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Abstract— Numerical condition affects the learning speed and
accuracy of most artificial neural network learning algorithms.
In this paper, we examine the influence of opposite transfer
functions on the conditioning of feedforward neural network ar-
chitectures. The goal is not to discuss a new training algorithm
nor error surface geometry, but rather to present characteristics
of opposite transfer functions which can be useful for improv-
ing existing or to develop new algorithms. Our investigation
examines two situations: (1) network initialization, and (2)
early stages of the learning process. We provide theoretical
motivation for the consideration of opposite transfer functions
as a means to improve conditioning during these situations.
These theoretical results are validated by experiments on a
subset of common benchmark problems. Our results also reveal
the potential for opposite transfer functions in other areas of,
and related to neural networks.

Index Terms— Numerical condition, ill-conditioning, opposite
transfer functions, feedforward.

I. I NTRODUCTION

NUMERICAL condition is a very important and funda-
mental concept which affects the speed and accuracy of

neural network learning algorithms [1]. Essentially, numeri-
cal condition refers to the sensitivity of the network output
to changes in its weights and biases. If a network is ill-
conditioned it may require long training times or converge
to a poor solution.

Algorithms such as resilient propagation [2] quick propa-
gation [3], conjugate gradient-based [4] and quasi-Newton-
based [4] have the ability to adapt to an ill-conditioned
situation. However, they will yield more desirable results
when the network is well conditioned. Additionally, the
condition will change during training if nonlinear hidden
or output neurons are used [5]. Therefore, it is possible to
improve conditioning both before or during (especially early
stages) of training.

Some common approaches to help alleviate the detriments
of ill-conditioning involve data preprocessing, weight initial-
ization and regularization [6], [7], [4], [1]. Investigating the
impact of transfer functions on the error surface has also
been researched recently [8], [9], [10]. Also, adaptive transfer
functions have been considered as a possible means to help
alleviate ill-conditioning and improve accuracy and training
times [11], [12], [13], [14].
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In this paper we examine the concept of opposite transfer
functions [15], [16], which represents a transformation ofa
neuron’s transfer function such that it appears as a different
location in weight space. The underlying motivation for this
work lies in the area of Opposition-Based Computing, specif-
ically Opposition-Based Learning (i.e. learning by consider-
ing opposite entities or actions) [17]. To date, opposition-
based computing has led to improvements in reinforcement
learning [18], [19], differential evolution [20], [21], [22],
simulated annealing [23] and backpropagation [15], [16].

The remainder of this paper is organized as follows.
Section II will discuss the concept and impact of symmetry
on the output of neural network input-output mappings
and introduce the idea of opposite transfer functions. Our
theoretical motivations and proofs for the use of opposite
transfer functions are provided in Section III. Experiments
validating our theoretical results are provided in Section
IV. Concluding results and directions for future work are
presented in Section V.

II. BACKGROUND

In this section we will provide an introduction to symme-
tries in weight space due to weight and transfer function
transformations. Following this a description of opposite
networks will be provided.

A. Preliminaries

In the following we consider, without loss of generality,
a feedforward neural networkN having 1 ≤ i ≤ n inputs,
1 ≤ j ≤ m hidden neurons and1 ≤ k ≤ q output neurons.
Input to the network is represented as a vectorxp ∈ X, where
X representsp = 1...|X| input patterns each of dimensionn.
The target output ofxp is denoted astk(x) and corresponds
to thek = 1..q output neuron target value.

Using matricesW := (wi,j)n×m andV := (vj,k)m×q of
input-to-hidden and hidden-to-output weight and bias values
(for readability purposes we will also represent these as a
single vectorZ :=< w0,0, ..., wn,m, v0,0, ..., vm,q >), we will
refer to the input of each hidden neuron as

ψj(x) =
n

∑

i=0

wi,jxi, (1)

and the input to each output node as

µk(x) =

m
∑

j=0

vj,kϕj(ψj(x)), (2)



where ϕj(ψj(x)) represents the output of hidden neuron
j. The output of each terminal neuron is identified as
φk(µk(x)), which we will refer to asφk(x). We assume,
without loss of generality, thatϕj(x) andφk(x) are the tanh
and logistic functions, respectively. For ease in notationwe
defineηa ∈ N wherea = 1, ..., n, n+1, ..., n+m,n+m+
1, ..., n+m+ q to index any neuron inN .

