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Abstract

In this paper we propose a new probability update rule and sampling procedure for

population-based incremental learning. These proposed methods are based on the

concept of opposition as a means for controlling the amount of diversity within a

given sample population. We prove that under this scheme we are able to asymp-

totically guarantee a higher diversity, which allows for a greater exploration of the

search space. The presented probabilistic algorithm is specifically for applications

in the binary domain. The benchmark data used for the experiments are commonly

used deceptive and attractor basin functions as well as 10 common Travelling Sales-

man problem instances. Our experimental results focus on the effect of parameters

and problem size on the accuracy of the algorithm as well as on a comparison to

traditional population-based incremental learning. We show that the new algorithm

is able to effectively utilize the increased diversity of opposition which leads to sig-

nificantly improved results over traditional population-based incremental learning.
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1 Introduction

Diversity is a measure of a sample or population, independent of the evaluation

function [33]. This measure typically represents the relative distance between

samples with respect to their solution representation (vis-à-vis the problem),

where distance is determined by a user-defined function. A lack of diversity in

a population corresponds to sample solutions being very similar with respect

to the distance metric. Conversely, when samples are not very similar then the

degree of diversity is high.

Population-based algorithms such as incremental learning or evolutionary al-

gorithms have a tendency to converge to local optima. This premature con-

vergence is due to various algorithmic properties, but a major reason is due

to a lack of diversity in the population. Typically, diversity is highest at the

onset of the algorithm when all solutions have been randomly generated. As

the algorithm progresses diversity normally decreases due to selection pressure

or sample generating bias and therefore increasing the difficulty of escaping a

local optima.

Evolutionary algorithms maintain a set of solutions at each generation, and

perform crossover and mutation operations on this set to generate different

solutions and use a selection mechanism to guide the search process. Contrast-
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ingly, population-based incremental learning (PBIL) stores a single prototype

vector instead of a larger set of solutions. The vector represents probability

distributions over the allowable values at each locus of the solution represen-

tation. Do to this property, PBIL belongs to the family known as Estimation

of Distribution Algorithms (EDAs), which use this vector to generate sam-

ple solutions. Furthermore, in lieu of a selection mechanism the probability

model represented by the prototype vector is updated. It has been experimen-

tally shown that population based incremental learning has the capacity to

outperform evolutionary algorithms [6].

The main benefits of PBIL over traditional evolutionary algorithm approaches

are (1) lowered memory requirements (since the population does not needed

to be stored); (2) increasing the sample size has no effect on memory (versus

increasing population size); and (3) typically a lowered computational cost

(mainly because of not employing genetic operators) [22]. Nevertheless, PBIL

(and generally EDAs) still suffer from issues of diversity loss, as described in

[2, 20, 36], and so methods which improve diversity should be of importance.

PBIL’s implementation ease and robustness have allowed it to be employed for

solving a variety of real-world problems. In [35] multiple probability vectors

and an adaptive updating strategy are proposed and the resulting algorithm

is tested on the geometrical design of the end region of power transformers. It

was shown to outperform other common heuristic methods.

Power system controller design under various operating conditions was exam-

ined in [4]. It was found that PBIL designed controllers are able to adaquately

stabalize the system over the varying conditions. Additionally, for large dis-

turbances in conditions PBIL is shown to outperform a genetic algorithm ap-
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proach. An initial investigation into the use of PBIL for evolutionary robotics

was given in [22]. The proposed Floating Point PBIL is able to handle floating

point results and is shown to outperform a traditional genetic algorithm.

The telecommunications problem of radio network design (placement of anten-

nas) was investigated in [28]. This was a novel application area for PBIL and

it yielded very good results. Another interesting problem was that of univer-

sity curriculum scheduling, where PBIL is shown to also provide usable course

schedules [9]. And, in [13] PBIL was employed to provide a measure of the

uncertainty in parameters for reservoir models which quanitify the amount of

risk associated with alternative production scenarios.

In this paper we propose a new probability update rule and sample generation

procedure which are rooted in concepts of opposition-based computing. Given

some sample, we generate its corresponding opposite by taking the comple-

ment of the initial binary solution. The complement is dynamic in that we

do not always consider the entire solution to complement, rather a subset of

decreasing size based on the number of iterations. Using opposite samples al-

lows for diversity maintenance and aids in slowing premature convergence and

exploring the search space. As the algorithm progresses the degree of opposi-

tion between opposite samples is decreased in order to allow the algorithm to

actually converge towards good areas of the search space. Without employing

this concept the algorithm could not converge very easily as truly opposite

samples do not lie close together in the search space.

The alternate probability update rule allows for the effective use of the oppo-

site sampling procedure by not only tending toward quality areas of the search

space, but also forces diversity in the samples. Depending on the quality of
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results, the update strategy will use the global or population best solution

to update the probability vector. The global best solution has an increased

probability proportional to the number of iterations since a new best was dis-

covered, preventing the algorithm from forgetting probabilities. The local best

solution is used to explore the current probability matrix and exploit diversity.

The remainder of this paper is organized as follows: In Section 2 we introduce

the idea behind opposition-based computing and population-based incremen-

tal learning, which form the basis for our approach. We then describe how

opposition can be employed to improve diversity and provide mathematical

proofs to this effect as well as outline our proposed algorithm in Section 3.

The benchmark problems and experimental results are described in Section 4

followed by concluding remarks in Section 5.

2 Background

This section will describe the motivation behind opposition-based computing

(OBC). Also, a brief description of the population-based incremental learning

algorithm will be provided.

2.1 Opposition-Based Computing

Opposition-based computing is a recently introduced computational intelli-

gence framework [23]. The underlying notion is based on observations in na-

ture and society whereby the current state of an object or entity has some

notion of an opposite state or entitys. Some common examples of opposition

include;
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• Logic: The relation between two propositions in virtue of which the truth

or falsity of one of them determines the truth or falsity of the other [27];

• Linguistics: Contrast in a language between two phonemes or other linguis-

tically important elements [27].

• Electricity: The condition that exists when two waves of the same frequency

are out of phase by one-half period [27].

• Philosophy: Chinese philosophy’s complementary natures of the principles

of the Yin and Yang [10] as well as the Pythagorean Table of Opposites [7].

In societal situations the idea of opposition manifests itself, for instance, via

political revolutions which typically occur rather rapidly towards a more de-

sirable form of government (at least in perception). In any event, there exists

some form of balance or completeness to a situation where opposites exist.

OBC aims at exploiting the relationship between opposites in order to im-

prove computational intelligence algorithms with regards to their ability to

search, generalize, yield accurate results, convergence faster, etc.

The fundamental intuition behind the application of OBC is to simultaneously

consider the current state/solution to the problem, as well as it’s opposite(s).

Then, depending on the evaluation criteria, the most desirable of the two

solutions is selected, or some form of combination between the two solutions

is used to generate a “common ground solution”. For example, searching for

the minimum of an unknown function that is bounded to the interval [0, 1].

Here, a guess x could simply be a random value in the interval, and we can

define the opposite of x to be x̆ = 1 − x (this relationship between x and x̆ is

defined by an opposition map [31]). Assuming the algorithm makes guesses in

pairs, then after each pair of guesses the algorithm will return min(x, 1 − x)

as opposed to min(x, y) for some random y ∈ [0, 1] where x, y have been
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independently sampled. Due to the properties of the mapping x 7→ x̆ and

the min(...) function the expected value of the original evaluation function is

lowered, and therefore it is reasonable to expect a more desirable outcome

using OBC [31]. Furthermore, the opposition map may be defined such that

it also considers properties such as symmetry or other a-priori knowledge of

the evaluation function.

