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Abstract— Numerical condition affects the learning speed and In this paper we examine the concept of opposite transfer
accuracy of most artificial neural network learning algorithms.  functions [15], [16], which represents a transformatioraof
In this paper, we examine the influence of opposite transfer neuron’s transfer function such that it appears as a diftere

functions on the conditioning of feedforward neural netwok ar- | tion i iaht Th derlvi tivation forsthi
chitectures. The goal is not to discuss a new training algathm ocation in weight space. fhe underlying motivation torsthi

nor error surface geometry, but rather to present characteistics ~ Work lies in the area of Opposition-Based Computing, specif
of opposite transfer functions which can be useful for impre-  ically Opposition-Based Learning (i.e. learning by coesid

ing existing or to develop new algorithms. Our investigatio  ing opposite entities or actions) [17]. To date, opposiion
examines two situations: (1) network initialization, and @) based computing has led to improvements in reinforcement

early stages of the learning process. We provide theoretita . . . .
motivation for the consideration of opposite transfer fundions learning [18], [19], differential evolution [20], [21], [,

as a means to improve conditioning during these situations. Simulated annealing [23] and backpropagation [15], [16].
These theoretical results are validated by experiments on a  The remainder of this paper is organized as follows.

subset of common benchmark problems. Our results also revéa Section 11 will discuss the concept and impact of symmetry
the potential for opposite transfer functions in other aress of, on the output of neural network input-output mappings

and related to neural networks. . . . .
Index Terms— Numerical condition, ill-conditioning, opposite and introduce the idea of opposite transfer functions. Our

transfer functions, feedforward. theoretical motivations and proofs for the use of opposite
transfer functions are provided in Section Ill. Experingent
|. INTRODUCTION validating our theoretical results are provided in Section

o ) IV. Concluding results and directions for future work are
UMERICAL condition is a very important and funda- presented in Section V.

mental concept which affects the speed and accuracy of
neural network learning algorithms [1]. Essentially, nuime Il. BACKGROUND

cal condition refers to the sensitivity of the network outpu . . . ) . .
to changes in its weights and biases. If a network is ill- In this section we will provide an introduction to symme-

conditioned it may require long training times or convergdi€S in weight space due to weight and transfer function
to a poor solution. transformations. Following this a description of opposite

Algorithms such as resilient propagation [2] quick propal€Works will be provided.
gation [3], conjugate gradient-based [4] and quasi-Newto
based [4] have the ability to adapt to an ill-conditione
situation. However, they will yield more desirable results In the following we consider, without loss of generality,
when the network is well conditioned. Additionally, the@ feedforward neural netwotk” having1 < i < n inputs,
condition will change during training if nonlinear hiddenl < j < m hidden neurons andl < k < ¢ output neurons.
or output neurons are used [5]. Therefore, it is possible tput to the network is represented as a veejpe X, where
improve conditioning both before or during (especiallylgar X representp = 1...[X| input patterns each of dimensian

. Preliminaries

stages) of training. The target output of,, is denoted as;(z) and corresponds
Some common approaches to help alleviate the detrimergsthek = 1..¢ output neuron target value.
of ill-conditioning involve data preprocessing, weightti- Using matricesW := (w;,j)nxm andV := (v;x)mxq Of

ization and regularization [6], [7], [4], [1]. Investigat) the input-to-hidden and hidden-to-output weight and bias eslu
impact of transfer functions on the error surface has aldéor readability purposes we will also represent these as a
been researched recently [8], [9], [10]. Also, adaptivaesfar ~ SiNgle VECtoZ :=< wo 0, ..., Wy,m; V0,05 -+ Um,g >), WE Will
functions have been considered as a possible means to héfer to the input of each hidden neuron as

alleviate ill-conditioning and improve accuracy and traf

times [11], [12], [13], [14]. i) = anwﬂ 1)
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where ¢;(1;(z)) represents the output of hidden neuron L

j. The output of each terminal neuron is identified as 1 N (omi

o (ur(z)), which we will refer to as¢y(z). We assume, G = E(ml')(z ) )
without loss of generality, thag; (z) and¢(x) are the tanh _ - . .

and logistic functions, respectively. For ease in notatien where L is the num_ber of non-input layers and, is the
definen, € N wherea =1,...,n,n+1,...,n+m,n+m+ number of neurons in layer

1,...,m+m + q to index any neuron ioV. Each of these transformations defines a symmetry in

Letting ex(x) = tx(x) — ¢r(x) be the residual error, the weight space consisting of equivalent parts. By takingehes

mean squared error function symmetries into consideration it is possible to reduce the
. size of the weight space [25], [26], [27], [28], [24], [29].

