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Abstract. In this paper we examine the predictability of genetic algo-
rithm (GA) performance using information-theoretic fitness landscape
measures. The outcome of a GA is largely based on the choice of search
operator, problem representation and tunable parameters (crossover and
mutation rates, etc). In particular, given a problem representation the
choice of search operator will determine, along with the fitness function,
the structure of the landscape that the GA will search upon. Statisti-
cal and information theoretic measures have been proposed that aim to
quantify properties (ruggedness, smoothness, etc) of this landscape. In
this paper we concentrate on the utility of information theoretic mea-
sures to predict algorithm output for various instances of the capacitated
and time-windowed vehicle routing problem. Using a clustering-based
approach we identify similar landscape structures within these problems
and propose to compare GA results to these clusters using performance
profiles. These results highlight the potential for predicting GA perfor-
mance, and providing insight self-configurable search operator design.

1 Introduction

We study the well known NP-hard [7] vehicle routing problem (VRP). Due to
its wide applicability the VRP has been widely studied (for detailed reviews, see
[3,17,10]). In this paper, we focus on the capacitated vehicle routing problem
(CVRP) [22] and vehicle routing problems with time windows (VRPTW) [3].
A typical VRP aims to design least-cost routes from a central depot to a set
of geographically dispersed points/customers with various demands. Each cus-
tomer is to be serviced exactly once by only one vehicle, and each vehicle has a
limited capacity. The Vehicle Routing Problem with Time Windows (VRPTW)
is an extension of the VRP whereby a time window during which service must
be completed is associated with each customer. A vehicle may arrive early, but
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it must wait until the designated time window to open before service can com-
mence. The objective of the VRPTW is to minimize the number of vehicles used
and the total distance travelled to service the customers without violating the
capacity and time window constraints.

The main question we shed light on in this paper is whether common infor-
mation theoretic summary measures of the fitness landscape structure actually
provide reliable feedback as to the relative difficulty of solving specific VRP
problem instances. That is, whether problem instances can be grouped based on
these measures, and whether these groups are indicative of the eventual solution
quality one could observe after an evolutionary algorithm terminates. So, we are
not aiming to predict the final objective value or behaviour of the algorithm over
time, rather, whether there is a correspondence between the measures and per-
formance. We address this question by considering a large subset of benchmark
VRP and VRPTW instances and measure the influence that common mutation
and crossover search operators have.

A fitness-distance based analysis of problem difficulty for the CVRP was con-
ducted in [9], using a variety of distance measures. Their results indicate the
existence of a possible “big valley” structure in the landscape that contains
more than half of the sampled problem instances. They argue that this provides
a plausible explanation for the success of some well known heuristics on the
given problem instances. The analysis considered a much smaller set of problem
instances than is provided in this study, as well as considering only the CVRP,
whereas we consider VRPTW as well. Similar conclusions were found in [5,6].
The waste-collection vehicle routing problem with time windows was studied in
[19]. Many other studies of fitness landscapes exist in the literature for a variety
of problems [13,12,1,11,21,25,16,20,18]. To our best knowledge, cluster analysis
of information theoretic measures and their relationship to observed GA perfor-
mance is unique.

2 Fitness Landscapes

A fitness landscape can be defined as a tuple L = (S, f,N ) where S is the
search space of feasible solutions, f : S �→ R is a fitness function. The function
N (s) assigns to every s a set of neighbour solutions. Traditionally, neighbours
are solutions reachable through a single application of the search operator, but
this need not be the case.

Without loss of generality, the following assumes a maximization problem
with search space S where a solution s ∈ S is defined to be a local maximum if
its fitness is greater than or equal to all of its neighbours, i.e., f(s) ≥ f(w) ∀ w ∈
N (s), where the neighbourhood N (s) is defined as the set of solutions reachable
from s by a single application of the search operator being considered. If a
relatively high number of local optima are present in the landscape, it is termed
rugged. When few optima exist, the landscape could be either smooth or flat
depending on the existence of large attractive basins.

