always uses the same cutoffs

which satisfy (3). In fact, as we shall now explain, the bias does not depend on the population

distribution of social colours as long as the agents’ cutoffs satisfy (3). An agent’s value consists

of the discounted sum of instantaneous payoffs he receives as a worker and as an employer in the

future. Since the cutoffs of other employers satisfy (3), they do not depend on their social colours

and hence, the expected instantaneous payoff of a worker is also independent of the distribution of

the social colours. On the other hand, the same agent’s payoff as an employer does depend on the

distribution of social colours because his decision to hire depends on the worker’s type. However,

since his cutoffs do not depend on his own social colour (see Lemma 1), the terms in Vc,c and

Vc,−c which depend on the type distribution are the same and they cancel out in the computation

of Vc,c − Vc,−c. For this reason, we do not need to compute the stationary distribution of types

in order to analyse the equilibrium behaviour. The definition of stationary equilibrium requires a

stationary type distribution and the existence of such a distribution given the stationary strategies

is obvious.

The next lemmas describe some properties of the best-response curves.

Lemma 3 The function bc satisfies the following properties:

(i) if bc (xc, x−c) > 0 then bc is locally concave and strictly increasing in xc,

(ii) bc (0, x−c) = 0 for all x−c,

(iii) for all x−c > 0, bc (xc, 0) = limx−c→∞ b
c (xc, x−c) ≥ bc

(
xc, x−c

)
.

Figure 1 plots bb (., 0) and bb (., xw) (xw > 0) for the case when λ is large. For xw > 0, bb (., xw)

is a downwards shift of bb (., 0), or zero if the shifted curve becomes negative. The function bb (., xw)

is locally concave in xb whenever it is positive (part (i) of Lemma 3). Part (ii) of Lemma 3 states

that if the cutoff of each black agent is zero, then the best response cutoff of a black agent is also

zero. To see this, notice that if xb = 0 then black agents are better off having a white social colour

than a black one. This is because their social colours have no impact on their employment if the

employer is black
(
xb = 0

)
but they are more likely to be employed by white agents if their social

colour is white. Therefore, a black employer is always better off employing a type-(w,w) worker,

that is, the best-response cutoff is zero.

Part (iii) of Lemma 3 states that the best-response cutoff of a black agent is the same whether

white agents do not discriminate (xw = 0) or whether they discriminate fully (xw = ∞). The

reason for this is that a black agent is always employed by white agents if xw = 0 and is never
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Figure 1: Best Responses for Large λ

employed by them if xw = ∞. That is, the white agents’ decisions to hire black workers do not

depend on the workers’ social colours. Therefore, the black workers’ best-response is determined

solely by the cutoff xb in both cases.

Part (iii) also says that bb
(
xb, xw

)
decreases if xw becomes larger than zero. The intuition

is as follows. As xw becomes positive, a black worker benefits from having a white social colour

whenever he meets a white employer. Therefore, holding xb fixed, a black agent has less incentive

to discriminate against type-(w,w) workers, that is, bb goes down.

Note that in Figure 1 the curve bb (., 0) intersects the 45-degree line twice. Part (ii) of the

previous lemma only implies that the function bc (xc, 0) intersects the 45-degree line at xc = 0.

Whether or not there is another intersection carries great importance in characterizing the set of

equilibria. It turns out that the existence of a strictly positive intersection largely depends on

the relative fraction of payoffs due to being a worker and being an employer. Ceteris paribus,

as λ increases, labour income increases relative to the employer’s income. Similarly, if the wage

M increases, it becomes more important to be employed relative to being an employer. In what

follows, we investigate the set of equilibria as a function of the parameter λ. Alternatively, we

could have presented our results in terms of the size of M .

Recall that K denotes the multiplicative coefficient of bc in (4).

Lemma 4 Let λ0 = 1/ (K (1− α)µc). Then,

(i) if λ > λ0, then there exists a unique xc > 0 such that bc (xc, 0) = xc, and

(ii) if λ ≤ λ0, then bc (xc, 0) < xc for all xc > 0.
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The function bb (., 0) is strictly concave and zero at the origin. In addition, this slope converges

to zero as xb goes to infinity. Therefore, the function bb (., 0) intersects the 45-degree line at a

strictly positive value if and only if its slope at zero is larger than one. As we explained before,

bb
(
xb, xw

)
is increasing in λ (see the discussion after Lemma 2). Since bb (0, 0) = 0, it follows that

the slope of bb (., 0) is large if and only if λ is large. At the critical value λ = λ0, the slope of the

best-response function, bb (., 0), is exactly one.

4 Equilibria

This section accomplishes two goals. First, we give an exact characterization of those environments

where the colour-blind equilibrium is not the unique equilibrium. To be more specific, we show

that there exist equilibria in which some agents discriminate if and only if λ > 1/ (K (1− α)µc)

for some c ∈ {b, w}. Second, we give a graphical representation of the set of equilibria and prove

the existence of various types of equilibria if λ is large. In particular, we show that there is an

equilibrium in which the two races segregate, that is, both xc and x−c are large.