1 2 Further discussion on the influence of structural symmetry

Er(X) = 2|X| Z Ze’“(x) 3) in neural networks can be found in [30]. Considering non-

rzeX k=1 . . ..
symmetric transformations may also be beneficial to neural

will be used to evaluate network performance. network learning. Specifically, this paper is concernechwit
even-sign transformations on odd-signed transfer funstio
The following subsection introduces this notion througé th
Symmetry refers to a physical system’s ability to remairdea of opposite networks.

unaffected by some transformation. In regards to neural n
works this typically implies a transformation of the networ o ] ]
parameters or structure which does not affect the inpyngut ~ Before defining an opposite network we discuss the con-
mapping represented by the network. That is, the inputtgutpCePt Of an opposite transfer function (OTF). The underlying
mapping ¥ : R" — R is invariant with respect to the concept behind OTFs is to provide a means fqr altering t_he
transformation. Two networkd/; and A representing the net_work .StI’UCtl-JI’e such thaF knowledge storeq in gonnectlon
same mapping are denoted A§ ~ M. In this work we weights is retained buF the input-output mapping d|ﬁer|$§T

concentrate on structural symmetry as it is concerned wifPH"POSe of each non-input neuron is to provide a “decision”
transfer functions, but a more thorough examination can I8 output based on the given signal. So, altering the neuron
found in [24]. transfer function changes the corresponding decisionatiile

Structural symmetries can be due to a permutation &€ neuron and consequenty _
neurons within a given layer or the sign inversion of a Dynamically adjusting transfer function parameters, and
transfer function. Fo\V having L hidden layers each of;,  thus modifying the error surface and input-output mapping
neurons, we can permute any set of neurons from a specifi@S been investigated, for example see [11], [12]. Sirilarl
layer by exchanging all input and output connections of th&1any alternative transfer functions have been proposed,
group of neurons. This permutation transformation does nftfer to [8] for a survey. However, most of these methods

affect the output of the network, and thus is a symmetricdficrease the search space size by (a) defining a set of
transformation. In total, forn; neurons there will ben,! transfer functions which can be used or, (b) increasing the
equivalent weight vectors [25]. parameterizations of the functions or, (c) infusing more

The other coherent transformation operates directly on tR&rameters into the learning algorithm. As we will see below
transfer function and is known as a sign transformatiofpPPOSIte transfer functions do imply that the size of search
Given a transfer function with odd symmetry (i¢(z) = Space Increases. . . . .

—é(—=)), multiplying all input and output weights by -1 An OTF, as used in this paper, is essentially an even

results in an invariant input-output mapping [26]. It hasibe transformation of an odd transfer function. An analogy for

shown that this specific symmetry is valid for any infinitelythe idea is to view each neuron as a local decision maker

differentiable function where each successive diffestat W_hiCh provides a Qecisior_w (output signal). based on the
function evaluates to zero [27]. given evidence (weighted input). Transforming the transfe

If the transfer function exhibits even symmetry (ifg:) — function in a non-symmetric manner will then change the

¢(—-)) then multiplying all input connections by -1 also output signal of the neuron and possibly the network. An

leavesV¥ unchanged. This symmetry is also valid for anoppos_itg_transfer func_tion can be define_d as.
W) g y ¥ Definition 1 (Opposite Transfer Function)Given some

infinitely differentiable function [27], of which the mosbm- X . .
y [27] (SJdd-symmetnc transfer functiop: # — R, its correspond-

mon is the radial-basis transfer function. For either even . for f L - h h
odd transfer functions, given a layerwf, non-input neurons Ing opposm_a tra_ms_er unction |$(a_c) p p(—a), W ere the
breve notation indicates the function is an opposite.

there exist2™ possible sign-symmetric transformations. . - . .
P gn-sy This definition ensures that the relationship between a

sy;hrﬁefsggv{lz%?: remark summarizes the aforemenuonegransfer function and its opposite is not odd (i€—z) #

—@(x)). It will be shown in Section Il that OTFs also ensure
Remark The set of all equi-output transformations on thehat two irreducible networks differing in only the transfe
weight spaceZ forms a non-Albelian grougr of order#G,  function will yield different input-output mappings, thé
where N1 = No.