To date, explicit opposition-based computing has led to an improvement in

accuracy, convergence rate and/or generalization ability in differential evolu-

tion [14, 15], reinforcement learning [21, 24, 25], simulated annealing [31] and

backpropagation learning [29, 30]. We believe that it will also be shown to

yield improvements in other areas of computational intelligence, although it

should be noted that many paradigms and approaches currently exist which

fall under the umbrella of opposition-based computing. However, due to the

recent proposal of the OBC framework most of these existing methods were

not classified as oppositional at the time of their inception.

2.2 Population-Based Incremental Learning

Population-based Incremental Learning (PBIL) combines elements from evo-

lutionary computation (EC) and reinforcement learning (RL) [1]. PBIL is a

population-based stochastic search where the population is essentially a ran-

dom sample based on an estimated probability distribution for each variable.

So, in reality the population does not exist as it does in traditional EC. After

a sample is generated, the best is retained and the probability model for each

variable is updated to reflect the belief regarding the structure of the best

solution. This is accomplished according to a similar update rule as used in
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RL. The result is a statistical approach to evolutionary computation.

An evolutionary algorithm’s population can be thought of as representing an

estimated probability distribution over the possible values for each gene. In

PBIL the population is replaced by a d × c dimensional probability matrix

M := (mi,j)d×c which corresponds to a probability distribution over possible

values for each element (d is the problem dimensionality each having c vari-

ables). For example, if a binary problem is under consideration then a solution

B := (bi,j)d×c where bi,j ∈ {0, 1} and so each mi,j ∈ [0, 1] corresponds to the

probability of bi,j = 1.

Learning in PBIL consists of utilizing the current M to generate a set G1 of

k samples. These samples are evaluated according to the objective function

for the given problem and the “best” sample B∗ := (bi,j)d×c ∈ {0, 1} is main-

tained. Then, the probability distributions represented in M are updated by

increasing the probability of generating solutions similar to B∗. The update

rule to accomplish this is similar to that found in learning vector quantization

[1]:

Mt = (1 − α)Mt−1 + αB∗, (1)

where 0 < α < 1 represents a user-defined learning rate and the subscript

t ≥ 1 corresponds to the current iteration of PBIL. Without prior information

(mi,j) = 0.5.

Another contrast to evolutionary computation is the lack of a crossover oper-

ator or selection mechanism, instead the values in M are “mutated” once per

iteration. During this phase a small random value is added or subtracted from
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a random subset of the values in M. Furthermore, since at each iteration a

new subset of samples is generated and only the best is maintained then no

selection mechanism is required.

The pseudocode for PBIL is presented in Algorithm 1. It assumes constants to

control the maximum number of iterations and samples, ω and k, respectively.

Additionally, in line 13 a user-defined parameter 0 < γ < 1 controls the

amount that any mi,j can be perturbed. This change is applied according to

the user provided constant 0 < β < 1 in line 12.

Algorithm 1 Population-Based Incremental Learning [1]

1: {Initialize probabilities}
2: M0 := (mi,j) = 0.5
3: for t = 1 to ω do
4: {Generate samples}
5: G1 = generate samples(k,Mt−1)

6: {Find best sample}
7: B∗ = select best({B∗} ∪ G1)

8: {Update M}
9: Mt = (1 − α)Mt−1 + αB∗

10: {Mutate probability vector}
11: for i = 0...d and j = 0...c do
12: if random(0, 1) < β then
13: mi,j = (1 − γ)mi,j + γ · random(0 or 1)
14: end if
15: end for
16: end for

Initially, in line 2 we let M := (mi,j) = 0.5 to reflect the lack of a priori

information regarding the probability distribution of each variable. In line 5

we generate the k samples using the current probability matrix and select the

best sample (w.r.t. some user-defined criteria) in line 7. Matrix M is updated

in line 9 using the best sample to guide the direction of probability update.

Finally, lines 11-15 probabilistically perform the mutation rule.
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It has been shown that for a given discrete search space PBIL will converge

to a local optima [8, 16, 17]. PBIL algorithms for continuous spaces have also

been explored (for examples see [18, 19]), although only the discrete binary

case is considered in this paper.

The Double Learning PBIL algorithm, based on an elitist strategy using both

current best and global best solutions for updating is studied in [37], where

improvements in convergence speed and accuracy are observed. Additionally,

the usefulness of PBIL for dynamic problems has also been investigated [34].

Expanding PBIL to multi-objective problems has been examined in [3]. Using

a method based on non-dominance, the new approach was compared to a

multi-objective genetic algorithm on the problem of designing pie networks in

terms of cost, loss and reliability. It was found that the multi-objective PBIL

algorithm was able to estimate and explore the true Pareto front better than

the genetic algorithm.

3 Proposed Approach

This section provides the theoretical motivation from a diversity perspective

for utilizing opposition-based computing to improve PBIL. Firstly, we prove

that we can yield a greater diversity during the sampling stages of PBIL using

opposition. Then, we propose a new update rule made possible because of the

properties of opposition. This new rule requires a new procedure to mutate

the probability matrix M.
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3.1 Improved Diversity

As mentioned above, diversity is a measure of a sample or population inde-

pendent of the evaluation function [33]. A common approach is to measure the

distance between all possible pairs of samples in the population. Under this

approach samples which differ in only a few variable values will contribute less

to the overall diversity than samples which differ in many values. In the case

of binary problems, the Hamming distance is commonly utilized to measure

the difference between pairs of samples [11, 33].

Since the Hamming distance (dHAM) is symmetric we need only to compare

pairs of elements once (i.e. dHAM(p1, p2) = dHAM(p2, p1) for samples p1 and

p2). Then, the all-possible-pairs diversity of a population P of n binary samples

is formulated as [33]

V (P) =
n

∑

i=1

i−1
∑

j=1

dHAM(pi, pj), (2)

where pi, pj ∈ P. In total this formulation will result in n(n+1)
2

Hamming

distance calculations.

We now provide some definitions and notations required for the subsequent

proofs. The definitions and proofs are presented without loss of generality

assuming d-dimensional problems where each dimension is composed of c = 1

variables.

Definition (Opposite Binary Sample) Given some binary sample g of length

l where gi ∈ {0, 1} and i = 0...l, the opposite binary sample ğ is defined to be

the binary negation of g:
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ği =























1, if gi = 0,

0, otherwise

for i = 0...l (3)

Definition (Comparison Set) Given some universal set U and subsets A ⊂ U

and B ⊂ U , we define a comparison set S as the Cartesian product A × B =

{< a, b > | a ∈ A and b ∈ B}. We will denote this set as S = A → B, inferring

set A is being compared to set B.

Definition (Opposite Set) Given some universal set U and subset A ⊂ U

we define the opposite set as A◦ = {< ai, ăi > | ai ∈ A and ăi ∈ U}, where

A◦ ⊂ U and the relationship between a given guess a and its opposite ă is

according to a user-defined function ξ. Note A◦ 6= A × U and |A◦| ≥ 1 since

at least 1 guess pair must be made, where | · | represents the cardinality of the

set.

Definition (Diversity of Binary-valued Opposite set) Given some universal

set U and opposite set A◦ ⊂ U of size m, we calculate the all-pairs-diversity

of this opposite set as

V (A◦) =
m

∑

i=1

dHAM(pi, p̆i) (4)

where pi, p̆i ∈ A◦ represent the ith guess and opposite guess, respectively.