The existence of a discriminatory equilibrium hinges on the size of the parameter λ. Suppose

for a moment that white agents are non-strategic and that their cutoff is zero, and consider a

version of our model in which the game is played only by black agents. As previously explained,

the larger the parameter λ, the more likely it is that the realization of the shock is small. Therefore,

given the cutoff used by other black agents, a larger λ increases the likelihood that a black agent

with a white social colour will not be employed by other black agents in the future. Hence, even

if the black agents’ cutoff is small, a large λ induces a black agent to respond with large cutoff in

order to maintain a black social colour. In other words, if the black agents’ cutoff is small but λ is

large, a black agent’s best response is larger than the others’ cutoff. This is why in Figure 1 the

thick curve is above the 45-degree line near zero. On the other hand, since the continuation payoff

is bounded, the best-response cutoff is also bounded from above. So, if the others’ cutoff is very

large, the best-response cutoff of an agent is smaller than that of the others. This explains why, in

Figure 1 , for large values in the domain the thick curve is below the 45-degree line. By continuity,

there exists a cutoff to which the best response is the cutoff itself, that is, a cutoff which defines

an equilibrium. This cutoff corresponds to the intersection of the thick curve and the 45-degree

line on Figure 1. Now, let us allow white agents to be strategic. As we previously pointed out (see

part (ii) of Lemma 3), the best response of a white agent is zero as long as the other white agents’

cutoff is zero. Therefore, the equilibrium we have just identified remains an equilibrium even if

white agents choose their cutoffs strategically.

The argument of the previous paragraph does not depend on our specific assumption on the

distribution of the shock. In general, a discriminatory equilibrium exists if the slope of the best-

response curve is larger than one at zero, which in turn, depends on the density of the shock

distribution at zero. It is not hard to prove that if distribution of the shock has a positive density,

12



g, on R+, a discriminatory equilibrium exists whenever g (0) is sufficiently large.

Proposition 1 The colour-blind cutoff profile, (0, 0), is an equilibrium. In addition,

(i) if λ ≤ 1/ (K (1− α)µc) for both c ∈ {b, w}, the profile (0, 0) is the unique equilibrium, and

(ii) if λ > 1/ (K (1− α)µc) for either c = b or c = w, there exists an equilibrium (xc∗, x
−c
∗ )

such that xc∗ > 0.

Before we prove this proposition, we restate the definition of equilibrium in terms of the best-

response curves as follows. The cutoff profile (xc∗, x
−c
∗ ) is an equilibrium if and only if

(
xc∗, x

−c
∗

)
=
(
bc
(
xc∗, x

−c
∗

)
, b−c

(
x−c∗ , x

c
∗

))
. (5)

Proof. Recall that part (ii) of Lemma 3 says that bc (0, x−c) = 0 for all x−c and c ∈ {b, w}. In

particular, bc (0, 0) = 0 for c ∈ {b, w}. Hence, (0, 0) satisfies (5).

In order to prove part (i) we have to show that if λ ≤ 1/ (K (1− α)µc) for c ∈ {b, w} then the

only equilibrium is (0, 0). Suppose that (xc∗, x
−c
∗ ) is an equilibrium. Then equation (5) implies that

bc (xc∗, x
−c
∗ ) = x

c
∗ for c ∈ {b, w}. Since λ ≤ 1/ (K (1− α)µc) it follows from part (iii) of Lemma 3

and part (ii) of Lemma 4 that xc∗ = 0 for c ∈ {b, w}.

We turn our attention to part (ii). If λ > 1/ (K (1− α)µc) then there exists a unique x
c > 0

such that bc (xc, 0) = xc by part (i) of Lemma 4. In addition, b−c (x−c, 0) = 0 by part (ii) of

Lemma 3. Therefore, (xc, 0) satisfies equation (5).

Part (ii) of Proposition 1 provides little information about the set of equilibria which involve

discrimination. Next, we provide a graphical characterization of the equilibria for the case of a

large λ.

Note that if (xc∗, x
−c
∗ ) is an equilibrium, then by (5), x

c
∗ = bc (xc∗, x

−c
∗ ) for c ∈ {b, w}. This

means that the function bc (., x−c∗ ) intersects the 45-degree line at x
c
∗. As previously indicated (see

part (ii) of Lemma 3), these curves intersect at zero. Next, we investigate intersections which are

strictly positive.