B. Symmetry

PIE. Opposite Networks



Another property of OTFs is that they do not lead to an We can now prove that eaghe T'(\) represents a unique
increase in search space size. From definition 1 we noticeapping if A/ is irreducible. The theorem trivially follows
that the transformation is equivalent to multiplying alpit  from the following three basic lemmas.
weights by -1, but not the output signal. This new weight Lemma 1: A vanishingv; only exists in somey, €
configuration lies in the same weight space as the origin&(\) if and only if it exists inN.
network, and therefore there is no increase in search space Proof: Given thatd(ux(z)) = ¢(—uk(z)) is a sym-

size. So, the OTF is simply a means for examining the secomgetric transformation onu, then eachv;, = —v; for
location in weight space while retaining the knowledgeetior the relevant neurons in,. It follows trivially that the only
in the unaffected network weights. instance where-v; ;, vanishes is ifv; , = 0. u

It should also be noted that in order to be useful in Lemma 2: Sign-equivalency can only exist in somg €
backpropagation-like learning algorithms the followirtgac-  T'(\) if and only if exists inN.
acteristics should hold: Proof: Following a similar argument as in Lemma 1,

1) Bothy(z) and@(x) are continuous and differentiable.@n OTF maps);, (x) = —¢;, (x). Sign-equivalency exists if

2) For derivatives we havéz() — _de(z), |95, ()| = |1hj, (x)]. So, substituting, we have- ¢;, (x)| =

Extrapolating on definition 1 we can now define thé%2 (2)]. I.-|oweve.r, this can only occur if;, andv;, were
already sign-equivalent. [ ]

concept .Of an opposite networkV. . . Lemma 3: For v, € I'(N), ¢;(z) = constant if and
Definition 2 (Opposite Network)Given some minimal PR .
only if it is constant in\.

neural network/\/ thg corresponding set of o_ppogte mt' Proof: This follows directly from Definition 1, which
work(s) I'(\') is defined as all networks having |dent|calStates thath; (z) = —; () -
connection structure an@d values, but differing in that at AL A
least one transfer function is in an opposite state. From these lemmas we now state the following theorem:

Eachy € T'(V) is simply a different point in weight space.  Theorem 1 (Opposite Network Irreducibility)Given an
We will show in the next section that, < v,, Va # b. Also, irreducible network\ all v, € T(N) are also minimal.

we show that without a-priori information eaehis equally Proof: If every v, is minimal then it must obey the
likely to yield the most desirable performance before ir@n constraints outlined in definition 3. Each of the requiretaen
begins. is proven in Lemmas 1-3. ]
Let S = {N}UT'(N), then from Theorem 1 everye S
IIl. THEORETICAL RESULTS represents a unique input-output mapping, dendtés).

In this section we provide theoretical foundation for our 1heorem 2 (Equi-Probable Input-Output Mapping)-et
experimental results. We will show in a straightforwardV P& @ minimal neural network wheré c U(-a,a)
manner that considering opposite networks has advantadés Such that transfer functions avoid saturation) and with
before and during early stages in training neural networks®PPOSite networks '(\V). Without a-priori  knowledge

concerningX and for somes* € S,

A. Network Irreducibility

Aside from symmetrical transformations, it is possible for
N7 ~ N3 if one network can be reduced to the other [28].
For example, if there exists some neurgn € A which where,
has all outgoing weights equal to zero. Then, the removal of
1, does not affect. A formal definition of minimality, or IS| = H 2™,
equivalently, irreducibility has been given in [28]: leL