A basin of attraction of a solution sn is defined [8] as the set of verticesB(sn) =
{s0 ∈ V |∃s1, ..., sn ∈ V where si+1 ∈ N (sn) and f(si+1) > f(si) ∀i, 0 ≤ i ≤ n}.
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The size of a basin is generally considered to be defined as the number of solutions
within it. Local optima with relatively small attractive basins can be considered
isolated [8]. Larger basins of attraction typically imply a smoother landscape.
Landscapes characterized by few local optima generally contain large amounts
of neutrality [2]; the fitness of neighbouring solutions remains essentially equal.
When existing in neutral epochs, the current set of solutions will randomly drift
about these neutral networks.

Problem difficulty may be deduced from analyzing the characteristics defined
above. For instance, a landscape having few isolated optima with a high degree of
neutrality is likely going to be more difficult to search than a smooth landscape
with a single global optima (i.e., a large hill) because on average searching the
landscape provides little information indicating the location of peaks. Various
measures have been proposed to ascertain properties of the search space, for
example [26,14,24,8]. We focus on the information theoretic measures proposed
in [24] and [23].

The Information Content (IC) measures the ruggedness with respect to the
flat or neutral areas of the landscape. The degree of flatness sensitivity is based
on an empirically decided parameter ε which is restricted to the range [0, ..., L],
where L is the maximum fitness difference along the random walk. Consequently,
the analysis will be most sensitive when ε = 0. This measure is calculated a

H(ε) = −
∑

p�=q

Pr[pq] log6 Pr[pq] (1)

where probabilities Pr[pq] represent the probabilities of possible fitness transitions
from solution p to q while performing a random walk. Each [pq] are elements of
the string S(ε) = s1s2s3sn, of symbols si ∈ {1̄, 0, 1}, where each si is recursively
obtained for a particular value of ε based on Equation (2), so si = Ψf (i, ε). Thus,ε
can be said to represent an accuracy or sensitivity parameter of the analysis.

Ψ(i, ε) =

⎧
⎪⎨

⎪⎩

1̄, if fi − fi−1 < −ε

0, if |fi − fi−1| ≤ ε

1, if fi − fi−1 > ε

(2)

The Partial Information Content (PIC) indicates the modality or number of local
optima present on the landscape. The underlying idea is to filter out repeated
symbols of S(ε) in order to acquire an indication of the modality of the random
walk. The formula for computing PIC is given in Equation (3), where n is the
length of the original walk and μ is the length of the summarized string S′(ε).

M(ε) =
μ

n
(3)

The value for μ = Φs(1, 0, 0) is determined via the recursive function

Φs(i, j, k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k, if i > n

Φ(i + 1, i, k + 1), if j = 0andsi 	= 0

Φ(i + 1, i, k + 1), if j > 0, si 	= 0, si 	= sj

Φ(i + 1, j, k), otherwise.

(4)
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When the value of M(ε) = 0 it indicates that no slopes were present on the
path of the random walk, meaning that the landscape is rather flat or smooth.
Similarly, if M(ε) = 1 then the path is maximally multi-modal and likely very
rugged. Furthermore, it is possible to calculate the expected number of optima
of a random walk of length n via

E[M(ε)] =

⌊
nM(ε)

2

⌋
, (5)

although we do not consider the expected modality in this analysis.
The Density-Basin Information (DBI) measure (Equation 6) indicates the flat

and smooth areas of the landscape as well as the density and isolation of peaks.
It therefore provides an idea of the landscape structure around the optima.

h(ε) = −
∑

p∈{1̄,0,1}
Pr[pp] log3 Pr[pp] (6)

Pr[pp] represents the probability of sub-blocks 1̄1̄, 00 and 11 of occurring. A high
number of peaks within a small area results in a high DBI value. Conversely, if
the peak is isolated the measure will yield a low value. Thus, this information
gives an idea as to the size and nature of the basins of the landscape. Landscapes
with a high DBI content should be easier for an evolutionary algorithm to attract
to the area of fitter solutions.