We will show that for a generic x−c, there are either two positive intersections of bc (., x−c)

and the 45-degree line, or there are none.6 Figure 1 illustrates a situation in which there are

two intersections for c = b. (These intersections are denoted by xb1 (x
w) and xb2 (x

w).) For each

x−c, let xc1 (x
−c) and xc2 (x

−c) denote the smaller and larger positive intersections respectively, if

they exist. We will argue that, depending on the parameter values, there are two different cases

which can arise. Case 1: there are two intersections for each x−c and hence, xc1 and x
c
2 are defined

everywhere. Case 2: there are two intersections if x−c /∈
(
x−c, x−c

)
and there is no intersection if

x−c ∈
(
x−c, x−c

)
. In this case, the curves xc1 and x

c
2 are only defined on R+\

[
x−c, x−c

]
. The next

figure depicts xc1 and x
c
2 for both cases.

6There is a non-generic third case where the curve bc
(
., x−c

)
is tangent to the 45-degree line when it is shifted

down the most.
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Figure 2: Positive Intersections

Next, we explain how the curves are drawn on Figure 2. Recall that the function bc (., x−c) is

essentially a downward shift of bc (., 0) (see Figure 1). The size of this shift determines the number

of positive intersections. It is easy to show that this size is a non-monotonic function of x−c. If

x−c is small, an increase in x−c shifts the curve bc (., x−c) even further down. Above a certain

value of x−c, however, a further increase in x−c shifts the curve bc (., x−c) upwards. In fact, as x−c

goes to infinity, bc (., x−c) converges back to bc (., 0) (see part (iii) of Lemma 3). Recall that if λ

is large, the first derivative of bc (., 0) is larger than one (see Lemma 4). Hence, bc (., x−c) and the

45-degree line have two intersections if the downward shift is small, and none if the shift is large.

In the latter case, bc (., x−c) is pushed below the 45-degree line. Case 1 corresponds to parameters

where the curve bc (., x−c) intersects the 45-degree line even when it is shifted furthest down. In

Case 2, there is an interval such that, if x−c lies in this interval, the curve bc (., x−c) is pushed

below the 45-degree line. If x−c is outside of this interval, there are two positive intersections.

In both cases the curve xc1 first increases then decreases, because, the larger the downward

shift, the higher the first point of positive intersection will be. Similarly, the curve xc2 decreases

first, then increases because the location of the second positive intersection decreases as the size of

the shift increases. In the panel corresponding to Case 2, the values of xc1 and x
c
2 are equal at x

−c

and x−c; both x−c and x−c induce the same shift, that is, bc (., x−c) = bc
(
., x−c

)
. In addition, the

shifted best-response curve is exactly tangent to the 45-degree line, hence, the two intersections

collapse into one. These results are stated and proved in the working paper version of our paper

(see Lemma 5 in Peski and Szentes (2012)).

Since bc (., x−c) intersects the 45-degree line at zero for all x−c (see part (ii) of Lemma 3),

the curve xc0 (x
−c) ≡ 0 also defines an intersection. Now we can define equilibria in terms of the

intersections of the curves
{
xbi
}2
i=0

and {xwi }
2
i=0 . Formally, (x

c
∗, x

−c
∗ ) is an equilibrium cutoff profile
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Figure 3: Equilibria

if and only if there exist i, j ∈ {0, 1, 2} such that

xc∗ = x
c
i

(
x−c∗

)
and x−c∗ = x−cj (xc∗) . (6)

Therefore, in order to find equilibria geometrically, we need to add the curves
{
x−ci

}2
i=0

to Figure 2

and find every intersection. We did exactly this in Figure 3, in an environment where both colours

satisfy Case 1 in Figure 2.

Intuitively, the curve xc2 corresponds to strong discrimination of agents with colour c,, x
c
1

corresponds to weak discrimination, and xc0 implies no discrimination. In Figure 3 any combination

of these behaviours is present in an equilibrium. Indeed, each curve xci (i = 0, 1, 2) intersects with

each curve x−cj (j = 0, 1, 2). If one of the colours satisfied Case 2 in Figure 2, some of these

intersections might not exist. In general, we claim neither the existence, nor the uniqueness of

these intersections. In the proof of Proposition 1, however, we showed that the intersection of xc0
and x−c2 exists and is unique (c ∈ {b, w}) if λ > 1/ (K (1− α)µc). The unique intersection of x

c
0

and x−c0 , (0, 0), corresponds to the colour-blind equilibrium. Next, we also show that if λ is large

then the intersection of xc2 and x
−c
2 exists. That is, there always exists an equilibrium where agents

segregate and discriminate strongly.

Note that by (4), the best-response cutoff of an agent with colour c is largest if xc = ∞ and

x−c = 0. In this case, the best-response cutoff is Kµc. This implies that the equilibrium cutoff of
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an agent with colour c can never exceed Kµc. Let x
c
max = Kµc. We are now ready to state the

main result of this section.