Definition 3 (Irreducibility): A feedforward neural net- \yhere L corresponds to the number of layers which can
work with m input nodes and one hidden layerotidden ytjlize opposite transfer functions, each having neurons.
neurons can be called irreducible if none of the following is  prgof: We make two common assumptions (the second

true: makes the proof trivial):
1) One of thev; ;, vanishes. 1) The size and underlying distribution & is unknown
2) There exists two indicegi,j» € {1,..,n} where but is bounded by known finite bounds, which are
Jj1 # j2 such that the functional®;, ,v;, are sign- scaled to [-1,1].
equivalent. 2) ForA; andN; both minimal, having the same number
3) One of the functionalg); is constant. of input, hidden and output neurons all using the same
An important consequence of minimality is that every mini- respective transfer functions, then
mal network represents a unique input-output mapping [28],
[27]. P(Ern, (X) < Erp, (X))
—P(Ery,(X) < Ery, (X))

Two functions f1(z), fo(x) are sign-equivalent iff,(z) = fz(x) or
fi(z) = —fa(x) Yz € R¢ whered is the dimensionality of the space.

=0.5



From Theorem 1 and Definition 3 we know that
|:62ET(X):|
H=|—=—> .
022 Jij=o...\2]

Each transfer function can be eithe(-) or ¢(-), and so  The Hessian is very important to nonlinear optimization

(@)

Sq ™ Sp VSq # sp € S.

the total number of combinations is calculated by as it reveals the nature of error surface curvature. Specif-
ically, the eigenvalues oH have a large impact on the
|S| = H 2%, learning dynamics of backpropagation-like algorithmsisit
leL also employed by second-order learning algorithms [1], and
the inverseH~! can be used for network pruning strategies

Using Definition 1, eacls € S represents a unique point

in weight space such that [32].

For neural networks it is common to compute
72 £ 7 Vs, # sy € S,
o . _ H=J7J. (8)
where the superscript identifies which network the weight
matrices belong to. From our assumptions eadéh equally ~ As shown in Equation 6, utilizing somg, € T'(N) will
likely to yield the lowest error orX since they each exist result in a change id. From (8) we should also expect a
within the same weight space. So, change inH,

1

P(s* = min(S)) = Gk AT =H(s;) — H(s2) 9)

where there exists som&”, € A such thats/;, # 0.

While this holds for a random location in weight space, th?€Pending on the number and magnitude of #fie # 0,
he difference between the two positions in welght space

rate at which this probability changes for each network duf

ing learning has not be determined analytically. We provigg®uld be significant enough to warrant moving the search to
experimental evidence to support an exponential incremse @t location. This could be used as either a restart method
probability. or during learning.

The conditioning ofH has a profound impact on the
B. Changes in the Jacobian and Hessian learning time and accuracy of the learning algorithm. The
most common method to measure conditiorfbfs through

The Jacobian matrid is composed of first partial deriva- .
the condition number,

tives of the residual error for each pattern with resped. to
For a network with one output neurdhis computed as

K = A’”ﬁ” (10)

86( ) Amln
J= ) (5) )
[ 02 ]Z 2] where Ao and \,,;,, are the largest and smallest nonzero
’ eigenvalues oH, respectively. The larger this ratio, the more
Recall, that each € S represents a unique mapping (i.e.ll-conditioned the network is.

s1 ~ s3) implying their Jacobian matriceKs) are different.
IV. EXPERIMENTAL RESULTS

So, for
In this section we provide results for two main experi-
AJ = J(s1) — I(s2) (6) ments. Firstly, we examine th&r(X), rankJ) and x at
random points in the error surface for all combinations
it follows that 5/, # 0] > 1 for 6/, € A’. Due to of transfer functions. The second experiment is aimed to