Letting ek(x) = tk(x) − φk(x) be the residual error, the
mean squared error function

Er(X) =
1

2|X|

∑

x∈X

q
∑

k=1

e2k(x) (3)

will be used to evaluate network performance.

B. Symmetry

Symmetry refers to a physical system’s ability to remain
unaffected by some transformation. In regards to neural net-
works this typically implies a transformation of the network
parameters or structure which does not affect the input-output
mapping represented by the network. That is, the input-output
mappingΨ : ℜn 7→ ℜq is invariant with respect to the
transformation. Two networksN1 andN2 representing the
same mapping are denoted asN1 ∼ N2. In this work we
concentrate on structural symmetry as it is concerned with
transfer functions, but a more thorough examination can be
found in [24].

Structural symmetries can be due to a permutation of
neurons within a given layer or the sign inversion of a
transfer function. ForN havingL hidden layers each ofml

neurons, we can permute any set of neurons from a specific
layer by exchanging all input and output connections of the
group of neurons. This permutation transformation does not
affect the output of the network, and thus is a symmetrical
transformation. In total, forml neurons there will beml!
equivalent weight vectors [25].

The other coherent transformation operates directly on the
transfer function and is known as a sign transformation.
Given a transfer function with odd symmetry (i.e.φ(x) =
−φ(−x)), multiplying all input and output weights by -1
results in an invariant input-output mapping [26]. It has been
shown that this specific symmetry is valid for any infinitely
differentiable function where each successive differentiated
function evaluates to zero [27].

If the transfer function exhibits even symmetry (i.e.φ(·) =
φ(−·)) then multiplying all input connections by -1 also
leavesΨ(N ) unchanged. This symmetry is also valid for an
infinitely differentiable function [27], of which the most com-
mon is the radial-basis transfer function. For either even or
odd transfer functions, given a layer ofml non-input neurons
there exists2ml possible sign-symmetric transformations.

The following remark summarizes the aforementioned
symmetries [26]:

Remark The set of all equi-output transformations on the
weight spaceZ forms a non-Albelian groupG of order#G,
where

#G =

L−1
∏

l=2

(ml!)(2
ml) (4)

whereL is the number of non-input layers andml is the
number of neurons in layerl.

Each of these transformations defines a symmetry in
weight space consisting of equivalent parts. By taking these
symmetries into consideration it is possible to reduce the
size of the weight space [25], [26], [27], [28], [24], [29].
Further discussion on the influence of structural symmetry
in neural networks can be found in [30]. Considering non-
symmetric transformations may also be beneficial to neural
network learning. Specifically, this paper is concerned with
even-sign transformations on odd-signed transfer functions.
The following subsection introduces this notion through the
idea of opposite networks.

C. Opposite Networks

Before defining an opposite network we discuss the con-
cept of an opposite transfer function (OTF). The underlying
concept behind OTFs is to provide a means for altering the
network structure such that knowledge stored in connection
weights is retained but the input-output mapping differs. The
purpose of each non-input neuron is to provide a “decision”
or output based on the given signal. So, altering the neuron
transfer function changes the corresponding decision ruleof
the neuron and consequentlyΨ.

Dynamically adjusting transfer function parameters, and
thus modifying the error surface and input-output mapping
has been investigated, for example see [11], [12]. Similarly,
many alternative transfer functions have been proposed,
refer to [8] for a survey. However, most of these methods
increase the search space size by (a) defining a set of
transfer functions which can be used or, (b) increasing the
parameterizations of the functions or, (c) infusing more
parameters into the learning algorithm. As we will see below
opposite transfer functions do imply that the size of search
space increases.

An OTF, as used in this paper, is essentially an even
transformation of an odd transfer function. An analogy for
the idea is to view each neuron as a local decision maker
which provides a decision (output signal) based on the
given evidence (weighted input). Transforming the transfer
function in a non-symmetric manner will then change the
output signal of the neuron and possibly the network. An
opposite transfer function can be defined as:

Definition 1 (Opposite Transfer Function):Given some
odd-symmetric transfer functionϕ : ℜ 7→ ℜ, its correspond-
ing opposite transfer function is̆ϕ(x) = ϕ(−x), where the
breve notation indicates the function is an opposite.