Proposition 2 For all K, µc, α and ε (> 0) there exists a λ0 such that if λ ≥ λ0, then if xc∗ is

an equilibrium cutoff then either xc∗ ∈ [0, ε) or xc∗ ∈ (x
c
max − ε, x

c
max). In addition, there exists

equilibria with each of the following properties:

(i) xc∗ ∈ [0, ε) and x−c∗ ∈ [0, ε),

(ii) xc∗ ∈ [0, ε) and x−c∗ ∈ (x−cmax − ε, x
−c
max),

(iii) x−c∗ ∈ [0, ε) and xc∗ ∈ (x
c
max − ε, x

c
max), and

(iv) xc∗ ∈ (x
c
max − ε, x

c
max) and x−c∗ ∈ (x−cmax − ε, x

−c
max).

This proposition states that if λ is large enough, then, in every equilibrium, an agent either

has a small cutoff (xc∗ < ε), or a very large cutoff (x
c
max − ε < x

c
∗). In addition, any combination

of these strategies can arise in an equilibrium. That is, there are equilibria where both races use

small cutoffs, there are equilibria where one race discriminates strongly against the other while the

other race hardly discriminates, and there equilibria where both races discriminate strongly.

In the proof of this proposition, we show that an agent who uses a cutoff xc∗ ∈ (x
c
max − ε, x

c
max)

employs a worker with physical or social colour −c with small probability. In fact, we prove that

as λ goes to infinity the probability of employment and the expected surplus generated by such

matches goes to zero. Similarly, we show that if an agent uses a cutoff xc∗ ∈ (0, ε), then he employs a

worker with high probability irrespective of the worker’s type. As λ goes to infinity, the probability

of employment induced by a weakly discriminating cutoff goes to one.

The critical value of λ above which the various equilibria described in parts (i)-(iv) of Propo-

sition 2 exist is strictly larger than the threshold value of λ from part (ii) of Proposition 1. To see

this, let us explain that λ needs to be larger to sustain a two-sided discriminatory equilibrium (part

(iv) of Proposition 2) than 1/ (K (1− α)µc), which guarantees the existence of a discriminatory

equilibrium where only colour-c agents discriminate (part (ii) of Proposition 1). Consider a cutoff

profile (xc∗, x
−c
∗ ) where x

c
∗, x

−c
∗ > 0. By (5), in order for (xc∗, x

−c
∗ ) to be an equilibrium, the equation

bc (xc∗, x
−c
∗ ) = x

c
∗ must hold, that is, the curve b

c (., x−c∗ ) intersects the 45-degree line at x
c
∗. As we

explained earlier (see part (iii) of Lemma 3), the curve bc (., x−c∗ ) is essentially a downward shift of

bc (., 0). This is because as x−c jumps from zero to x−c∗ , a colour-c worker benefits from having a

social colour −c whenever he meets an employer with physical colour −c, which, in turn, induces

him to decrease his cutoff. Recall that if λ = 1/ (K (1− α)µc), the slope of b
c (., 0) is exactly one

at zero. Therefore, if λ is just above 1/ (K (1− α)µc) then b
c (., 0) intersects the 45-degree line but

the shifted curve bc (., x−c∗ ) will not. So, in order to have a two-sided discriminatory equilibrium

we need a λ large enough so that even the shifted curves, bc (., x−c∗ ) and b
−c (., xc∗), intersect the

45-degree line.
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5 Discussion

Next, we discuss some assumptions and extensions of our model. In this paper, our goal was to

present a simple model which demonstrates that discrimination can arise purely because agents

observe information about others’ past actions. We do not claim that equilibrium discrimination

is robust to all possible modifications of our model. However, some of the assumptions we make

are only necessary in order to provide a graphical representation of the equilibria.

Distribution of shocks.— We have assumed that the match-specific shock that determines the

surplus of a partnership is exponentially distributed. Whether or not the colour-blind equilibrium

is unique depends only on the slopes of the best-response functions at (0, 0). These slopes are

increasing functions of the density of the shock distribution at zero. Whenever this density is large

there exists a discriminatory equilibrium.

Note that the total surplus of a partnership, s+M , is always positive. This assumption makes

the socially optimal employment decisions very easy to characterize. Efficiency requires employers

to hire whenever they can. This simplifies our analysis. Even if negative shocks were allowed, the

uniqueness of the colour-blind equilibrium would only depend on the slope of the best-response

curve at the origin. However, in this case, there might be equilibria different from ours. In

particular, it is possible that white employers would prefer to hire black workers and vice versa,

that is, it could be more valuable to have a social colour which is different from one’s physical

colour.

Social colour.— If an employer chooses not to hire, then, if his social colour changes it will

change to his own physical colour. The motivation for this assumption is that if a white agent

refuses to hire a black employee despite the positive surplus, he will be viewed as loyal to other

whites and hostile to blacks. However, the main reason for this assumption is that it enabled us to

give a two-dimensional graphical representation of our problem. Recall that a consequence of this

assumption is that the best-response cutoff of an employer does not depend on his social colour

(see Lemma 1 and (3)).

We assume that social colour is a binary signal and its evolution is only determined by the

physical colours of the worker and the employer; this is in the spirit of Kandori (1992). One might

choose to model the information an employer observes about a worker in a more complicated way.