this property rankA”) > 0, where the rank of amn x n examine the changes in the same three measures during early
matrix A represents the number of linearly independengarning of a conjugate gradient algorithm.
rows or columns. Rank deficiency occurs when fak < .
min(m, n). A. Experimental Setup
Rank deficiency of the Jacobian is related to the conceptUnless otherwise noted the following experiments all use
of ill-conditioning [5], [31]. For backpropagation-likdgn- a single hidden layer feedforward architecture with tanh
rithms, a rank deficient Jacobian implies that only partisand logistic transfer functions for the hidden and output
information of possible search directions is known, whicmeurons, respectively. Additionally, initial weights abidses
can lead to longer training times. Furthermore, many optare uniformly generated ovér-1, 1].
mization algorithms such as steepest decent, conjugaté gra To evaluate the networks we utilized 3 common bench-
ent, Newton, Gauss-Newton, Quasi-Newton and Levenbergrark problems from the UCI-ML database [33] and two
Marquardt directly utilize the Jacobian to determine searcversions of the parity problem. These data sets, along with
direction [5], [4]. the number of hidden layers in the networks are presented in
The Hessian matriH represents the second derivative ofTable I. To avoid errors in Jacobian and Hessian calculation
Er(X) with respectz, we standardize and normalize all input values. We also



remove records with missing data (very small percentage tfis reveals little about the actual bounds of initial netiwo
the entire data set), although it is usually beneficial topkeeperformancefr. So we compute,

these records, however, in this paper we are not concerned

with the problem of handling missing data. Output values min = min(min(Ers. (X))) (12)
are binary and do not require adjustment.

and,
TABLE |

THE BENCHMARK DATA AND THE NUMBER OF HIDDEN LAYERS USED max = max(min(Erszl, (X)) (13)

| Dataset [ X[ [ Inputs | Hidden Size| |Z] | to represent the lower and upper bound defined by the best
3-bit parity 8 3 3 16 s € S at eachz;. Using these measures we gain a better
6-bit parity 64 6 6 49 understanding of how the initiaEr can vary than from

Wiscg:;i g?;:stfiamer ;:; g g gé simply examiningo. So, considering every € S the Er

ionosphere 351 | 33 5 176 range for each of the five benchmark problems is relatively

large compared tqQ. + ¢. This is very representative of a

The first experiment begins by generating a single neurBftwork that is prone to ill-conditioning.
network with random weights. Then, keepificconstant, we ~ The final two comparison measurgs;;y andogisy rep-
evaluateEr(X), rankJ) and for eachs € S. The process resent the mean and standard deviatiomek(Ers,_ (X)) —
repeats for 4000 randomly generattd min(Ers,, (X)). Using these values, and computimgy s/ x

Our second experiment focuses on the ear|y stages f@|r each problem we find the ratios 0.28, 0.26, 2.36, 0.65
learning. Similar to the first experiment, we generate a&nd 1.05, respectively. Therefore, simply considering ©TF
random networkj\/'_ However’ in this case we then train theduring network initialization can have a relatively influieh
network using Fletcher-Reeves Conjugate Gradient [4] fdmpact on the initial network error.
10 epochs using scale factoss = 0.001 and 8 = 0.01.
At each epoch we record th&r(X), rankJ) and « for
eachs € S, although we only train with respect t&". In
this manner, we can show the relationship between opposite| Dataset || u | o | min | maz | fiaizs | oairs |
networks and better understand how learning could benefit 3-Bit 025] 002] 020 0.3L [ 0.07 | 004
from considering opposite networks. 6-Bit 027002 023 | 036 | 007 | 0.02

In both experiments we employ a minimum threshold dabetas gég 8:83 8:% g:gg 8:22 8:3;‘)
value when calculating the rank and condition number. By | ionosphere|| 0.21 | 0.03 | 0.14 | 0.34 | 0.22 | 0.07
doing this we ignore very small values which may skew
our calculations. We only consider singular values of the Using the methodology and measures described above,
Jacobian greater than 0.02, and eigenvalues of the Hessiag rankJ) is explored in Table lll. Additionally, all five
greater than 0.02. problems have: within 88.0% of the respective maximum
rank, and saJ will tend be rank deficient but not to a high
) - o ) degree. Comparing;ss/p for each problem yields 0.03,
~ The first experiment is aimed at comparing the condiy g6 .01, 0.01 and 0.04, respectively. Thus, given aioeat
tioning of every transfer function combination before ki, \yeight space the difference between the network with the
ing begins. Form hidden nodes we have™ combina- pjghest and lowest raf) will be approximately 7% with

tions where each combination represents a m-bit ma%spect to the mean rank for that specific problem.
For example, form = 2 we have 4 combinationg]) =