Using these criteria we can now prove that the diversity in a set of k samples,

where k/2 are randomly chosen and k/2 are opposites, is greater than the

case where the set was composed of k random samples. The strategy used

to prove this is based on a decomposition of the calculations of the all-pairs-

diversity into only the random guesses, only the opposite guesses and between
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the random and opposite guesses (non inclusive).

We also assume the samples are generated according to a probability matrix

M as is the case with PBIL. We also make the assumption that only binary

problems are being considered.

Lemma 1 (Diversity of Binary-valued Opposite set) Given a d-dimensional

binary space Bd and sets R◦, R1 ⊂ Bd where |R◦| = |R1|, then V (R◦) ≥ V (R1)

and furthermore V (R◦) = constant.

Proof By definition of diversity on an opposite set,

V (R◦) =
m

∑

i=1

dHAM(pi, p̆i)

where pi, p̆i ∈ R◦. Since dHAM(pi, p̆i) = l ∀ i then V (R◦) = constant and by

definition of an opposite guess max(dHAM(pi, p̆i)) = l.

Since R1 is composed entirely of i.i.d. samples the only instance where dHAM(ri, rj) =

l is if rj = r̆i, where ri, rj ∈ R1. It follows that V (R◦) ≥ V (R1). Furthermore,

by definition of an opposite guess, this value must be constant such that

V (A◦) = m · l.

From Lemma 1 we can now prove that the diversity of opposite guesses is

greater than that of only random guesses if for k samples, k/2 are shared by

each guessing strategy.

Theorem 3.1 (Diversity of Opposite Guesses) Given a d-dimensional bi-

nary space Bd, sets R1, R2, R̆1 ⊂ Bd each of size k/2 ≥ 1 the all-pairs-diversity
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V (R1 → R̆1) ≥ V (R1 → R2).

Proof We begin by extracting the opposite set S◦ from R1 → R̆1, resulting

in

S◦ = (R1 → R̆1) \ S2

where S2 is the set of non-opposites such that S◦ ∩ S2 = ∅.

We can also write R1 → R2 as the composition of two subsets,

R1 → R2 = Ra ∪ Rb

where Ra and Rb are composed of randomly selected elements (without re-

placement) from R1 → R2 such that |Ra| = |S◦| and |Rb| = |S2|.

By Lemma 1 V (S◦) is maximal and constant and if we assume that in general

V (S2) = V (Rb) since S2 and Rb are essentially composed of random samples,

then,

V (R1 → R̆1) − V (R1 → R2)

= V (S◦) + V (S2) − (V (Ra) + V (Rb))

= V (S◦) − V (Ra)

≥ 0

Now we can extend Theorem 3.1 to the complete situation where we consider
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the all-pairs-diversity of an entire set of guesses. We will prove that using

opposite guesses yields a higher diversity than traditional independent random

sampling.

Theorem 3.2 (Diversity of the Opposite Guessing Strategy) Given a

probability matrix M := (mi)n, d-dimensional binary space Bd and sets R1, R2, R̆1 ⊂

Bd with |R1| = |R2| = |R̆1| = k, if G1 = R1 ∪ R2 and G2 = R1 ∪ R̆1, then

V (G2) ≥ V (G1).

Proof We begin by decomposing V (G1) and V (G2) into

V (G1) = V (R1) + V (R2) + V (R1 → R2),

V (G2) = V (R1) + V (R̆1) + V (R1 → R̆1).

These decompositions include all distance computations required for deter-

mining the all-pairs-diversity for G1 and G2, respectively.

Since R1 and R2 are generated using M, it can be assumed that since the

relationship between a guess and its opposite guess is symmetric, then 1−M

can be seen as generating R̆1. Therefore, we make the assumption that in

general V (R̆1) = V (R2). So, by Theorem 3.1,

V (G2) − V (G1) = V (R1 → R̆1) − V (R1 → R2) ≥ 0

We can also prove the following property concerning the convergence of di-
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versity between generating samples by opposition versus solely independent

random guessing.

Corollary 1 (Diversity Convergence) Given a probability matrix M :=

(mi)n, a d-dimensional binary space Bd and sets R1, R2, R̆1 ⊂ Bd (where R1

and R2 are i.i.d. samples based on M), if the values of M converge (i.e.

mi = 0 or 1), then for k = |R1| = |R2| samples,

lim
V (R1→R2)→0

V (R1 → R̆1) − V (R1 → R2) = l · k(k + 1)

2
,

where the notation V (R1 → R2) → 0 represents the convergence of diversity

of guesses based on Mt as t = 0, ...,∞ (i.e. as the values of M converge).

Proof Since we assumed the values of M converge, and since R1 and R2 are

i.i.d. based on Mt it must be that if t = 0..∞ is the current iteration of the

algorithm, then

lim
t→∞

V (Rt
1 → Rt

2) → 0

where Rt
1 and Rt

2 represent random samples based on Mt. This is intuitive

since in the limit both Rt
1 and Rt

2 are composed of the same identical element

therefore dHAM(a, b) = 0 ∀a ∈ R1and b ∈ R2.

By a similar argument and by definition of opposite guesses the sets R1 and

R̆1 approach opposite solutions. Since the calculation V (R1 → R̆1) will require

k(k+1)
2

Hamming distance computations and since the length of a solution is l

it must follow that
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lim
V (R1→R2)→0

V (R1 → R̆1) − V (R1 → R2)

= lim
V (R1→R2)→0

V (R1 → R̆1)

= l · k(k + 1)

2
.

From this corollary we see that diversity is infused into a system utilizing

opposite guessing strategy, which can lead to improved results. However, this

can also be a detriment to a search as it may cause confusion during the

searching process and lead away from quality solutions [38]. Therefore, it is

imperative to determine a correct strategy for managing this diversity such

that it decreases with an increase in the number of iterations of the algorithm.

3.2 Proposed Use for Opposite Guessing Strategy

From the previous subsection we have seen that opposition can maintain, and

indeed increase diversity over traditional independent sampling. The problem

now is that as a search algorithm converges, the need for such a high diversity

tends to decrease [38]. Thus, in order for opposition to be useful the definition

of opposite guesses must adapt to this scenario. Furthermore, without this

adaptation to convergence the usefulness of the diversity resulting from oppo-

site guesses tends to decrease as the algorithm converges [31]. This is due to

the property of a search algorithm to discover high quality areas in the search

space and therefore decreasing the probability that an opposite guess (with

respect to the entire search space) will be useful.
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In general, the notion of opposition has an implied utilization of distance. For

example, given some search space U and reference point u∗ (usually in the

center of U) and some initial random position p ∈ U , its opposite position

p̆ is typically that which is located an equal distance from u∗. Moreover, if

the distance between p and u∗ is d, then the distance between p and p̆ is 2d.

However, by changing the position of u∗ we can relax the magnitude of the

distance between two points. Moving u∗ to some location other than the center

of U yields the following consequences (which are also shown in Figure 1):

• the new location of u∗ allows for two physically close points to be considered

as opposites and essentially redefines the search space bounds.

• this effectively decreases the search space size since some points no longer

have an opposite (according to the situation described above). In reference

to a search algorithm, these points are too far from the current focus of the

search to yield a desirable evaluation and hence are ignored.

[Fig. 1 about here.]