For example, an employer might draw a random sample of the physical colours of the agents in

the worker’s partnership history. Then, the type of the worker would consist of both his physical

colour and his full history. Such modelling would lead to a complex type space but does not alter

our main results.

It is easy to construct social colours different from ours which do not lead to discrimination.

For example, if the colour is not informative about past decisions then the colour blind equilibrium

is unique. The characterization of those processes which might lead to discrimination is beyond

the scope of this paper.
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More attributes and social colours.— In reality, individuals have more than one physical at-

tribute. It is also possible that an individual is subject to several labels that depend on his history.

Of course, agents might condition their actions on these multi-dimensional attributes and labels.

We emphasize, however, that as long as one of the dimensions of the label evolves as our social

colour does and λ is large, discriminatory equilibria will exist.

Constant wage.—Workers receive a constant wageM regardless of their types, the types of their

employers and the profitability of the partnership. Therefore, any inefficiency due to discrimination

is in the form of suboptimal unemployment decisions. In particular, an agent against whom others

discriminate is only worse off because he is employed too infrequently. It would be interesting to

allow wages to be endogenous and analyse wage differentials due to racial discrimination. Unfor-

tunately, it is not entirely clear how endogenous wages would affect our main results. Difficulties

arise from the fact that if a black worker is willing to take a paycut in order to be employed by a

white employer, more white employers will employ black workers. This would increase the num-

ber of white agents with black social colour, which in turn, would make it less costly for a white

agent to have a black social colour. Therefore, it would be less likely for discrimination to arise in

equilibrium. A potential solution to this problem would be to allow social colour to change as a

function of the wage offered to a worker, for example, a lower wage for a black worker could lead

to an increased likelihood that the employer’s social colour becomes white.

We are currently developing models where wages are set endogenously. Preliminary results

suggest that as long as the wage of a worker cannot fall to zero, the main results of our paper

remain valid. There are various theories of wage determination, like efficiency wages and moral

hazard problems, that lead to strictly positive wages even if the outside option of a worker is zero.

6 Conclusion

This paper puts forward a new theory of racial discrimination. Individuals discriminate because

they do not want to be associated with the other race. Although the information about others’

association is not payoff-relevant, it plays a major role in determining the behaviour of economic

agents.

Our model does not attempt to explain why agents might use skin colour as a basis for dis-

crimination as opposed to other observable physical attributes. People differ in height, weight,

eye-colour, and along many other dimensions. One potential explanation might take into account

the fact that members of a family or a community are more likely to have the same skin colour than

the same height or weight. Discrimination against short individuals might be difficult to sustain

if many relatives of tall people are short. Recall that in our model, a white agent discriminates

against those who associate themselves with blacks because he is afraid of those whites who as-

sociate more closely with whites. Since individuals must necessarily associate with short and tall
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individuals, these attributes cannot be used to sustain discrimination. Another reason for using

skin colour is because it is more easily observed that other attributes such as eye-colour.

Throughout the paper, we have assumed that the surplus generated by a partnership is ex-

ogenously divided between the worker and the employer. We have excluded the possibility that

discrimination results in a wage differential. Perhaps the most important elaboration of our model

would be to allow wages and profits to be determined endogenously.

We have not yet discussed policy in this paper. Recall that a white employer discriminates

against black workers because he is afraid of being turned down by white employers with white

social colour in the future. Hence, a policy intervention which would reduce the incentive to dis-

criminate might involve increasing the fraction of the population whose social colours are different

from their own physical colours. It is clear that subsidizing employers who hire workers of a

different physical colour would increase the fraction of the population whose physical and social

colour don’t match. This would of course result in a lower proportion of individuals with the same

physical and social colour, and reduce the incentive to discriminate. Such subsidies must be paid

from taxes, which might alter the incentives to produce. Therefore, in order to discuss policy in a

meaningful way, one must model production and the worker’s incentives carefully.

7 Appendix

7.1 Proof of the Lemmas

Proof of Lemma 2. For each (xc, x−c) we shall compute the bias Vc,c − Vc,−c for c ∈ {b, w}.7

These objects then identify the best-response cutoffs by Lemma 1. Let Πlc1,c2 and Π
e
c1,c2 denote

the agent’s value function if he is a worker or employer respectively, where (c1, c2) ∈ {b, w}
2 is his

type. The heuristic equation describing the relationship between Vc1,c2 , Π
l
c1,c2 and Π

e
c1,c2 is:

Vc1,c2 = (1− δdt) (1− rdt)Vc1,c2 + δdt

(
1

2
Πlc1,c2 +

1

2
Πec1,c2

)
.

