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ABSTRACT

We provide an algorithm for simulating the unique attracting fixed-point of linear branching distributional

equations. Such equations appear in the analysis of information ranking algorithms, e.g., PageRank, and in

the complexity analysis of divide and conquer algorithms, e.g., Quicksort. The naive simulation approach

would be to simulate exactly a suitable number of generations of a weighted branching process, which

has exponential complexity in the number of generations being sampled. Instead, we propose an iterative

bootstrap algorithm that has linear complexity; we prove its convergence and the consistency of a family

of estimators based on our approach.

1 INTRODUCTION

The complexity analysis of divide and conquer algorithms such as Quicksort (Rösler 1991, Fill and Janson

2001, Rösler and Rüschendorf 2001) and the more recent analysis of information ranking algorithms on

complex graphs (e.g., Google’s PageRank) (Volkovich and Litvak 2010, Jelenković and Olvera-Cravioto

2010, Chen, Litvak, and Olvera-Cravioto 2014) motivate the analysis of the stochastic fixed-point equation

R
D
= Q+

N

∑
r=1

CrRr, (1)

where (Q,N,C1,C2, . . .) is a real-valued random vector with N ∈ N, and {Ri}i∈N is a sequence of i.i.d.

copies of R, independent of (Q,N,C1,C2, . . .). More precisely, the number of comparisons required in

Quicksort for sorting an array of length n, properly normalized, satisfies in the limit as the array’s length

grows to infinity a distributional equation of the form in (1). In the context of ranking algorithms, it has

been shown that the rank of a randomly chosen node in a large directed graph with n nodes converges in

distribution, as the size of the graph grows, to R, where N represents the in-degree of the chosen node and

the {Ci}i≥1 are functions of the out-degree and node attributes of its neighbors. In the complexity analysis

of algorithms, knowing the distribution of R makes it possible to estimate the moments and tail probabilities

of the number of operations required to sort a list of numbers, which is important for benchmarking and

worst case analysis. In the case of information ranking algorithms, the distribution of R can be used to

determine what type of nodes are typically ranked highly, which in turn can be used to design new ranking

algorithms capable of identifying pre-specified data attributes.

As further motivation for the study of branching fixed-point equations, we mention the closely related

maximum equation

R
D
= Q∨

N
∨

r=1

CrRr, (2)
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with (Q,N,C1,C2, . . .) nonnegative, which has been shown to appear in the analysis of the waiting time

distribution in large queueing networks with parallel servers and synchronization requirements (Karpelevich,

Kelbert, and Suhov 1994, Olvera-Cravioto and Ruiz-Lacedelli 2014). In this setting, W = logR represents

the waiting time in stationarity of a job, that upon arrival to the network, is split into a number of subtasks

requiring simultaneous service from a random subset of servers. Computing the distribution and the

moments of W is hence important for evaluating the performance of such systems (e.g., implementations

of MapReduce and similar algorithms in today’s cloud computing). Due to length limitations, we focus in

this paper only on (1), but we mention that the algorithm we provide can easily be adapted to approximately

simulate the solutions to (2) (see Remark 2).

Although the study of (1) and (2), and other max-plus branching recursions, has received considerable

attention in the recent years (Rösler 1991, Biggins 1998, Fill and Janson 2001, Rösler and Rüschendorf 2001,

Aldous and Bandyopadhyay 2005, Alsmeyer, Biggins, and Meiners 2012, Alsmeyer and Meiners 2012,

Alsmeyer and Meiners 2013, Jelenković and Olvera-Cravioto 2012b, Jelenković and Olvera-Cravioto 2012a,

Jelenković and Olvera-Cravioto 2015), the current literature only provides results on the characterization

of the solutions to (1) and (2), their tail asymptotics, and in some instances, their integer moments, which

is not always enough for the applications mentioned above. It is therefore of practical importance to have

a numerical approach to estimate both the distribution and the general moments of R.