This definition ensures that the relationship between a
transfer function and its opposite is not odd (i.e.ϕ(−x) 6=
−ϕ̆(x)). It will be shown in Section III that OTFs also ensure
that two irreducible networks differing in only the transfer
function will yield different input-output mappings, thatis
N1 ≁ N2.



Another property of OTFs is that they do not lead to an
increase in search space size. From definition 1 we notice
that the transformation is equivalent to multiplying all input
weights by -1, but not the output signal. This new weight
configuration lies in the same weight space as the original
network, and therefore there is no increase in search space
size. So, the OTF is simply a means for examining the second
location in weight space while retaining the knowledge stored
in the unaffected network weights.

It should also be noted that in order to be useful in
backpropagation-like learning algorithms the following char-
acteristics should hold:

1) Bothϕ(x) andϕ̆(x) are continuous and differentiable.
2) For derivatives we havedϕ̆(x)

dx
= − dϕ(x)

dx
.

Extrapolating on definition 1 we can now define the
concept of an opposite networkΓN .

Definition 2 (Opposite Network):Given some minimal
neural networkN the corresponding set of opposite net-
work(s) Γ(N ) is defined as all networks having identical
connection structure andZ values, but differing in that at
least one transfer function is in an opposite state.

Eachγ ∈ Γ(N ) is simply a different point in weight space.
We will show in the next section thatγa ≁ γb, ∀a 6= b. Also,
we show that without a-priori information eachγ is equally
likely to yield the most desirable performance before training
begins.

III. T HEORETICAL RESULTS

In this section we provide theoretical foundation for our
experimental results. We will show in a straightforward
manner that considering opposite networks has advantages
before and during early stages in training neural networks.

A. Network Irreducibility

Aside from symmetrical transformations, it is possible for
N1 ∼ N2 if one network can be reduced to the other [28].
For example, if there exists some neuronηa ∈ N which
has all outgoing weights equal to zero. Then, the removal of
ηa does not affectΨ. A formal definition of minimality, or
equivalently, irreducibility has been given in [28]:

Definition 3 (Irreducibility): A feedforward neural net-
work with m input nodes and one hidden layer ofn hidden
neurons can be called irreducible if none of the following is
true:

1) One of thevj,k vanishes.
2) There exists two indicesj1, j2 ∈ {1, ..., n} where

j1 6= j2 such that the functionalsψj1 , ψj2 are sign-
equivalent1.

3) One of the functionalsψj is constant.
An important consequence of minimality is that every mini-
mal network represents a unique input-output mapping [28],
[27].

1Two functionsf1(x), f2(x) are sign-equivalent iff1(x) = f2(x) or
f1(x) = −f2(x) ∀x ∈ ℜd whered is the dimensionality of the space.

We can now prove that eachγ ∈ Γ(N ) represents a unique
mapping if N is irreducible. The theorem trivially follows
from the following three basic lemmas.

Lemma 1: A vanishing vj,k only exists in someγg ∈
Γ(N ) if and only if it exists inN .

Proof: Given thatφ̆(µk(x)) = φ(−µk(x)) is a sym-
metric transformation onµk then eachvj,k = −vj,k for
the relevant neurons inγg. It follows trivially that the only
instance where−vj,k vanishes is ifvj,k = 0.

Lemma 2: Sign-equivalency can only exist in someγg ∈
Γ(N ) if and only if exists inN .

Proof: Following a similar argument as in Lemma 1,
an OTF mapsψj1(x) = −ψj1(x). Sign-equivalency exists if
|ψj1(x)| = |ψj2(x)|. So, substituting, we have| −ψj1(x)| =
|ψj2(x)|. However, this can only occur ifψj1 andψj2 were
already sign-equivalent.

Lemma 3: For γg ∈ Γ(N ), ψj(x) = constant if and
only if it is constant inN .