3 Representation and Genetic Operators

We use 66 standard VRPTW and CVRP benchmark instances1 and consider
seven search operators, four mutation and three crossover [4,15]:

– Swap: swap two random elements.
– Inversion: reverse the order of a contiguous segment of elements (i.e., 2-opt).
– Insertion: move an element to a random index.
– Displacement: select and move a contiguous segment of elements.
– PMX: exchange contiguous segments of elements between parents.
– UOX: randomly select subset of elements from each parent, maintaining
ordering.

– CX: include a random element from parent 1 (P1), then include the ele-
ment in P1 found at the index of P2 corresponding to the previous included
element. Repeat until an element is encountered that already exists in the
child, then repeat using an unselected element of P2.

We represent solutions as an array of integers, where each integer appears only
once, and corresponds to a stop of the vehicle (i.e., a city). Crossover and mu-
tation operators are applied directly to the representation. Transcribing a solu-
tion representation into a valid solution is accomplished by linearly traversing

1 Available at web.cba.neu.edu/~msolomon/problems.htm and http://osiris.

tuwien.ac.at/ wgarn/VehicleRouting/neo/Problem%20Instances/instances

.html.

web.cba.neu.edu/~msolomon/problems.htm
http://osiris.tuwien.ac.at/~wgarn/VehicleRouting/neo/Problem%20Instances/instances.html
http://osiris.tuwien.ac.at/~wgarn/VehicleRouting/neo/Problem%20Instances/instances.html
http://osiris.tuwien.ac.at/~wgarn/VehicleRouting/neo/Problem%20Instances/instances.html
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the representation and adding each stop to a vehicle until its capacity limit is
reached. The process repeats using a new vehicle until the representation is fully
traversed.

4 Landscape Analysis Results

In this section we present the results of the landscape analysis. The required
statistics and probabilities are gathered by taking 2,000 random walks each of
length 10,000 steps. We consider the PIC, IC and DBI values as features for a
given (instance, operator) pairing and perform a clustering on the scaled values.
The optimal clustering model is determined according to the Bayesian Infor-
mation Criteria (BIC) for expectation maximization initialized by hierarchical
clustering for parametrized Gaussian mixture models. The implied landscape of
each group can then be analyzed separately. Due to space limitations we provide
summary results, but full statistics are available by contacting the authors.

Figure 1 presents the clustering results for the CVRP, presented with respect
to the two main principal components. The left figure displays the 8 clusters
found for the crossover operators, and the right figure shows the 11 mutation
operator-based clusters. Each point represents a (problem instance, operator)
pairing and is labelled according to the operator, as indicated in the figure cap-
tion. Immediately noticeable is that most clusters are composed of solely a single
type of search operator, indicating similarly induced landscape structure for the
corresponding problem instances. Additionally, the DBI value is found to explain
very little of the total variance.

Table 1 shows the cluster means for each cluster in Figure 1. Class names
have been determined by using the operator name (I)nsertion, (D)isplacement,
(S)wap, in(V)ersion and sequence of the particular 1, 2 or 3-combination. For
instance IV-1, is the first cluster that is represented entirely by insertion and
inversion operators, where there are more insertion operators in the class. Cluster
ALL contains a mix of all operators.

All 66 UOX results cluster together (UOX-1), indicating that the operator is
invariant with respect to the chosen metrics to the problem being considered.
The PMX operator is grouped into three clusters. PMX-1 and PMX-2 have
very similar values; indeed they are adjacent in the clustering of Figure 1. The
practical difference between these two classes is that PMX-1 will have a slightly
more rugged landscape. Class PMX-3 has 4 elements, and their corresponding
information theoretic measures indicate the landscapes contain a larger variety
of shapes, but the overall landscape is slightly flatter with a relatively high degree
of peak density. The CX operator has four very distinct landscape structures.
CX-1 has a relatively large IC value, implying a landscape that may contain
more ruggedness. The DBI measure shows that the density of these peaks is
moderately high, compared to UOX-1. The majority (52/66) of PMX results
have a landscape that seems less rugged. This leads to the hypothesis of UOX
having the most desirable search space, followed by PMX and CX, respectively.