TABLE Il
A COMPARISON OFEr(X) FOR EACH PROBLEM

B. Before Training

{(00), (01), (10),(11)}, where a0 or a1 indicate whether TABLE Il
the opposite transfer function is “off” or “on”, respectiye A COMPARISON OF RANKJ) FOR EACH PROBLEM
Figure 1 shows the result of random sampling using four 4
of the benchmark data sets. As mentioned in the previous D;t;‘_SEt [ 7“6 | 0"57 | T;’é | ’g‘éﬁ | ”gizfi‘ | Ugi‘g |
: ; ; ; -Bit . . . . . .
subsection, we generated 4000 random locations in weight "o 4171 | 293 | 21.00| 4700 | 256 | 123

space where we examined alf* combinations of transfer cancer 54.25 | 3.36 | 34.00| 56.00 | 0.49 | 1.00
function. After 4000 samples these results provide experj- diabetes || 50.04 | 2.37 | 33.00 | 51.00 | 023 | 0.64
mental evidence to support Theorem 2 ionosphere|| 157.80 | 13.21 | 79.00 | 176.00| 6.05 | 3.64

Let z; € Z, i = 1...4000 be thei** randomly sampled
location then,

Table IV presents the results when comparing the impact
of OTFs on the conditionx of H. The key comparison is

p 400 the ratio ug;rs/1 for each of the five problems, resulting
p= mzmm(@"szi (X)) (11) in values: 1.24, 0.85, 1.24, 0.97 and 0.88, respectively.
=1

These values represent significant differences between the
ando is its standard deviation. In Table 1l we presgnand conditions of eacls € S at a given weight configuration and
o of the 4000 random samples. Each value is similar, bdtirther highlight the impact of OTFs before learning begins
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Fig. 1. Random sampling results for four benchmark problefie probability of each combination yielding the lowesatoeris approximately uniform
for each problem.

TABLE IV
A COMPARISON OFk FOR EACH PROBLEM

i

O
©

[ Dataset | p | o [ min | maz [ pairr | odifs |

000

3-Bit 9.0 45 21 | 275 | 112 72 08 ~ o001
6-Bit 146.9 21.6 46.3 264.9 125.0 32.8 07l —%—010
cancer 3061.5| 1030.1 | 869.9 | 8568.1 | 3798.0 | 1346.9 ' —v—011
diabetes || 1753.1| 441.0 | 527.7 | 3979.0 | 1695.6 | 631.0 L 06l fjigg
ionosphere|| 2284.3| 687.2 846.6 | 6047.4| 2004.1| 978.4 % 110
§ 0 111
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O
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C. During Early Training

This subsection provides insight into the impact of a ]
learning algorithm on the usefulness of OTFs during the first o
50 epochs of learning.

In Figure 2 we examine the probability a specific opposite
network will yield the lowestEr(X) assuming that it is
solely .tramed a _network with no OppOSIte tran$fer fl_mcmon Fig. 2. A comparison of the probability a transfer functiommbination
For this comparison we only consider the 3-bit parity probgii yield the minimum error at the given epoch, if the netids trained
lem becauséS| is small and thus the plot is more readableenly on combination (000) for the 3-bit parity problem.

After the second epoch 3 of the 8 networks show a non-

zero probability of yielding the lowest error. By the fourth

epoch the probability" has the lowest error is 1.0, keepingwhile training has the potential to yield a lower performanc
in mind the simplicity of the problem. The main purpose ofmeasure. Furthermore, a learning algorithm which selbets t
this graph is to show an example of the behavior for eadhest network at each epoch, and continues training with it