Proof: This follows directly from Definition 1, which
states thatψj(x) = −ψj(x).

From these lemmas we now state the following theorem:
Theorem 1 (Opposite Network Irreducibility):Given an

irreducible networkN all γg ∈ Γ(N ) are also minimal.
Proof: If every γg is minimal then it must obey the

constraints outlined in definition 3. Each of the requirements
is proven in Lemmas 1-3.

Let S = {N}∪ Γ(N ), then from Theorem 1 everys ∈ S
represents a unique input-output mapping, denotedΨ(s).

Theorem 2 (Equi-Probable Input-Output Mapping):Let
N be a minimal neural network whereZ ∈ U(−α, α)
(α, such that transfer functions avoid saturation) and with
opposite networksΓ(N ). Without a-priori knowledge
concerningX and for somes∗ ∈ S,

P (s∗ = min(S)) =
1

|S|

where,

|S| =
∏

l∈L

2ml ,

where L corresponds to the number of layers which can
utilize opposite transfer functions, each havingml neurons.

Proof: We make two common assumptions (the second
makes the proof trivial):

1) The size and underlying distribution ofX is unknown
but is bounded by known finite bounds, which are
scaled to [-1,1].

2) ForN1 andN2 both minimal, having the same number
of input, hidden and output neurons all using the same
respective transfer functions, then

P (ErN1
(X) ≤ ErN2

(X))

=P (ErN2
(X) ≤ ErN1

(X))

=0.5



From Theorem 1 and Definition 3 we know that

sa ≁ sb ∀sa 6= sb ∈ S.

Each transfer function can be eitherϕ(·) or ϕ̆(·), and so
the total number of combinations is calculated by

|S| =
∏

l∈L

2k
l .

Using Definition 1, eachs ∈ S represents a unique point
in weight space such that

Z
a 6= Z

b, ∀sa 6= sb ∈ S,

where the superscript identifies which network the weight
matrices belong to. From our assumptions eachs is equally
likely to yield the lowest error onX since they each exist
within the same weight space. So,

P (s∗ = min(S)) =
1

|S|
.

While this holds for a random location in weight space, the
rate at which this probability changes for each network dur-
ing learning has not be determined analytically. We provide
experimental evidence to support an exponential increase in
probability.

B. Changes in the Jacobian and Hessian

The Jacobian matrixJ is composed of first partial deriva-
tives of the residual error for each pattern with respect toZ.
For a network with one output neuronJ is computed as

J =

[

∂e(X)

∂zi

]

i=0...,|Z|

. (5)

Recall, that eachs ∈ S represents a unique mapping (i.e.
s1 ≁ s2) implying their Jacobian matricesJ(s) are different.
So, for

∆
J = J(s1) − J(s2) (6)

it follows that |δJ
i,j 6= 0| ≥ 1 for δj

i,j ∈ ∆
J . Due to

this property rank(∆J) > 0, where the rank of anm × n
matrix A represents the number of linearly independent
rows or columns. Rank deficiency occurs when rank(A) <
min(m,n).

Rank deficiency of the Jacobian is related to the concept
of ill-conditioning [5], [31]. For backpropagation-like algo-
rithms, a rank deficient Jacobian implies that only partial
information of possible search directions is known, which
can lead to longer training times. Furthermore, many opti-
mization algorithms such as steepest decent, conjugate gradi-
ent, Newton, Gauss-Newton, Quasi-Newton and Levenberg-
Marquardt directly utilize the Jacobian to determine search
direction [5], [4].

The Hessian matrixH represents the second derivative of
Er(X) with respectZ,

H =

[

∂2Er(X)

∂zizj

]

i,j=0...,|Z|

. (7)

The Hessian is very important to nonlinear optimization
as it reveals the nature of error surface curvature. Specif-
ically, the eigenvalues ofH have a large impact on the
learning dynamics of backpropagation-like algorithms. Itis
also employed by second-order learning algorithms [1], and
the inverseH−1 can be used for network pruning strategies
[32].