As a mathematical observation, we mention that both (1) and (2) are known to have multiple solutions

(see e.g. Biggins (1998), Alsmeyer, Biggins, and Meiners (2012), Alsmeyer and Meiners (2012), Alsmeyer

and Meiners (2013) and the references therein for the characterization of the solutions). However, in

applications we are often interested in the so-called endogenous solution. This endogenous solution is the

unique limit under iterations of the distributional recursion

R(k+1) D
=

N

∑
r=1

CrR
(k)
r +Q, (3)

where (Q,N,C1,C2, . . .) is a real-valued random vector with N ∈ N, and {R
(k)
i }i∈N is a sequence of i.i.d.

copies of R(k), independent of (Q,N,C1,C2, . . .), provided one starts with an initial distribution for R(0) with

sufficient finite moments (see, e.g., Lemma 4.5 in Jelenković and Olvera-Cravioto (2012a)). Moreover,

asymptotics for the tail distribution of the endogenous solution R are available under several different sets of

assumptions for (Q,N,C1,C2, . . .) (Jelenković and Olvera-Cravioto 2010, Jelenković and Olvera-Cravioto

2012b, Jelenković and Olvera-Cravioto 2012a, Olvera-Cravioto 2012).

As will be discussed later, the endogenous solution to (1) can be explicitly constructed on a weighted

branching process. Thus, drawing some similarities with the analysis of branching processes, and the

Galton-Watson process in particular, one could think of using the Laplace transform of R to obtain its

distribution. Unfortunately, the presence of the weights {Ci} in the Laplace transform

ϕ(s) = E [exp(−sR)] = E

[

exp(−sQ)
N

∏
i=1

ϕ(sCi)

]

makes its inversion problematic, making a simulation approach even more necessary.

The first observation we make regarding the simulation of R, is that when P(Q = 0)< 1 it is enough

to be able to approximate R(k) for fixed values of k, since both R(k) and R can be constructed in the same

probability space in such a way that the difference |R(k)−R| is geometrically small. More precisely, under

very general conditions (see Proposition 1 in Section 2), there exist positive constants K < ∞ and c < 1

such that

E

[

∣

∣

∣R
(k)−R

∣

∣

∣

β
]

≤ Kck+1. (4)

Our goal is then to simulate R(k) for a suitably large value of k.
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Π /0 = 1

Π1 =C1 Π2 =C2 Π3 =C3

Π(1,1) =C(1,1)C1

Π(1,2) =C(1,2)C1

Π(2,1) =C(2,1)C2

Π(3,1) =C(3,1)C3

Π(3,2) =C(3,2)C3

Π(3,3) =C(3,3)C3

Figure 1: Weighted branching process

The simulation of R(k) is not that straightforward either, since the naive approach of simulating i.i.d.

copies of (Q,N,C1,C2, . . .) to construct a single realization of a weighted branching process, up to say

k generations, is of order (E[N])k. Considering that in the examples mentioned earlier we typically have

E[N] > 1 (N ≡ 2 for Quicksort, E[N] ≈ 30 in many information ranking applications, and E[N] in the

hundreds for MapReduce implementations), this approach is prohibitive. Instead, we propose in this paper

an iterative bootstrap algorithm that outputs a sample pool of observations {R̂
(k,m)
i }m

i=1 whose empirical

distribution converges, in the Kantorovich-Rubinstein distance, to that of R(k) as the size of the pool m → ∞.

This mode of convergence is equivalent to weak convergence and convergence of the first absolute moments

(see, e.g., Villani (2009)). Moreover, the complexity of our proposed algorithm is linear in k. This algorithm

is known in the statistical physics literature as “population dynamics” (see, e.g., Mezard and Montanari

(2009)), where it has been used heuristically for the approximation of belief propagation algorithms.