The translation of u∗ need not be explicit. In the case of a binary domain

(as is the case in this paper) we can instead alter the allowable distance be-

tween two points to be considered opposite. By shrinking the distance between

opposite points, they become increasingly similar and u∗ is implicitly placed

between the two points. Similarly, increasing the distance between opposite

points decreases their similarity. Therefore, if we have a mechanism to control

the distance between opposite points we can control the amount of diversity

infused into the search algorithm by opposite guesses.

We can model the decrease in distance between opposite points with a deci-

sion function ξ(t) which returns the distance between opposite elements and
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decreases as the number of iterations t increases. For binary problems we use

this to reflect the hamming distance. While a variety of decision functions are

possible we utilize a exponentially decaying function in the flavor of

ξ(t) = le(ct), (5)

where l represents the maximum number of bits in a guess and c < 0 is a user

defined constant. We then take the complement of ξ(t) randomly selected bits

from the current solution to yield the opposite guess.

The shape of ξ(t) directly effects the convergence of diversity of the popula-

tion. This function will also impact on the convergence of the output of the

algorithm, although to a lesser extent than on diversity.

3.3 Alternate Probability Update Rule

The role of PBIL’s probability mutation rule is to allow for further exploration

of the search space by randomly forcing a change in one or more values of the

probability matrix M. For binary problems, this is accomplished by adding or

subtracting a small random value between 0 and 1 to arbitrary elements of M

(i.e. mutate the probability). Of course there is no guarantee that a mutation

will improve the likelihood of generating a high quality sample from M.

The proposed approach does not employ a mutation operation as PBIL does.

Instead, we opt for a more advanced mutation rule which adjusts probabilities

of M through decay or amplification fuctions, with respect to either the current

sample or global best found solution. This contrasts with PBIL, which employs
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a purely random mutation strategy. However, if the rate of decay is too high,

it will result in a lack of exploitation (moving quickly away from current

best solution) and could possibly result in a lack of convergence (decay and

amplification neutralize each other) or premature convergence (amplification

too high). To stabalize this situation we employ the following logic:

• Whenever a new optima B∗ is found, values of M are always amplified

towards it to guide the search towards that region of the search space.

• As the number of iterations increases from the previous discovery of a new

B∗, the sample best is used to update (according to some probability) as if

it was a new global optima. This allows the search to exploit the current

best solution, but also slowly tends away if that region of the search space

does not produce any more optima.

• As the number of iterations increases, the probability of decay decreases.

Too many decays will cause divergence. This, along with the previous idea

allow the search to self-control exploration and exploitation.

In order to control the decay and amplification we introduce two parameters

0 < τ < 1 and 0 < ρ < 1, respectively. These three logics are implemented as

described in the following.

When a new optima B∗ is discovered we utilize the same update as PBIL,

replacing the learning rate with ρ,

mi,j = mi,j · (1 − ρ) + B∗
i,j · ρ. (6)

We also apply this rule to expoit the current sample-best solution, which is

increasingly important as the difference ∆ in iterations between discovering
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B∗
i and B∗−1, respectively, increases. The probability function we use in this

paper to represent this situation is

pamp(∆) = 1 − e−b∆ (7)

where b > 0 is a user defined constant. We use the sample best solution η

instead of the global best B∗ (we found experimentally that b=0.01 yields the

better average results on the problems tested). Of course, other forms of this

probability function are possible, our experimentation has led to the selection

of this one, but we make no claim that it is the optimal choice.

If we do not amplify the probabilities we probabilitistically decay them to

allow for exploration. This probability is controlled by (as with Equation (7)

we make no claim to its optimality)

pdecay(∆; f(B∗), f(η)) =
1 − f(B∗)−f(η)

f(B∗)√
∆ + 1

(8)

where f(·) is the evaluation function. Since
√

∆ + 1 → ∞ as no new global

best solution is found, then accordingly p(∆; f(B∗), f(η)) → 0. Therefore, as

∆ increases the decay portion of the algorithm becomes less likely to occur

which serves the purpose of avoiding divergence. Then, the update rule is used

with probability given by (8) for the case where ηi,j = B∗
i,j is:

mt+1
i,j = mt

i,j ·























1 − τ · random(0, 1), if ηi,j = 1,

1 + τ · random(0, 1), otherwise

(9)
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and when ηi,j 6= B∗
i,j we use

mt+1
i,j = mt

i,j ·























1 + τ · random(0, 1), if ηi,j = 1,

1 − τ · random(0, 1), otherwise

(10)

where the random(0,1) function returns a uniformly distributed random num-

ber between 0 and 1 and the superscript t represents the iteration of OPBIL.

To further aid in exploitation we can employ the global best solution in lieu of

η in Equation (9). This can also be done in a probabilistic or heuristic manner.

For simplicity we choose the probability of Equation (8).

3.4 Summary of the Proposed Algorithm

In this subsection we outline the OPBIL algorithm which is based on the afore-

mentioned adjustments to the PBIL algorithm. Specifically, we have altered

the probability update rule and sample generation procedure while removing

the mutation rule. The pseudocode for OPBIL is presented in Algorithm 2.

In line 2 we initialize the probability matrix to reflect the amount of prior

knowledge we have about the solution, mi = 0.5 reflects a total lack of prior

information. The main algorithm is then listed in lines 3 - 30 and will terminate

after the predefined number of iterations, ω, has been reached.

The k/2 random samples are generated in line 5 based on the probabilities

represented in M, where k is the total number of samples desired. From this

set R1 we then create an opposite for each of the k/2 elements (in line 6)

represented by the set R̆1 in accordance with Section 3.2. In lines 8 and 9
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the sample best η and global best B∗ solution are updated from the newly

generated samples and the previous global best solution, respectively. The

function select best(·) will select the “best” solution from its arguments with

respect to the evaluation function f . Typically, this will be the min or max

function. Then, the probabilities required for update of M are computed in

lines 11 and 12, respectively.

Probability updating is performed in lines 14 to 28. First we determine whether

a new global best solution was found (η = B∗) or if the sample best solution

should be used to move the focus of the search (random(0, 1) < pamp, where

b = 0.01). So, this probability update serves both to exploit the global best

solution, and to quickly tend away from it when no new optima are found in

its vacinity. The update itself is peformed in line 16.

If the first test fails, we may then perform a decay of the values of M, with

probability pdecay, which decreases as ∆ increases (line 17). This test is in-

tended to be successful in the iterations directly following the update in line

16. The decay in lines 21 to 27 serves to slowly tend away from the global best

solution. The update in line 23 pushes the values of M away from the local

or global best (determined in line 18) and the update in line 25 pushes those

values which differ between the η and B∗. So, this part of the algorithm is in-

tended to prevent convergence and aide in exploration by very small updates,

resulting in smooth transitions.
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Algorithm 2 Pseudocode for the OPBIL algorithm

Require: Maximum iterations, ω
Require: Number of samples per iteration, k
1: {Initialize probabilities}
2: M0 = mi..l = 0.5

3: for t = 1 to ω do
4: {Generate samples}
5: R1 = generate samples(k/2,M)
6: R̆1 = generate opposites(R1)

7: {Find best sample}
8: η = select best({R1 ∪ R̆1})
9: B∗ = select best(B∗, η)

10: {Compute probabilities}
11: pamp(∆) = 1 − e−b∆

12: pdecay(∆; f(B∗), f(η)) =
1 − f(B∗)−f(η)

f(B∗)√
∆ + 1

13: {Update M}
14: if η = B∗ OR random(0, 1) < pamp then
15: ∆ = 0
16: Mt = (1 − ρ)Mt−1 + ρη
17: else if random(0, 1) < pdecay then
18: if random(0, 1) < pdecay then
19: use B∗ in line 23 instead of η
20: end if
21: for all i, j each with probability < pdecay do
22: if ηi,j = B∗

i,j then

23: mi,j = mi,j ·






1 − τ · random(0, 1), if ηi,j = 1,

1 + τ · random(0, 1), otherwise

24: else

25: mi,j = mi,j ·






1 + τ · random(0, 1), if ηi,j = 1,

1 − τ · random(0, 1), otherwise

26: end if
27: end for
28: end if
29: ∆ = ∆ + 1
30: end for
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4 Experimental Results

In this section we first provide a description of the benchmark functions used

for our analysis. Then we provide a comparison between the accuracy achieved

by PBIL and OPBIL algorithms on these functions. A comparison between

PBIL and OPBIL on 10 Traveling Salesman Problems (TSP) is also provided.