For neural networks it is common to compute

H = J
T
J. (8)

As shown in Equation 6, utilizing someγg ∈ Γ(N ) will
result in a change inJ. From (8) we should also expect a
change inH,

∆
H = H(s1) − H(s2) (9)

where there exists someδH
i,j ∈ ∆ such thatδH

i,j 6= 0.
Depending on the number and magnitude of theδH

i,j 6= 0,
the difference between the two positions in weight space
could be significant enough to warrant moving the search to
that location. This could be used as either a restart method
or during learning.

The conditioning ofH has a profound impact on the
learning time and accuracy of the learning algorithm. The
most common method to measure condition ofH is through
the condition number,

κ =
λmax

λmin

(10)

whereλmax andλmin are the largest and smallest nonzero
eigenvalues ofH, respectively. The larger this ratio, the more
ill-conditioned the network is.

IV. EXPERIMENTAL RESULTS

In this section we provide results for two main experi-
ments. Firstly, we examine theEr(X), rank(J) and κ at
random points in the error surface for all combinations
of transfer functions. The second experiment is aimed to
examine the changes in the same three measures during early
learning of a conjugate gradient algorithm.

A. Experimental Setup

Unless otherwise noted the following experiments all use
a single hidden layer feedforward architecture with tanh
and logistic transfer functions for the hidden and output
neurons, respectively. Additionally, initial weights andbiases
are uniformly generated over[−1, 1].

To evaluate the networks we utilized 3 common bench-
mark problems from the UCI-ML database [33] and two
versions of the parity problem. These data sets, along with
the number of hidden layers in the networks are presented in
Table I. To avoid errors in Jacobian and Hessian calculation
we standardize and normalize all input values. We also



remove records with missing data (very small percentage of
the entire data set), although it is usually beneficial to keep
these records, however, in this paper we are not concerned
with the problem of handling missing data. Output values
are binary and do not require adjustment.

TABLE I

THE BENCHMARK DATA AND THE NUMBER OF HIDDEN LAYERS USED.

Dataset |X| Inputs Hidden Size |Z|

3-bit parity 8 3 3 16
6-bit parity 64 6 6 49

Pima diabetes 768 8 5 51
Wisconsin Breast cancer 7832 9 5 56

ionosphere 351 33 5 176

The first experiment begins by generating a single neural
network with random weights. Then, keepingZ constant, we
evaluateEr(X), rank(J) andκ for eachs ∈ S. The process
repeats for 4000 randomly generatedN .

Our second experiment focuses on the early stages of
learning. Similar to the first experiment, we generate a
random networkN . However, in this case we then train the
network using Fletcher-Reeves Conjugate Gradient [4] for
10 epochs using scale factorsα = 0.001 and β = 0.01.
At each epoch we record theEr(X), rank(J) and κ for
eachs ∈ S, although we only train with respect toN . In
this manner, we can show the relationship between opposite
networks and better understand how learning could benefit
from considering opposite networks.

In both experiments we employ a minimum threshold
value when calculating the rank and condition number. By
doing this we ignore very small values which may skew
our calculations. We only consider singular values of the
Jacobian greater than 0.02, and eigenvalues of the Hessian
greater than 0.02.

B. Before Training

The first experiment is aimed at comparing the condi-
tioning of every transfer function combination before train-
ing begins. Form hidden nodes we have2m combina-
tions where each combination represents a m-bit mask.
For example, form = 2 we have 4 combinations,C =
{(00), (01), (10), (11)}, where a0 or a 1 indicate whether
the opposite transfer function is “off” or “on”, respectively.

Figure 1 shows the result of random sampling using four
of the benchmark data sets. As mentioned in the previous
subsection, we generated 4000 random locations in weight
space where we examined all2m combinations of transfer
function. After 4000 samples these results provide experi-
mental evidence to support Theorem 2.

Let zi ∈ Z, i = 1...4000 be theith randomly sampled
location then,

µ =
1

4000

4000
∑

i=1

min(ErSzi
(X)) (11)

andσ is its standard deviation. In Table II we presentµ and
σ of the 4000 random samples. Each value is similar, but

this reveals little about the actual bounds of initial network
performance,Er. So we compute,

min = min(min(ErSzi
(X))) (12)

and,

max = max(min(ErSzi
(X))) (13)

to represent the lower and upper bound defined by the best
s ∈ S at eachzi. Using these measures we gain a better
understanding of how the initialEr can vary than from
simply examiningσ. So, considering everys ∈ S the Er
range for each of the five benchmark problems is relatively
large compared toµ ± σ. This is very representative of a
network that is prone to ill-conditioning.