To see this, notice that the probability a particular agent does not receive an opportunity

in time dt is 1−δdt, and hence his value remains Vc1,c2 . This is discounted at the rate r. Otherwise

the agent receives an opportunity, and is equally likely to become an employer or a worker. After

dividing through by dt and taking the limit as dt goes to zero, we obtain

Vc1,c2 =
δ

δ + r

(
1

2
Πlc1,c2 +

1

2
Πec1,c2

)
. (7)

A worker with type (c, c) is employed whenever he is matched with an employer with physical

colour c, which happens with probability µc. He is also employed whenever he is matched with an

employer with physical colour −c whose cutoff is x−c and s ≥ x−c. This happens with probability

7The obvious dependence of the values of the agents on
(
xb, xw

)
is supressed from the notation Vc1,c2 for

simplicity.
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µ−c (1−G (x
−c)). Finally, an employed worker’s value changes to Vc,c, and he also receives M

whenever he is employed, therefore,

Πlc,c =M
(
µc + µ−c

(
1−G

(
x−c

)))
+ Vc,c. (8)

Similarly,

Πlc,−c =M
(
µc (1−G ((1− α)x

c)) + µ−c
(
1−G

(
αx−c

)))
+ Vc,−c. (9)

Because the optimal hiring decision of employer with physical colour c does not depend on his

social colour, the difference between value functions of employers with the same physical colour

c is equal to the difference between the value functions of an unmatched agent multiplied by the

probability that the social colour of the employer does not change:

Πec,c −Π
e
c,−c = (1− γ) (Vc,c − Vc,−c) . (10)

Using (7), (8), (9), and (10) we can express Vc,c − Vc,−c as follows:

Vc,c − Vc,−c =
δ

δ + r

[
1

2

(
Πlc,c −Π

l
c,−c

)
+
1

2

(
Πec,c −Π

e
c,−c

)]

=
δ

δ + r

1

2
M
[
µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))]

+
2− γ

2

δ

δ + r
[Vc,c − Vc,−c]

That is,

Vc,c − Vc,−c =
Mδ

2r + γδ

[
µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))]
.

Recall from Lemma 1 that the best-response cutoff of an employer with physical colour c against

a worker with type (−c,−c) is γ (Vc,c − Vc,−c). Then the previous displayed equality implies that

the best-response cutoff is

b̃c
(
xc, x−c

)
= K

[
µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))]
, (11)

where K denotes Mδγ/ (2r + γδ). Since the shocks are always positive, one can restrict attention

to weakly positive cutoffs, in which case, the best-response correspondence is uniquely identified

by (4).

Proof of Lemma 3. (i) Notice that bc (xc, x−c) = b̃c (xc, x−c) whenever bc (xc, x−c) > 0. Hence,

it is enough to show that b̃c is concave and strictly increasing in xc. By (11)

∂b̃c (xc, x−c)

∂xc
= Kµc (1− α) g ((1− α)x

c) ,

where g (x) = λe−λx for all x ≥ 0. This partial derivative is positive and decreasing.

(ii) By (11),

b̃c
(
0, x−c

)
= K

[
µ−c

(
G
(
αx−c

)
−G

(
x−c

))]
≤ 0,

because G
(
αx−c

)
−G

(
x−c

)
≤ 0. Hence, (4) and (11) imply bc (0, x−c) = 0.
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(iii) Notice that limx−c→∞G (αx
−c)−G (x−c) = 0. Therefore, by (4) and (11),

bc (xc, 0) = lim
x−c→∞

bc
(
xc, x−c

)
= KµcG ((1− α)x

c) .

Finally, the inequality bc (xc, 0) ≥ bc
(
xc, x−c

)
follows from G

(
αx−c

)
−G

(
x−c

)
≤ 0.

Proof of Lemma 4. Since b̃c (xc, 0) ≥ 0 by (11), (4) implies b̃c (xc, 0) = bc (xc, 0). Therefore, by

the proof of part (i) of Lemma 3

∂bc (xc, 0)

∂xc
= Kµc (1− α)λe

−λ(1−α)xc .

This derivative is Kµc (1− α)λ at x
c = 0, and converges to zero as xc goes to infinity.

(i) If λ > λ0 then Kµc (1− α)λ > 1. This means that ∂b
c (xc, 0) /∂xc⌋xc=0 > 1 and therefore,

bc (xc, 0) > xc if xc is close to zero. Since the curve bc (xc, 0) is concave (part (i) of Lemma 3) and its

derivative goes to zero as xc goes to infinity, there exists a unique xc > 0 such that bc (xc, 0) = xc.

(ii) If λ ≤ λ0 then Kµc (1− α)λ ≤ 1. Since the curve b
c (xc, 0) is concave (part (i) of Lemma

3) bc (xc, 0) < xc for all xc > 0.

7.2 Proof of Proposition 2

Before we proceed with the proof of Proposition 2 we prove a few Lemmas about the equilibrium

cutoffs. For convenience we introduce a few new notations. We shall denote min {µb, µw} by µmin.