It must be noted that the exact same number of samples was used to compare

all algorithms (i.e. no overhead for using opposition) and the probabilities are

bounded such that mi,j ∈ [1/(c× d), 1− 1/(c× d)] for both PBIL and OPBIL

where c, d are the number of dimensions and bits per dimension, respectively.

The results presented below for the benchmark functions were obtained by

fixing PBIL’s learning rate α = 0.25, mutation shift γ = 0.1 and muta-

tion probability β = 0.1. These values were empirically decided from the

set {0.05, 0.10, 0.15, 0.25, 0.5}. Parameters for OPBIL were determined in a

similar manner, we set the amplification ρ = 0.05, decay τ = 0.0005. The

function we use to determine the distance between opposite guesses is

ξ(t) = max(1, e−0.01t) (11)

where t is the current iteration of the algorithm. We did not fully explore the

range of possible functions for ξ(t), but of those attempted Equation (11) per-

formed best. Values of the decay constant from the set {0.005, 0.01, 0.05, 0.10, 0.25}

were examined, resulting in the choice 0.05, which tended to yield the most

desirable results.

We also examined two slightly different versions of OPBIL. The first uses ξ(t)
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as a hard limit (i.e. opposites differ by exactly ξ(t) bits) which will be referred

to as hard-OPBIL. The second version, referred to as soft-OPBIL, uses ξ(t)

as a soft limit whereby opposite points will differ by a maximum value of

ξ(t) > 0. The value is actually randomly selected according to a uniform

distribution over [1, ξ(t)]. While the behavior and results are very similar for

both approaches, both are provided as their results do differ in some situations.

4.1 Benchmark Functions

In order to evaluate the efficacy of the OPBIL algorithms we have utilized four

common optimization problems. Each of these functions have been widely used

in the field of evolutionary computation as benchmark tests. They were de-

signed to examine deceptivity in searches, meaning the propensity of a search

to be led away from the globally optimal value by seemingly more desirable

local optimums [32]. Also, two of the Whitley functions (described below)

were designed to also consider attractors. That is, areas of local optimality,

as opposed to a single locally optimal value. These functions are important

because many difficult real world problems exhibit these characteristics. Each

of these functions take the form f : ({0, 1}m)n → Z
∗, where n is the number

of dimensions of size m in a solution representation.

4.1.1 Goldberg’s 3-bit Deceptive Function

Goldberg’s multi-modal 3-bit deceptive function [5] utilizes 3 bits per each

of the n dimensions and is evaluated according to Equation (12). This is a

multi-modal function, meaning there exist more than one local optima, but

only a single global optima.
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f(x) =
n

∑

i=1

h(xi) (12)

Each 3-bit pattern is evaluated by the h(·) function which is summarized in

Table 1. The values represent the corresponding evaluation for a given three

bit pattern with the goal of minimizing f(x). The global optimum for this

minimization problem occurs when each dimension has a bit pattern (111),

which has an evaluation of 0.

[Table 1 about here.]

4.1.2 Whitley’s Functions

Whitley’s 3 and 4-bit deceptive functions are similar to Goldberg’s, but are

considered more difficult to solve [32]. They are also multi-modal, and were

designed to examine deceptivity and attractor basins in searching. The corre-

sponding evaluation for dimensions composed of 3 or 4 bits are given in Tables

2, 3 and 4. The former two functions contain attractive basins. As with Gold-

berg’s function, the optimal values occur when the evaluation of the solution

is equal to zero.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]
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4.2 Experiments on Diversity

In this section we will briefly compare the amount of diversity for PBIL and

the OPBIL algorithms. We will only show a single result because the diver-

sity of OPBIL is controlled through equation (11) and therefore will always

appear similar. In order to compare the expected behavior of diversity we will

arbitrarily use the results from Goldberg’s 3-bit deceptive function with 100

dimensions and a sample size of 4. The results are the result of an average of

the best solution found over 30 trials of the algorithms.

Figure 2 shows the amount of all-pairs-diversity as calculated by equation

(2). As expected, the hard-OPBIL diversity is greatest but essentially the

same curve is also observed for the soft-OPBIL algorithm since they are both

controlled by the same mechanism. The diversity for PBIL converges to a

steady state at an extremely early stage in the learning process and remains

at that level. Both OPBIL algorithms exhibit a much higher diversity for

approximately 75% of the 2500 iterations. This allows for a greater exploration

of the search space during the first half of learning and permits the algorithms

to fine-tune their results during the latter stages.

[Fig. 2 about here.]

In order to provide insight into the relationship between the diversity and

the actual results yielded by each algorithm we now examine Figure 3. It is

apparent that the increased diversity results in a slower convergence rate for

the OPBIL algorithm as it explores more of the search space and in fact has

not yet converged at iteration 2500. Nevertheless, the relationship between

diversity, convergence speed and accuracy is highlighted. It should also be
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pointed out that in general too small a sample size may not make effective use

of the increased diversity, although not observed in these experiments.

[Fig. 3 about here.]

Figure 4 shows the results of increasing the number of samples from 4 to 20.

Comparing with the results in figure 3, the rate of convergence is increased and

a more desirable final result is obtained by all the algorithms. As described

above, this is a consequence of more information being provided to the algo-

rithm, implying the increased diversity was more useful than previous. This

behavior is also observed in PBIL, but since the diversity is relatively much

lower than for the OPBIL algorithms the impact of these added samples on

convergence rate is much lower.

[Fig. 4 about here.]

4.3 Experiments on Parameter Control

In this section we will examine the effect of the amplification (ρ) and decay (τ)

parameters on the outcome of OPBIL. To do this we will fix the dimensionality

of the problem to 100 and select Goldberg’s 3-bit deceptive problem as a case

study. We will also restrict ourselves to the soft-OPBIL algorithm (both hard-

and soft-OPBIL behave similarily) using a total of 10 samples at each iteration.

We first fix τ = 0.0005 and vary the value for ρ = {0.01, 0.05, 0.15, 0.25, 0.50}.

This experiment is aimed at examining the influence of the reinforcement sig-

nal towards new best solutions B∗. The presented results have been averaged

over 30 trials.
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A plot of the behavior of the OPBIL algorithm for these experiments is pre-

sented in figure 5 where the impact of ρ is observed in terms of convergence rate

and accuracy. In general, the convergence rate increases as ρ approaches 1. For

ρ = 0.01 the convergence is extremely low which results in the algorithm not

finding a very good solution by termination at iteration 2500. The other set-

tings all achieve a similar final result, although values of ρ = {0.15, 0.25, 0.50}

converge at the higher rate. By experimentation we found that a setting of

ρ = 0.05 has the tendancy to yield the best final result (at least for the

benchmark functions and TSP data used in this paper). Nevertheless, these

experiments clearly show the effect of ρ on OPBIL.