The final two comparison measuresµdiff andσdiff rep-
resent the mean and standard deviation ofmax(ErSzi

(X))−
min(ErSzi

(X)). Using these values, and computingµdiff/µ
for each problem we find the ratios 0.28, 0.26, 2.36, 0.65
and 1.05, respectively. Therefore, simply considering OTFs
during network initialization can have a relatively influential
impact on the initial network error.

TABLE II

A COMPARISON OFEr(X) FOR EACH PROBLEM.

Dataset µ σ min max µdiff σdiff

3-Bit 0.25 0.02 0.20 0.31 0.07 0.04
6-Bit 0.27 0.02 0.23 0.36 0.07 0.02

cancer 0.14 0.04 0.07 0.33 0.33 0.11
diabetes 0.23 0.03 0.19 0.35 0.15 0.05

ionosphere 0.21 0.03 0.14 0.34 0.22 0.07

Using the methodology and measures described above,
the rank(J) is explored in Table III. Additionally, all five
problems haveµ within 88.0% of the respective maximum
rank, and soJ will tend be rank deficient but not to a high
degree. Comparingµdiff/µ for each problem yields 0.03,
0.06, 0.01, 0.01 and 0.04, respectively. Thus, given a location
in weight space the difference between the network with the
highest and lowest rank(J) will be approximately 7% with
respect to the mean rank for that specific problem.

TABLE III

A COMPARISON OF RANK(J) FOR EACH PROBLEM.

Dataset µ σ min max µdiff σdiff

3-Bit 7.6 0.57 4.00 8.00 0.24 0.43
6-Bit 41.71 2.93 21.00 47.00 2.56 1.23
cancer 54.25 3.36 34.00 56.00 0.49 1.00

diabetes 50.04 2.37 33.00 51.00 0.23 0.64
ionosphere 157.80 13.21 79.00 176.00 6.05 3.64

Table IV presents the results when comparing the impact
of OTFs on the conditionκ of H. The key comparison is
the ratio µdiff/µ for each of the five problems, resulting
in values: 1.24, 0.85, 1.24, 0.97 and 0.88, respectively.
These values represent significant differences between the
conditions of eachs ∈ S at a given weight configuration and
further highlight the impact of OTFs before learning begins.
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Fig. 1. Random sampling results for four benchmark problems. The probability of each combination yielding the lowest error is approximately uniform
for each problem.

TABLE IV

A COMPARISON OFκ FOR EACH PROBLEM.

Dataset µ σ min max µdiff σdiff

3-Bit 9.0 4.5 2.1 27.5 11.2 7.2
6-Bit 146.9 21.6 46.3 264.9 125.0 32.8
cancer 3061.5 1030.1 869.9 8568.1 3798.0 1346.9

diabetes 1753.1 441.0 527.7 3979.0 1695.6 631.0
ionosphere 2284.3 687.2 846.6 6047.4 2004.1 978.4

C. During Early Training

This subsection provides insight into the impact of a
learning algorithm on the usefulness of OTFs during the first
50 epochs of learning.

In Figure 2 we examine the probability a specific opposite
network will yield the lowestEr(X) assuming that it is
solely trained a network with no opposite transfer functions.
For this comparison we only consider the 3-bit parity prob-
lem because|S| is small and thus the plot is more readable.
After the second epoch 3 of the 8 networks show a non-
zero probability of yielding the lowest error. By the fourth
epoch the probabilityN has the lowest error is 1.0, keeping
in mind the simplicity of the problem. The main purpose of
this graph is to show an example of the behavior for each
opposite network during training.