An important aspect is the separation of clusters by problem size, except for
UOX-1, which seems problem-invariant. Clusters 1 and 4, represent the PMX
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Fig. 1.Optimal clustering of the crossover (left) and mutation (right) problem-operator
pairings for CVRP. The plot is shown with respect to the top 2 principal components.
Using this approach, 8 distinct crossover and 11 mutation landscapes have been la-
belled, respectively. Points are placed using a multidimensional scaling with Euclidean
distance metric and labelled as (C)X, (U)OX and (P)MX crossover. Mutations are
labelled as (S)wap, in(V)ersion, (I)nsertion and (D)isplacement.

operator, where the separation of clusters corresponds nearly perfectly to a differ-
ence in problem size; cluster 1 contains C/R10X problem and cluster 4 contains
mostly C/R20X problems, respectively. Similarly for clusters 3 and 5, but con-
sidering the CX operator. Given this information it can be deduced that the CX
and PMX operators have similar landscape structures.

Figure 2 displays the clustering results for the VRPTW. The crossover land-
scapes form 5 clusters, each having nearly negligible covariance between the
principal components. In the right diagram 10 mutation landscape clusters are
identified. Both clusterings show very little overlap between elements and suf-
ficient separation that subsequent comparisons could be more straightforward
than for the CVRP.

Table 2 shows the cluster means for the VRPTW clustering results shown in
Figure 2. For mutation-based clustering, clusters 4 and 9 are composed mostly
of displacement operator results. Both of these search spaces contain a larger
variety of shapes than the other 8 clusters, while maintaining a high degree of
ruggedness as is evident from the PIC and DBI measures. Moreover, the attrac-
tive basins seem to be relatively small as well. In contrast, clusters containing
the swap and inversion operators have indications of smoother landscapes (low
IC and PCI accompanied by high DBI measures). The inversion operator has
characteristics that typically result in landscapes that contain a slightly higher
degree of ruggedness.
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Table 1. The cluster means for CVRP. The first 8 clusters are crossover and the next
11 are mutation-based.

Cluster # Class IC PIC DBI # elements

1 PMX-1 0.4196 0.5821 0.5936 10
2 UOX-1 0.4059 0.6273 0.5699 66
3 CX-1 0.6601 0.5465 0.5804 9
4 PMX-2 0.4074 0.6008 0.5851 52
5 CX-2 0.5148 0.5983 0.5716 27
6 PMX-3 0.4754 0.5234 0.6142 4
7 CX-3 0.8054 0.3009 0.6361 4
8 CX-4 0.4571 0.6051 0.5764 26

1 ISV-1 0.3940 0.5327 0.6183 53
2 ALL-1 0.4275 0.5241 0.6186 21
3 D-1 0.6699 0.5163 0.5979 9
4 SIV-1 0.3915 0.5166 0.6247 68
5 IV-1 0.4156 0.5535 0.6076 28
6 D-2 0.5712 0.5556 0.5876 19
7 VD-1 0.5406 0.4985 0.6183 7
8 D-3 0.8091 0.4066 0.6430 4
9 VD-2 0.4765 0.5480 0.6033 27
10 V-1 0.4095 0.5777 0.5969 13
11 D-4 0.4912 0.5753 0.5879 15

Table 2. The cluster means for VRPTW. The first 5 clusters are crossover and the
next 10 are mutation-based.

Cluster # Class IC PIC DBI size

1 PMX-1 0.4089 0.6338 0.5656 12
2 UOX-1 0.4073 0.6443 0.5590 21
3 CX-1 0.4647 0.6333 0.5581 12
4 PMX-2 0.4068 0.6152 0.5770 9
5 CX-2 0.4631 0.6180 0.5679 9

1 SI-1 0.4295 0.5795 0.5938 15
2 V-1 0.4230 0.6205 0.5721 8
3 I-1 0.4672 0.6038 0.5757 7
4 D-1 0.5058 0.6151 0.5628 12
5 S-1 0.4013 0.5473 0.6117 7
6 VS-1 0.4273 0.5969 0.5849 7
7 S-2 0.4004 0.5309 0.6186 3
8 VS-2 0.4153 0.5668 0.6016 7
9 DI-1 0.4989 0.5888 0.5795 12
10 V-2 0.4079 0.6136 0.5779 6
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Fig. 2. Optimal clustering of the crossover (left) and mutation (right) problem-
operator pairings for VRPTW. Using this approach, 5 distinct crossover and 10
mutation landscapes have been discovered, respectively. Points are placed using a mul-
tidimensional scaling with Euclidean distance metric and labelled as (C)X, (U)OX
and (P)MX crossover. Mutations are labelled as (S)wap, in(V)ersion, (I)nsertion and
(D)isplacement.