[Fig. 5 about here.]

Figure 6 presents the consequence of varying τ = {0.0005, 0.001, 0.01, 0.05, 0.1}

while fixing ρ = 0.05 with respect to the convergence and accuracy of OPBIL.

From this case study, it can be seen that larger values of τ imply a lower de-

gree of exploration and results in a rapid convergence to a poor local optima.

This behavior is a result of moving away from the current best solution at a

high rate without fully exploring the nearby area and thus it is very hard to

discover a quality solution. As τ is lowered the rate of convergence is slowed

and the algorithm can explore more of the search space at a more reasonable

rate. Essentially, the difference between relatively high and low values of τ is

the rate of diffusion through the search space where a larger value effectively

jumps from solution to solution and lower values have a smoother transition.

Through empirical tests we have found that τ = 0.0005 usually yields the

most desirable final result.

[Fig. 6 about here.]
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These results have provided insight into the control of exploration/expoitation

ability of the soft-OPBIL algorithm (the hard-OPBIL behaves similarily). The

tradeoff between exploration and exploitation can easily be controlled through

the τ and ρ parameters, and it is important to realize that the specific values

of τ and ρ for a given problem could differ greatly. Additionally, the shape

of ξ(t) which controls the distance between a guess and its opposite will also

impact the quality of the search. As with any parameterized algorithm, the

better result will occur when the parameters complement each other to yield

the desired response.

4.4 Experiments on Accuracy

This section will provide a comparison between PBIL, soft-OPBIL and hard-

OPBIL with regards to the final solution quality. To do this we utilize all

four benchmark problems described in the previous subsection and vary the

dimensionality from D = 50, 100, 200. For the Goldberg and Whitley 3-bit

functions we run the algorithms for 2000, 2500 and 3000 iterations, corre-

sponding to each dimensionality, and 2500, 3000, 3500 iterations for the 4-bit

Whitley functions, respectively. Additionally, we examine four different sam-

ple sizes, S = 4, 10, 20, 30, during each iteration of the algorithm. All results

are averaged over 30 runs where we report the mean µ and standard deviation

σ in each table.

To examine whether the results are statistically significant we employ a two

sample Kolmogorov-Smirnov test at a 0.95 confidence level. In the follow-

ing tables, bolded values represent statistically significant results. If PBIL

is bolded then its value is significantly superior to both soft-OPBIL and
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hard-OPBIL; if the value is italicized then it is significant with respect to

max(soft-OPBIL,hard-OPBIL). When a value for soft or hard-OPBIL is bolded

then it is statistically significant when compared to the result found by PBIL.

The results for the 3-bit Whitley attractor function are provided in Table

5. For D = 50 all except the 4 sample experiment was found to be statis-

tically equivalent, PBIL was found more desirable only when compared to

hard-OPBIL. When the dimensionality is increased to 100 we find that for the

smaller sample size both OPBIL algorithm results are significantly lower than

PBIL for the small sample size of 4. For sample sizes of 10 and 20, the results

favor PBIL, and the three algorithms are statistically the same for S = 30.

Further increasing the dimensionality to D = 200 increases the problem dif-

ficulty significantly and PBIL is statistically outperformed in all experiments

by very wide margins.

[Table 5 about here.]

Table 6 presents the results for Goldberg’s 3-bit deceptive problem. When the

dimension is 50, PBIL is found to have significant results for sample sizes of

10, 20 and 30, respectively. However, when D = 100 this situation is reversed

and the OPBIL algorithms result in more desirable outcomes for sample sizes

of 4,10 and 20. The sample size of S = 30 is statistically equivalent. For the

200 dimensionality instances OPBIL finds significantly better results for all

sample sizes. Furthermore, for all dimensionalities the results for OPBIL are

essentially the same, within each dimension size, when S ≥ 10. To a lesser

extent this seems true for PBIL, but for dimension sizes of 100 and 200, it

seems as though the results are approaching those found by OPBIL. Also for

these instances OPBIL algorithms require only 10 samples to achieve better

32



results than those found by PBIL at 30 samples.

[Table 6 about here.]

Table 7 exhibits the results from experiments on Whitley’s 4-bit attractor

problem. In all experiments both OPBIL algorithms achieve results which

are statistically favorable compared to PBIL. Similar to the previous results

for Goldberg’s function OPBIL is able to find results with only 10 samples

that are statistically significant at the 0.95 confidence level when compared to

larger sample sizes for PBIL. In most cases, especially those where D = 200

the margin between the PBIL and OPBIL results is relatively large. We also

find that in most of the results the standard deviation of OPBIL results is

relatively low compared to PBIL.

[Table 7 about here.]

Figure 7 shows an example of the convergence of the three compared algo-

rithms for Whitley’s 4-bit attractor problem for D = 200 and S = 20. The

PBIL algorithm rapidly converges within the first 500 iterations. On the other

hand both OPBIL algorithms converge at a comparatively slower rate. At the

1500th iteration the OPBIL results begin to improve over the already con-

verged PBIL algorithm, and eventually yield a much better outcome. This

rapid PBIL convergence was characteristic of its behavior for all of the ex-

periments and the much slower convergence rate of OPBIL was also common

throughout. The two curves for the OPBIL algorithms are also very similar,

which tended to be found for all experiments.

[Fig. 7 about here.]

The results from the 4-bit deceptive Whitley function are given in Table 8.
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Except for the instance where D = 50 and S = 30 all results are statistically

in favor of the OPBIL algorithms. The actual difference in results obtained by

each OPBIL algorithm is relatively large compared to PBIL, as the problem

size increases this difference is many factors large, for example for D = 100,

S = 30 the final result of OPBIL is about 1% that of PBIL. As with the

previous two experiments, OPBIL requires much less samples to achieve much

better results than those found with PBIL.

[Table 8 about here.]

4.5 Summary Results for Benchmark Funtions

We first provided a representative example of the increased diversity induced

by opposition into the OPBIL algorithms by comparing the all-pairs-diversity.

We showed that OPBIL does in fact maintain a higher degree of diversity

than traditional PBIL, and that the diversity is controlled according to the

ξ(t) function. After examining the relationship between diversity and the final

result obtained at each iteration we observed that as the sample size increased,

OPBIL was typically able to make a more effective use of the diversity.

We have also compared the results obtained with the hard and soft versions of

the OPBIL algorithm to those discovered by PBIL. To summarize the above

results:

• 35/48 (hard and soft) OPBIL results were statistically significant.

• 6/48 PBIL results were significant.

• 7/48 values were statistically indistinguishable.
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Additionally, for the Whitley 4-bit problems OPBIL algorithms were found to

yield statistically significant results in 23 or the 24 instances. This highlights

the ability of PBIL to successfully utilize the diversity for quickly exploring

the search space. To provide a general idea as to the improvement of OPBIL

over PBIL for all instances we calculate the average percentage improvement

as

Pi,j =
PBILi,j − OPBILi,j

max(PBILi,j, OPBILi,j)
(13)

where we substitute the results for the soft and hard OPBIL versions into

OPBILi, i = 1..3 is the current dimension size (D = 50, 100, 200) and j = 1..4

is the current sample size (S = 4, 10, 20, 30). We calculate this value for each of

the four problems. A value of −∞ corresponds to instances where PBIL found

the optimal solution and OPBIL did not. In contrast we use ∞ to represent

the opposite situation where OPBIL discovers an optimal and PBIL does not.