Figure 3 presents the probability thatN with transfer
function combination(00...0) yields the lowest error when
compared toΓ(N ). Except for the 3-bit parity problem, all
probabilities are between 0.80 and 0.95 by the tenth epoch,
where the behavior of probability increase is similar for
each problem. Therefore, considering opposite networks even
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Fig. 2. A comparison of the probability a transfer function combination
will yield the minimum error at the given epoch, if the network is trained
only on combination (000) for the 3-bit parity problem.

while training has the potential to yield a lower performance
measure. Furthermore, a learning algorithm which selects the
best network at each epoch, and continues training with it
could potentially result in a lower training error and/or a
possible increase in convergence rate.

Next, we compute the difference∆err = ErN −
min(ErΓ(N )), and plot the results in Figure 4. The 3-bit
parity problem shows a substantial difference betweenN and
its opposite networks and the 6-bit version of the problem
shows a smaller, yet increasing difference. However, the
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Fig. 3. Comparing the probability of transfer function combination (00...0)
of yielding the lowest error for the five benchmark problems.
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Fig. 4. Comparing the difference in error between the trained network and
the opposite network with minimum error.

remaining three problems show very little difference between
the network being trained and its opposites. For these latter
three problems an opposite network is likely of about equal
quality to the trained network, and it may be beneficial to
consider switching the network being trained to the relevant
opposite.

To examine the effect of training on the difference in rank
of J, we calculate

∆rank =
rank(J(N )) − min(rank(J(Γ(N ))))

min(|Z|, |X|)
(14)

wheremin(|Z|, |X|) represents the maximum3 possible rank
of the Jacobian matrix for each problem, respectively. The
results are presented in Figure 5. The 6-bit parity and
the Wisconsin breast cancer problems show a more rapid
increase in the difference between the trained network, and

3See Table I for the respective values.

the best opposite network with respect to rank. By the 10th
epoch the other three problems show only a 2.0% difference
in rank. So, for these latter three problems considering an
opposite network (using only a rank criterion) is more likely
to show an improvement than the former two problems.
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Fig. 5. Comparing the difference in rank between the trainednetwork and
opposite networks.

The final experiment will compare the difference in the
mean conditionκ of H over the 30 trials. To determine this
we compute,

∆κ = κ(N ) − min(κ(Γ(N ))), (15)

where figure 6 plots these results. The Pima Diabetes and
Ionosphere problems show a similar behavior, but the curve
for the Pima data has most of its values> 0 which means
that the trained network is not the best conditioned network.
Since the Ionosphere results are mainly< 0 it is better
conditioned that its opposite networks. The 6-bit parity and
Wisconsin breast cancer data are both relatively close to
having no difference between their trained and opposite
networks, respectively. The 3-bit parity problem shows nearly
no change in∆κ. These results show that even during
training there are cases when it may be desirable to consider
training an opposite network, especially if the training error
shows little improvement.

V. CONCLUSIONS ANDFUTURE WORK

structures In this paper we examined the problem of ill-
conditioning of neural networks and the potential impact of
opposite transfer functions. We proved that OTFs are sym-
metrical transformations in weight space which yield unique
input-output mappings under the assumption of a minimal
random network as the base case for the transformation.
Moreover, we were able to show that each of these networks
has an equal probability of yielding the minimum error for a
given problem before learning begins and without any prior
information. We also described the potential changes OTFs
can have on the rank of the Jacobian matrix as well as the
conditioning of the Hessian.
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Fig. 6. A comparison of the difference in condition between the trained
network and its opposite networks.

Our experiments confirmed the theoretical findings for pre-
trained networks and also provided evidence for the consider-
ation of OTFs during the early stages of training. Specifically,
we experimentally showed that there is a probability that an
opposite network may actually yield a lower error than a
trained network, and that this probability is large enough to
warrant consideration of opposite networks during training.
The results for the rank of the Jacobian and condition of the
Hessian also support the notion that opposite networks have
desirable properties which are known to impact the accuracy
and convergence rate of learning algorithms.

Future work will involve further theoretical and practi-
cal considerations. A deeper understanding of the learning
trajectories of opposite networks, influence of weight ini-
tialization, network size and type of transfer function are
important directions. Also, more experiments concerning
different learning algorithms and problems is important.
From this understanding, new strategies for utilizing OTFs
or possibly new learning algorithms can be developed that
lead to more accurate networks which are able to learn at a
higher rate.
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