In addition, we define two constants

ψ0 =
1

1
4Kα (1− α)µmin

, ψ1 = Kµmin
1

2

(
1− 2−α

) (
1− 2−(1−α)

)
.

In the proofs of the lemmas we often use the following inequality

1− e−ξ ≥
1

2
ξ for all ξ ≤ log 2. (12)

In what follows
(
xb, xw

)
denote the equilibrium cutoffs, i.e.,

xc = bc
(
xc, x−c

)
for each c. (13)

Lemma 5 There exists a λ0 such that for all λ ≥ λ0 eithermax {xc, x−c} ≤ ψ0λ
−2 ormax {xc, x−c} ≥

ψ1.

Proof. First, suppose that both cutoffs are strictly positive, that is, xb, xw > 0. Then, because

xc = b̃c (xc, x−c) for each c (see (11)),

xb + xw =
∑

c∈{b.w}
K
[
µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))]

=
∑

c∈{b.w}
Kµc [G ((1− α)x

c) +G (αxc)−G (xc)]

=
∑

c∈{b,w}
Kµc

(
1− e−αλx

c
)(
1− e−(1−α)λx

c
)
. (14)
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The first equality above follows from rearranging the terms corresponding to the same colour. The

second one follows from G (x) = 1− e−x and
[
1− e−αλx

c
]
+
[
1− e−(1−α)λx

c
]
+
[
1− e−λx

c
]
=
(
1− e−αλx

c
)(
1− e−(1−α)λx

c
)
.

We consider two cases. If max
{
xb, xw

}
≥ (log 2) /λ, then it follows from the previous equality

that

xb + xw ≥ Kµmin
(
1− e−α log 2

)(
1− e−(1−α) log 2

)

= Kµmin
(
1− 2−α

) (
1− 2−(1−α)

)
= 2ψ1.

Since max
{
xb, xw

}
≥ 1

2

(
xb + xw

)
, the previous inequality chain implies max

{
xb, xw

}
≥ ψ1. If

max
{
xb, xw

}
≤ (log 2) /λ, then, by inequality (12),

1− e−αλx
c

≥
1

2
αλxc and 1− e−(1−α)λx

c

≥
1

2
(1− α)λxc (15)

for each c ∈ {b, w} . Equations (14) and inequalities (15) imply that

max
{
xb, xw

}
≥

∑
c∈{b,w}

1

4
Kα (1− α)µcλ

2 (xc)2

≥
1

4
Kα (1− α)µminλ

2
[
(xc)2 +

(
x−c

)2]
≥
1

ψ0
λ2
(
max

{
xb, xw

})2
.

Hence, max
{
xb, xw

}
≤ ψ0λ

−2.

Second, suppose that one of the cutoffs is zero, and without loss of generality assume that

xb = 0 and, hence, max
{
xb, xw

}
= xw. Then, by (13),

xw = Kµw

(
1− e−(1−α)λx

w
)
.

If xw ≥ (log 2) /λ then

xw ≥ Kµw

(
1− e−(1−α) log 2

)
≥ ψ1.

If xw ≤ (log 2) /λ then, by inequality (12),

xw ≥ 2Kµw (1− α)λx
w.

If λ > 1/ (2Kµw (1− α)) then the previous inequality implies that x
w ≤ 0 and hence, xw < ψ0λ

−2.

Lemma 6 There exists a λ0 such that if λ ≥ λ0 and xc ≥ ψ1 then either x−c ≤ ψ0λ
−2 or

x−c ≥ ψ1/2.

Proof. Suppose that xc ≥ ψ1. Suppose that x
−c > 0. Then

x−c = Kµ−cG
(
(1− α)x−c

)
+Kµc (G (αx

c)−G (xc))

≥ Kµ−c

(
1− e−(1−α)λx

−c
)
−Kµce

−λαψ1 , (16)
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where the equality is just (13) and the inequality follows from xc ≥ ψ1. We consider two cases.

Case 1: x−c ≥ (log 2) /λ. If λ is large enough so that Kµce
−λαψ1 ≤ 1

2ψ1,

Kµ−c

(
1− e−(1−α)λx

−c
)
−Kµce

−λαψ1 ≥ Kµ−c

(
1− e−(1−α) log 2

)
−
1

2
ψ1

≥ Kµ−c

(
1− 2−(1−α)

)
−
1

2
ψ1 ≥

1

2
ψ1,

where the last equality follows from ψ1 ≤ Kµ−c
(
1− 2−(1−α)

)
. The previous inequality chain and

(16) imply x−c ≥ 1
2ψ1.

Case 2: x−c < (log 2) /λ. Then, by inequality (12),

1− e−λ(1−α)x
−c

≥
1

2
(1− α)λx−c. (17)

If λ is large enough so that Kµmaxe
−λαψ1 ≤ ψ0λ

−2, the previous inequality implies that

Kµ−c

(
1− e−(1−α)λx

−c
)
−Kµce

−λαψ1 ≥ Kµmin
1

2
(1− α)λx−c − ψ0λ

−2.