If Pi,j = 0 then both algorithms found the optimal.

Table 9 shows the average improvement of results using soft-OPBIL versus

PBIL over all four test problems (we arbitrarily decided on soft-OPBIL since

the results between soft- and hard-OPBIL were statistically insignificant).

In total 9/48 of the instances have Pi,j < 0, corresponding to PBIL finding

better results (not all significant). In three cases each of PBIL and OPBIL

found optimal values (two instances both found the same optimal), and the

remaining 35/48 values OPBIL improved over PBIL. For values where Pi,j >

0 the closer to 1, the larger the improvement. A value > 0.99 means that

OPBIL’s final result was only about 1% that of PBIL. Correspondingly, a

value of Pi,j < 0 is shows the percentage improvement PBIL exhibited over
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OPBIL. Although not all values are significant this table provides a general

idea as to the improvement OPBIL has.

[Table 9 about here.]

We also discovered that as D increases, the benefit of using opposition typically

also increases with respect to PBIL. That is, the accuracy of results found

with OPBIL increases as the problem becomes more difficult. Also, the rate

of convergence of OPBIL as implemented here is slower than PBIL but can be

made more rapid by a different choice of ξ(t) and learning parameters ρ and

τ . In many of the instances results obtained by OPBIL required less samples

to achieve (or better) the results found using more samples and PBIL.

Additionally, the two possible versions of the OPBIL algorithm were found to

yield very similar results in all the experiments. This behavior leads to the

conclusion that there is no significant difference in the results of soft-OPBIL

and hard-OPBIL. Therefore, either version of the algorithm can be arbitrarily

selected for these problems.

4.6 Experiments on the Traveling Salesman Problem

Benchmark functions typically do not capture the complexities of real-world

situations. Ten Traveling Salesman Problem (TSP) instances were selected

from the TSPLIB [26] to further examine the ability of OPBIL. We test its

performance against results obtained by PBIL as well as a Genetic Algorithm

(GA).

Let a graph G = (V, E) of vertices i, j ∈ V and undirected, weighted edges
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ei,j ∈ E which connect vertices i and j represent cities and travel routes

between cities, respectively. Further, let each ei,j have an associated weight

wi,j ≥ 0 which represents the travel cost between cities, where if wi,j = 0,

then the edge is not travelable. Then, the goal is to determine which of the

(|V |−1)!
2

Hamiltonian cycles has minimum total cost (sum of weights along

chosen edges), corresponding to the shortest path from a starting city which

visits all other cities and returns back. Typically, only an approximate solution

is possible due to the large search space size for large |V | (assuming a large

number of edges as well).

To encode the TSP we use the binary representation adopted in [1] whereby

each solution (and also probability matrix M) is of dimensions |V |×⌈log2 |V |⌉,

where | · | represents the cardinality of the set (number of cities). Each index of

this representation corresponds to a city, and the binary value at each index is

converted to a decimal value when constructing a tour/path. The tour begins

with the city with the lowest associated integer value and continues in this

manner until all cities have been visited. In the event that two or more cities

have the same integer value, they are visited in the order of increasing index

value. As pointed out in [1] this representation is not ideal, and many other are

in existence which have led to better results. However, since the goal here is to

simply compare the results to each other, the final result with respect to the

optimal or best known solution is not as important as the relative difference

between these algorithms.

To widen this comparison we also include results obtained by a standard

genetic algorithm (GA). During the reproduction phase we use an n-point

crossover [12] with probability 0.75. Alternatively, with probability 0.25 we

mutate the representation by flipping |V |/10 bits at random. The selection
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mechanism used was a 2-way tournament method with a selection pressure of

0.8 [12]. The parameter settings for OPBIL are the same as above (τ = 0.0005,

ρ = 0.05), ξ(t) is as shown in Equation (11), and the remainder of the OPBIL

algorithm is the same as listed in Algorithm 2. For PBIL we use a learning

rate α = 0.15, mutation probability β = 0.01 and mutation shift γ = 0.20. For

all three algorithms the population/sample size at each generation/iteration

was equal to the number of cities (|V |).

Table 10 shows the results for the 10 TSP problem instances averaged over 30

runs. Instances eil51 and berlin52 were run for 2000 iterations, eil76 was run

for 2500 iterations and the remaining problems were all run for 3500 iterations.

According to a Kolmogorov-Smirnov test at a 0.05 significance level, we find

that the average of all final results (µ) are statistically in favor of OPBIL.

Also, for all experiments the standard deviation σ was lower for OPBIL than

for PBIL or the GA, implying more reliable results.

[Table 10 about here.]

In Figure 8 a plot of the averaged results for the kroA100 problem is presented.

As with previous experiments PBIL converges relatively quickly compared to

the slower rate of OPBIL. This same behavior is seen with the GA. However, at

approximately iteration 2000 OPBIL overtakes PBIL and continues to improve

until termination (it crosses the GA at about iteration 1500). This curve is

characteristic of the setting of OPBIL parameters used in this paper, and

allows for improved exploration during early stages of the algorithm.

[Fig. 8 about here.]
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5 Conclusions and Future Work

In this paper we have proposed the use of opposition-based computing con-

cepts to improve population based incremental learning. Our proposed method

is based on an increased diversity in the generated samples. We were also able

to provide theoretical evidence to support the claim of increased diversity when

considering opposition as opposed to independent random sampling. This in-

crease in diversity and altering of the sampling strategy led to a modification

of the probability update rule of PBIL, and further led to the creation of the

soft and hard versions of the OPBIL algorithm. Although, we find that there

was generally no statistical difference between there results.

Our experiments confirm that using opposition according to the OPBIL frame-

work can lead to an improvement in accuracy (at the expense of slower con-

vergence) over traditional PBIL. Indeed, we observed that 35/48 = 72.9% of

the results from OPBIL were statistically significant and only 6/48 = 12.5%

results from PBIL favored. Moreover, results obtained using OPBIL for prob-

lems of high dimensionality were found to be far superior to PBIL. We showed

experimentally that as the sample size increased it was usually the situation

that both the OPBIL algorithms made increasingly efficient use of the diver-

sity induced by opposition. Additionally, when considering 4-bit benchmark

functions OPBIL yielded 23/24 = 95.5% statistically significant results. Many

real-world problems are of very high dimensionality and therefore it seems as

though OPBIL would be a relatively significant improvement over PBIL.

We also compared the two approaches on 10 TSP instances composed of be-

tweeen 50 and 130 cities. In all situations OPBIL was able to achieve a statis-
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tically significant result over PBIL and a GA. We used a simple and not very

robust, yet common, problem representation and no heuristic information. In-

corporating more advanced options in these two areas can greatly improve

the results. However, for the purpose of this paper the comparison between

OPBIL, a GA and PBIL does not require such additions.