The paper is organized as follows. Section 2 describes the weighted branching process and the linear

recursion. The algorithm itself is given in Section 3, which includes a remark on how to adapt it to the

maximum case. Section 4 introduces the Kantorovich-Rubinstein distance and proves the convergence

properties of our proposed algorithm. Numerical examples to illustrate the precision of the algorithm are

presented in Section 5.

2 LINEAR RECURSIONS ON WEIGHTED BRANCHING PROCESSES

As mentioned in the introduction, the endogenous solution to (1) can be explicitly constructed on a weighted

branching process. To describe the structure of a weighted branching process, let N+ = {1,2,3, . . .} be

the set of positive integers and let U =
⋃∞

k=0(N+)
k be the set of all finite sequences i = (i1, i2, . . . , in),

n ≥ 0, where by convention N
0
+ = { /0} contains the null sequence /0. To ease the exposition, we will use

(i, j) = (i1, . . . , in, j) to denote the index concatenation operation.

Next, let (Q,N,C1,C2, . . .) be a real-valued vector with N ∈ N. We will refer to this vector as the

generic branching vector. Now let {(Qi,Ni,C(i,1),C(i,2), . . .)}i∈U be a sequence of i.i.d. copies of the generic

branching vector. To construct a weighted branching process we start by defining a tree as follows: let

A0 = { /0} denote the root of the tree, and define the nth generation according to the recursion

An = {(i, in) ∈U : i ∈ An−1,1 ≤ in ≤ Ni}, n ≥ 1.

Now, assign to each node i in the tree a weight Πi according to the recursion

Π /0 ≡ 1, Π(i,in) =C(i,in)Πi, n ≥ 1,

see Figure 1. If P(N < ∞) = 1 and Ci ≡ 1 for all i ≥ 1, the weighted branching process reduces to a

Galton-Watson process.
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For a weighted branching process with generic branching vector (Q,N,C1,C2, . . .), define the process

{R(k) : k ≥ 0} as follows:

R(k) =
k

∑
j=0

∑
i∈A j

QiΠi, k ≥ 0. (5)

By focusing on the branching vector belonging to the root node, i.e., (Q /0,N/0,C1,C2, . . .) we can see that

the process {R(k)} satisfies the distributional equations

R(0) = Q /0
D
= Q

R(k) = Q /0 +
N/0

∑
r=1

Cr

(

k

∑
j=1

∑
(r,i)∈A j

Q(r,i)Π(r,i)/Cr

)

D
= Q+

N

∑
r=1

CrR
(k−1)
r , k ≥ 1, (6)

where R
(k−1)
r are i.i.d. copies of R(k−1), all independent of (Q,N,C1,C2, . . .). Here and throughout the

paper the convention is that XY/Y ≡ 1 if Y = 0. Moreover, if we define

R =
∞

∑
j=0

∑
i∈A j

QiΠi, (7)

we have the following result. We use x∨ y to denote the maximum of x and y.

Proposition 1 Let β ≥ 1 be such that E[|Q|β ]< ∞ and E
[

(

∑
N
i=1 |Ci|

)β
]

< ∞. In addition, assume either

(i) (ρ1 ∨ρβ ) < 1 , or (ii) β = 2, ρ1 = 1, ρβ < 1 and E[Q] = 0. Then, there exist constants Kβ > 0 and

0 < cβ < 1 such that for R(k) and R defined according to (5) and (7), respectively, we have

sup
k≥0

E
[

|R(k)|β
]

≤ Kβ < ∞ and E
[

|R(k)−R|β
]

≤ Kβ ck+1
β .

Proof. For the case ρ1 ∨ρβ < 1, Lemma 4.4 in Jelenković and Olvera-Cravioto (2012a) gives that for

Wn = ∑i∈An
QiΠi and some finite constant Hβ we have

E
[

|Wn|
β
]

≤ Hβ (ρ1 ∨ρβ )
n.