O
W

O
[N

Epochs

opposite network during training. could potentially result in a lower training error and/or a
Figure 3 presents the probability thaf with transfer possible increase in convergence rate.
function combination(00...0) yields the lowest error when  Next, we compute the differencd\“” = FEry —

compared td’(N). Except for the 3-bit parity problem, all min(Err(,r), and plot the results in Figure 4. The 3-bit
probabilities are between 0.80 and 0.95 by the tenth epogbarity problem shows a substantial difference betwseand
where the behavior of probability increase is similar foits opposite networks and the 6-bit version of the problem
each problem. Therefore, considering opposite networ&es evshows a smaller, yet increasing difference. However, the



the best opposite network with respect to rank. By the 10th
I epoch the other three problems show only a 2.0% difference
+ in rank. So, for these latter three problems considering an
] opposite network (using only a rank criterion) is more likel

to show an improvement than the former two problems.
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Fig. 3. Comparing the probability of transfer function caration (00...0) |
of yielding the lowest error for the five benchmark problems. j

Epoch

OO e 1 Fig. 5. Comparing the difference in rank between the trainetivork and
i opposite networks.

Q
o
g -01 The final experiment will compare the difference in the
£ 3-Bit Parity s . . .
S Lo1s o o-BitPaity | | mean conditions of H over the 30 trials. To determine this
= Breast Cancer we compute,

-0.2 —*— Pima Diabetes| 4

— — —lonosphere

A" = k(N) — min(k(T'(N))), (15)

where figure 6 plots these results. The Pima Diabetes and
‘ ‘ ‘ ) ) : - lonosphere problems show a similar behavior, but the curve
o2z s 4 5Epoch§ ro&8 9 10 for the Pima data has most of its values0 which means
that the trained network is not the best conditioned network
Fig. 4. Comparing the difference in error between the tichinetwork and Smc? _the Ionosphere reS.UHS are mairty 0 it '_S be'Fter
the opposite network with minimum error. conditioned that its opposite networks. The 6-bit paritg an
Wisconsin breast cancer data are both relatively close to
having no difference between their trained and opposite
remaining three problems show very little difference betwe networks, respectively. The 3-bit parity problem showslyea
the network being trained and its opposites. For theserlatteo change inA*. These results show that even during
three problems an opposite network is likely of about equataining there are cases when it may be desirable to consider
quality to the trained network, and it may be beneficial taraining an opposite network, especially if the trainingoer
consider switching the network being trained to the relevashows little improvement.
opposite.
To examine the effect of training on the difference in rank
of J, we calculate

V. CONCLUSIONS ANDFUTURE WORK

structures In this paper we examined the problem of ill-
conditioning of neural networks and the potential impact of
) opposite transfer functions. We proved that OTFs are sym-
rankJ(N)) - min(rankJ(I'(\)))) (14) metrical transformations in weight space which yield ueiqu

min(|Z|, |X]) input-output mappings under the assumption of a minimal

wheremin(|Z|, |X|) represents the maximupossible rank random network as the base case for the transformation.
of the Jacobian matrix for each problem, respectively. Thioreover, we were able to show that each of these networks
results are presented in Figure 5. The 6-bit parity anlags an equal probability of y|eld|ng_the minimum error for_a

the Wisconsin breast cancer problems show a more ragi¥€n problem before learning begins and without any prior

increase in the difference between the trained network, afiformation. We also described the potential changes OTFs
can have on the rank of the Jacobian matrix as well as the

3See Table | for the respective values. conditioning of the Hessian.

Arank _
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Fig. 6. A comparison of the difference in condition betweba trained
network and its opposite networks. [16]

Our experiments confirmed the theoretical findings for pre[-m
trained networks and also provided evidence for the conside
ation of OTFs during the early stages of training. Specifycal (18]
we experimentally showed that there is a probability that an
opposite network may actually yield a lower error than a
trained network, and that this probability is large enough (19
warrant consideration of opposite networks during trajnin
The results for the rank of the Jacobian and condition of thao]
Hessian also support the notion that opposite networks have
desirable properties which are known to impact the accuragy
and convergence rate of learning algorithms.

Future work will involve further theoretical and practi-
cal considerations. A deeper understanding of the learning
trajectories of opposite networks, influence of weight ini-
tialization, network size and type of transfer function aré?
important directions. Also, more experiments concerning
different learning algorithms and problems is important24]
From this understanding, new strategies for utilizing OTFs
or possibly new learning algorithms can be developed thgis)
lead to more accurate networks which are able to learn at a
higher rate.

[26]
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