This inequality and the inequality chain (16) yields
(
Kµmin

1

2
(1− α)λ− 1

)
x−c ≤ ψ0λ

−2.

If λ is large enough so that Kµmin
1
2 (1− α)λ− 1 > 1 then x

−c ≤ ψ0λ
−2.

Recall that xmax is the largest possible cutoff which can be a best response to a cutoff profile

and xmax = Kµc.

Lemma 7 For all ε > 0, there exists a λ0, such that if λ > λ0 and xc ≥ ψ1/2 then either

x−c ∈
(
ψ0λ

−2, ψ1/2
)

or xc ∈ (xcmax − ε, x
c
max) .

Proof. Suppose that xc ≥ ψ1/2 and that x
−c /∈

(
ψ0λ

−2, ψ1/2
)
. Notice that from (13) and

xmax = Kµc it follows that

xcmax − x
c = Kµc −

[
Kµc

(
1− e−λ(1−α)x

c
)
+Kµ−c

(
1− e−λx

−c

− 1 + e−λαx
−c
)]

(18)

= Kµce
−λ(1−α)xc −Kµ−c

(
e−λx

−c

− e−λαx
−c
)

= Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c
(
1− e−(1−α)λx

−c
)
.

Case 1: x−c ≥ ψ1/2. Then

Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c
(
1− e−(1−α)λx

−c
)

≤ Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c

≤ Kµce
− 1
2λ(1−α)ψ1 +Kµ−ce

− 1
2λαψ1 ,

where the first inequality follows from 1−e−(1−α)λx
−c

≤ 1 and the second one from x−c, xc ≥ ψ1/2.

This inequality chain and (18) imply that

xcmax − x
c ≤ Kµce

− 1
2λ(1−α)ψ1 +Kµ−ce

− 1
2λαψ1 .
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Notice that for each ε there is a λ0 such that if λ > λ0 the right-hand-side of this inequality is

smaller than ε and, hence, xc ∈ (xcmax − ε, x
c
max).

Case 2: If x−c ≤ ψ0λ
−2, then,

Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c
(
1− e−(1−α)λx

−c
)

≤ Kµce
−λ(1−α)xc +Kµ−c

(
1− e−(1−α)λx

−c
)

≤ Kµce
− 1
2λ(1−α)ψ1 +Kµ−c

(
1− e

−ψ0(1−α)
λ

)
,

where the first inequality follows from e−λαx
−c

≤ 1 and the second one from xc ≥ ψ1/2 and

x−c ≤ ψ0λ
−2. This inequality chain and (18) imply that

xcmax − x
c ≤ Kµce

−1
2λ(1−α)ψ1 +Kµ−c

(
1− e

−ψ0(1−α)
λ

)
.

Observe that as λ goes to infinity both Kµce
−(1/2)λ(1−α)ψ1 and 1− e−ψ0(1−α)/λ converge to zero.

Therefore, for each ε there is a λ0 such that if λ > λ0 the right-hand-side of this inequality is

smaller than ε and xc ∈ (xcmax − ε, x
c
max).

Proof of Proposition 2. First, we show that for each ε > 0, there exists λ0 such that for all

λ ≥ λ0, for all equilibrium cutoffs xc, either xc ≤ ε, or xc ∈ (xcmax − ε, x
c
max) . By Lemma 5, either

max {xc, x−c} ≤ ψ0λ
−2 or max {xc, x−c} ≥ ψ1. If max {x

c, x−c} ≤ ψ0λ
−2 then xc ≤ ε whenever

λ ≥
√
ψ0/ε. If max {x

c, x−c} ≥ ψ1, assume without loss of generality that max {x
c, x−c} = xc. By

Lemma 6, we have to consider only the following two cases: either x−c ≤ ψ0λ
−2, or x−c ≥ (1/2)ψ1.

If x−c ≤ ψ0λ
−2, for each ε there is a λ0 such that if λ ≥ λ0 then x−c ≤ ε, and by Lemma 7,

xc ∈ (xcmax − ε, x
c
max) . If x

−c ≥ (1/2)ψ1 then, since x
c ≥ ψ1 > (1/2)ψ1, Lemma 7 implies that

xc ∈ (xcmax − ε, x
c
max) for c ∈ {b, w} .

Second, we show that equilibria of type (i)-(iv) exist. The colour-blind equilibrium is an example

of an equilibrium of type (i). The existence of equilibria type (ii) and (iii) follows from Proposition

1. Finally, the proof of Lemma 7 implies that if xc ∈ (xcmax − ε, x
c
max) for each c, then b

c (xc, x−c) ∈

(xcmax − ε, x
c
max) for each c. Since the functions b

c and b−c are continuous and set (xcmax − ε, x
c
max)×

(x−cmax − ε, x
−c
max) is compact, the existence of equilibrium type (iv) follows from a standard fixed

point argument.
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