5 Genetic Algorithm Results

We employed a genetic algorithm that exclusively uses each of the seven search
operators. The GA is run for 5000 generations with a population size of 200.
Selection is according to a 3-tournament whereby the best of three randomly
selected individuals is carried on to the next population (repeated until 200
individuals are selected). An elitism strategy is also incorporated; we maintain
the top two best found solutions at each generation. The GA is run 30 times.

Given space limitations we forgo presenting full statistics about the obtained
objective value, etc. Such results are obtainable from the authors. Our goal is
to ascertain whether the information theoretic measures are useful indicators
of problem difficulty. Since optimal objective values are not scaled to the same
range, and in general each problem instance will have different possible evalua-
tions. Instead, we examine how the different search operators compare relative
to each other and create performance clusters based on these results. Subsequent
comparison of the elements of these performance clusters and landscape clusters
is then performed.

CVRP. In all cases the UOX crossover operator showed significantly better
fitness across all problem instances when compared to the other crossover oper-
ators. Moreover, UOX typically yielded a more desirable outcome than all the
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Table 3. Performance profile clusters for mutation operators on CVRP and VRPTW.
A < indicates a statistically significant difference between the respective groups and a
∼ represents a non-significant result. The Welsh t-test was used at a 0.95 confidence
level to ascertain significance. Left to right ordering of operators is according to mean
value. The first 20 groups are CVRP and the next 11 are VRPTW.

Group Relationship Problems

1 inversion < insertion < swap ∼ displace A-n53-k7, A-n54-k7, A-n55-k9, B-
n66-k9, B-n67-k10, c50

2 inversion ∼ insertion ∼ swap < displace A-n60-k9, B-n50-k8, B-n57-k9

3 insertion ∼ inversion < swap < displace A-n62-k8, f134

4 inversion < displace < swap ∼ insertion A-n63-k9, E-n76-k10

5 inversion < insertion ∼ swap < displace A-n63-k10, A-n80-k10, B-n63-k10,
c75, E-n101-k14, M-n151-k12, P-
n55-k10

6 inversion < insertion < swap < displace A-n64-k9, A-n69-k9, B-n68-k9, B-
n78-k10, c100, c100b, E-n76-k7, E-
n76-k8, E-n101-k8, M-n101-k10, M-
n121-k7, C101, R101, RC101

7 inversion ∼ displace < insertion ∼ swap A-n65-k9, B-n51-k7

8 inversion ∼ insertion < displace ∼ swap B-n50-k7

9 inversion < insertion < displace ∼ swap B-n52-k7, E-n51-k5, C201, R201

10 inversion ∼ insertion< swap ∼ displace B-n56-k7, C101 50, R101 50

11 inversion ∼ insertion < swap < displace c120, c150

12 swap < inversion ∼ insertion < displace c199

13 inversion < insertion < displace < swap f71, C201 50, R201 50, RC101 50,
RC201 50, RC201

14 swap ∼ inversion ∼ insertion < displace M-n200-k17

15 inversion < swap ∼ insertion <displace P-n60-k10

16 insertion < inversion < swap ∼ displace tai75a, tai75b, tai150c

17 insertion ∼ inversion < swap ∼ displace tai75c

18 insertion ∼ inversion < displace ∼ swap tai75d

19 insertion < inversion < swap <displace tai100a, tai100b, tai100d, tai150b,
tai150d