Possible directions for future research involve both theoretical and practi-

cal aspects. Firstly, research into a better understanding of opposition-based

computing as a whole is required. With reference to the OPBIL algorithms,

deriving convergence proofs, as well as examining the rate of error decrease

with respect to the number of samples per iteration are important questions,

as is the amount of information gain per sample. The latter question can lead

to a better understanding of selecting an appropriate sample size. Further

experiments on larger real-world problems and comparisons to other search

algorithms such as simulated annealing or evolutionary approaches are also

possible directions to follow.
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and 4 samples per iteration. As it can be seen the diversity for both versions of
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Table 1
Goldberg’s 3-bit deceptive Evaluation Values

String f(x) String f(x)

000 1 100 5

001 3 101 8

010 3 110 8

011 8 111 0

56



Table 2
Whitley’s 3-bit attractor Values

String f(x) String f(x)

000 28 100 26

001 22 101 14

010 0 110 0

011 0 111 30
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Table 3
Whitley’s 4-bit attractor Evaluation Values

String f(x) String f(x)

0000 10 1000 28

0001 25 1001 5

0010 26 1010 5

0011 5 1011 0

0100 27 1100 5

0101 5 1101 0

0110 5 1110 0

0111 0 1111 30
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Table 4
Whitley’s 4-bit deceptive Evaluation Values

String f(x) String f(x)

0000 2 1000 10

0001 4 1001 18

0010 6 1010 20

0011 12 1011 28

0100 8 1100 22

0101 14 1101 26

0110 16 1110 24

0111 30 1111 0

59



Table 5
Whitley’s 3-bit attractor results for a minimization problem. In total 5/12 results
are statistically favorable for OPBIL, 3/12 for PBIL (including italicized values)
and 4/12 show no statistical significance. Bolded values are statistically significant.

S PBIL soft-OPBIL hard-OPBIL

µ σ µ σ µ σ

Dimensions = 50

4 5.867 8.303 16.333 18.043 24.667 20.594

10 0.4667 2.556 1.400 4.272 0.4667 2.556

20 0.000 0.000 0.000 0.000 0.000 0.000

30 0.000 0.000 0.000 0.000 0.000 0.000

Dimensions = 100

4 215.000 30.885 141.400 54.773 125.733 39.799

10 15.667 8.535 24.733 19.691 18.667 16.981

20 0.4667 2.556 9.333 11.819 10.733 11.441

30 0.000 0.000 2.800 8.544 5.600 10.136

Dimensions = 200

4 1012.867 65.457 575.333 105.790 541.933 100.974

10 463.133 45.682 145.533 47.322 132.067 40.222

20 223.067 31.054 78.133 34.329 90.333 35.785

30 136.333 24.495 52.733 27.435 52.667 33.800
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Table 6
Goldberg’s 3-bit deceptive results: 7/12 results are statistically significant for OP-
BIL, 3/12 for PBIL and the remaining 2/12 results show no significance. Bolded
values are statistically significant.

S PBIL soft-OPBIL hard-OPBIL

µ σ µ σ µ σ

Dimensions = 50

4 53.433 4.470 56.833 7.715 56.933 7.172

10 31.633 3.864 36.967 2.942 38.267 3.051

20 31.033 3.783 37.233 3.170 39.167 2.276

30 31.667 3.220 36.900 2.496 36.433 3.014

Dimensions = 100

4 178.133 8.307 135.233 14.301 136.933 7.983

10 111.933 5.065 72.667 4.551 72.833 4.308

20 81.800 5.410 74.767 4.329 73.400 4.182

30 74.167 5.867 73.533 3.181 73.500 4.329

Dimensions = 200

4 490.633 11.775 354.167 23.343 351.567 24.605

10 370.600 10.088 164.733 10.116 167.467 7.505

20 301.900 7.397 145.300 6.889 147.233 6.511

30 268.567 7.789 145.600 6.273 145.700 6.993
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Table 7
Whitley’s 4-bit attractor results. In total 12/12 results are statistically favorable for
OPBIL. Bolded values are significant.

S PBIL soft-OPBIL hard-OPBIL

µ σ µ σ µ σ

Dimensions = 100

4 195.533 14.908 132.000 14.574 129.533 13.903

10 113.133 7.0795 94.600 2.358 96.067 1.929

20 90.733 3.657 86.133 1.961 85.800 3.377

30 85.400 4.182 75.267 2.651 76.333 3.241

Dimensions = 100

4 621.733 29.812 347.933 25.685 365.800 34.971

10 411.000 14.429 188.333 4.901 188.600 4.461

20 305.800 10.121 187.200 4.859 188.467 4.946

30 263.867 10.372 187.933 4.5024 188.533 4.3607

Dimensions = 200

4 1684.533 29.905 966.333 62.288 997.667 56.256

10 1288.200 31.759 418.133 14.799 418.800 11.775

20 1069.800 24.849 366.667 8.294 368.333 6.604

30 955.733 23.1441 367.200 7.155 368.00 8.485
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Table 8
Whitley’s 4-bit deceptive results. In total 11/12 results obtained with OPBIL are
statistically significant and 1/12 are insignificant. Bolded values are statistically
significant.

S PBIL soft-OPBIL hard-OPBIL

µ σ µ σ µ σ

Dimensions = 50

4 77.000 8.469 47.667 14.003 56.500 19.920

10 28.500 6.585 0.333 1.826 0.000 0.000

20 6.167 3.395 0.3333 1.269 0.000 0.000

30 0.333 1.269 0.000 0.000 0.000 0.000

Dimensions = 100

4 293.333 21.600 172.233 28.333 188.633 27.521

10 173.667 14.478 11.833 9.513 12.00 12.839

20 118.833 11.423 2.333 4.866 1.500 3.511

30 93.500 7.673 1.500 3.5111 1.000 2.842

Dimensions = 200

4 929.267 31.228 578.700 50.813 608.000 48.984

10 660.033 29.100 131.167 36.547 131.333 25.049

20 519.600 22.443 25.833 16.033 24.667 17.117

30 459.200 22.895 12.000 9.966 16.333 15.025
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Table 9
The average improvement in results over all test instances. Positive values are results
where OPBIL outperformed PBIL. In total 37/48 values > 0, 9/48 are < 0, 2/48
are equal to 0

D S=4 10 20 30

Whitley 3-bit Attractor

50 -0.641 -0.667 0.000 0.000

100 0.342 -0.367 -0.950 −∞
200 0.432 0.686 0.650 0.613

Goldberg 3-bit Deceptive

50 -0.060 -0.144 -0.167 -0.142

100 0.241 0.351 0.0860 0.009

200 0.278 0.556 0.519 0.458

Whitley 4-bit Deceptive

50 0.325 0.164 0.051 0.119

100 0.440 0.542 0.388 0.288

200 0.426 0.675 0.657 0.616

Whitley 4-bit Attractor

50 0.381 0.988 0.946 ∞
100 0.413 0.932 0.980 0.984

200 0.377 0.801 0.950 0.974
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Table 10
Results for the 10 TSP problem instances. Bolded values are statistically significant.

PBIL GA OPBIL

Instance µ σ µ σ µ σ

eil51 590.17 30.60 687.93 40.87 546.03 20.94

berlin52 10676.56 812.60 12294.14 859.18 9792.80 548.73

eil76 846.94 57.71 986.99 74.75 754.23 44.49

kroA100 45871.62 3769.32 55285.64 5290.82 38726.17 2880.93

kroB100 45775.77 4352.58 56804.89 5324.88 38300.59 2782.29

kroC100 45758.08 3216.85 55560.71 4637.72 37351.60 2653.49

kroD100 44964.25 3324.76 56120.53 4833.36 37229.58 2327.22

kroE100 46057.64 3396.09 55657.73 4583.16 38876.37 2637.26

eil101 1112.97 60.10 1323.52 77.86 960.99 59.91

ch130 14400.64 933.67 16566.87 1573.22 11638.47 922.89
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