20 insertion < inversion ∼ swap < displace tai150a

1 swap < insertion < inversion < displace C101, C207

2 swap ∼ insertion ∼ inversion < displace C102

3 inversion ∼ insertion ∼ swap < displace C103, C203

4 inversion < insertion ∼ swap < displace C104

5 swap ∼ insertion < inversion < displace C105, C107

6 swap < insertion ∼ inversion < displace C106, C206, C208

7 insertion ∼ swap ∼ inversion < displace C108, C109, R103

8 swap < insertion < inversion ∼ displace C201, C202, C205, R101

9 inversion < insertion < swap < displace C204

10 swap ∼ insertion < inversion ∼ displace R102

11 insertion < inversion < swap < displace R104
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mutation operators. The PMX operator consistently yielded more desirable re-
sults when compared to the CX operator. However, there is no significant trend
of more desirable results of PMX when compared to the mutation operators.

Table 3 presents the results of comparing the final mean values for each of the
66 problem instances. The four mutation operators are compared using a Welch
t-test at 0.95 confidence level, and the pairwise results of this test are reported,
where a < indicates statistical significance and ∼ notes the lack thereof, respec-
tively. The relationship ordering was determined according to the mean values
attained (not shown). Overlap with problem instances shown in the landscape
analysis is large, yielding approximately 70% similarity. Merging clusters with
single elements into an existing cluster increases the similarity to 85% similarity.
Similar results were also observed for crossover landscapes, but were omitted
due to space limitations.

The displacement operator typically occupies the lowest rank (in all but 6
groups), as would be expected considering the landscape analysis. Moreover,
Class D-2 in Table 2 indicates a relatively easy search space. Investigating the
particular instances for the associated problems A-n63-k9, A-n65-k9, B-n51-k7
and E-n76-k10 further supports the landscape analysis. The results for the dis-
placement operator on these instances is significantly improved from other dis-
placement results (using the relationship ranking as a measure), as the operator
is the second rank for Group 4 and 7, respectively.

VRPTW. The results found when running a GA using the four mutation op-
erators are given in Table 3, and grouped according to the statistical dominance
relation described above. The swap, inversion and insertion operators tend to
occupy the lowest rank (i.e., most desirable outcome), with the swap operator
being most frequent. The results from the clustering of landscape measures had
indicated that this result should occur.

Another prediction implied by the search space analyses is the deficiency of the
displacement operator. For all the 11 rankings in Table 3 displacement is found
to be least desirable. Table 3 shows the relatively large degree of displacement
operator deficiency as the mean results can be observed to have large effect sizes
(in the negative result sense).

We conducted a similar analysis for the three crossover operators (not shown),
revealing the relative power of the UOX operator for these problems. Indeed,
dominance was observed over all crossover and mutation operators; additionally,
a very large effect size was evident. As was also discovered above for the CVRP,
the PMX operator consistently, and statistically, dominates the results obtained
by CX. In comparison to the fitness landscape clusters we see approximately
87% overlap of problem instances in the clusters.

6 Conclusion

The main question we aimed to address in this study was aimed at whether
information theoretic landscape measures can actually be used to discriminate



224 M. Ventresca, B. Ombuki-Berman, and A. Runka

between problem instance difficulty for VRPTW and CVRP. To this end, nu-
merous benchmark problem instances were considered and seven common search
operators were examined. We found that the landscape measures can be clus-
tered into groups that tend to contain mostly one type of search operator. This
was true of both CVRP and VRPTW. In order to ascertain whether these clus-
ters can be used to predict outcomes of a genetic algorithm we proposed the
use of performance profiles that represent relative ordering of GA results. These
profiles are also clustered according to the ordering they represent. We find sig-
nificant overlap between the landscape and performance clusters. Further study
may shed light on automatic search operator design and configuration.

More study of the performance profile approach, and other methods of cluster-
ing and comparing landscape and algorithm output may provide deeper insight
into predictability of GAs. Future work also includes the examination of different
problem representations, which have greatly impact the ability of an algorithm
to obtain quality results and whether these results are limited to GAs. In the
same vein, consideration of combinations of these, and more advanced, search
operators may give some insight into practical implementations.
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