Let cβ = ρ1 ∨ρβ . Minkowski’s inequality then gives

∣

∣

∣

∣

∣

∣R
(k)
∣

∣

∣

∣

∣

∣

β
≤

k

∑
n=0

||Wn||β ≤
∞

∑
n=0

(

Hβ cn
β

)1/β
=





Hβ

1− c
1/β

β





1/β

,
(

Kβ

)1/β
< ∞.

Similarly,

∣

∣

∣

∣

∣

∣R
(k)−R

∣

∣

∣

∣

∣

∣

β
≤

∞

∑
n=k+1

||Wn||β ≤
∞

∑
n=k+1

(

Hβ cn
β

)1/β
= c

(k+1)/β

β

(

Hβ

1− (ρ1 ∨ρβ )1/β

)1/β

=
(

Kβ ck+1
β

)1/β
.

For the case β = 2, ρ1 = 1, ρβ < 1 and E[Q] = 0 we have that

E
[

W 2
n

]

= E





(

N/0

∑
r=1

CrWn−1,r

)2


= E

[

N/0

∑
r=1

C2
r (Wn−1,r)

2 + ∑
1≤r 6=s≤N/0

CrCsWn−1,rWn−1,s

]

,
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where Wn−1,r = ∑(r,i)∈An
Q(r,i)Π(r,i)/Cr, and the {Wn−1,r}r≥1 are i.i.d. copies of Wn−1, independent of

(N/0,C1,C2, . . .). Since E[Wn] = 0 for all n ≥ 0, it follows that

E[W 2
n ] = ρ2E[W 2

n−1] = ρn
2 E[W 2

0 ] = Var(Q)ρn
2 .

The two results now follow from the same arguments used above with H2 = Var(Q) and c2 = ρ2.

It follows from the previous result that under the conditions of Proposition 1, R(k) converges to R both

almost surely and in Lβ -norm. Similarly, if we ignore the Q in the generic branching vector, assume that

Ci ≥ 0 for all i, and define the process

W (k) = ∑
i∈Ak

Πi =
N/0

∑
r=1

Cr

(

∑
(r,i)∈Ak

Π(r,i)/Cr

)

D
=

N

∑
r=1

CrW
(k−1)
r ,

where the {W
(k−1)
r }r≥1 are i.i.d. copies of W (k−1) independent of (N,C1,C2, . . .), then it can be shown

that {W (k)/ρk
1 : k ≥ 0} defines a nonnegative martingale which converges almost surely to the endogenous

solution of the stochastic fixed-point equation

W
D
=

N

∑
i=1

Ci

ρ1

Wi,

where the {Wi}i≥1 are i.i.d. copies of W , independent of (N,C1,C2, . . .). We refer to this equation as the

homogeneous case.

As mentioned in the introduction, our objective is to generate a sample of R(k) for values of k sufficiently

large to suitably approximate R. Our proposed algorithm can also be used to simulate W (k), but due to

space limitations we will omit the details.

3 THE ALGORITHM

Note that based on (5), one way to simulate R(k) would be to simulate a weighted branching process starting

from the root and up to the k generation and then add all the weights QiΠi for i ∈
⋃k

j=0 A j. Alternatively,

we could generate a large enough pool of i.i.d. copies of Q which would represent the Qi for i ∈ Ak, and

use them to generate a pool of i.i.d. observations of R(1) by setting

R
(1)
i =

Ni

∑
r=1

C(i,r)R
(0)
r +Qi,

where {(Qi,Ni,C(i,1),C(i,2), . . .)}i≥1 are i.i.d. copies of the generic branching vector, independent of

everything else, and the R
(0)
r are the Q’s generated in the previous step. We can continue this process

until we get to the root node. On average, we would need (E[N])k i.i.d. copies of Q for the first pool

of observations, (E[N])k−1 copies of the generic branching vector for the second pool, and in general,

(E[N])k− j for the jth step. This approach is equivalent to simulating the weighted branching process

starting from the kth generation and going up to the root, and is the result of iterating (3).

Our proposed algorithm is based on this “leaves to root” approach, but to avoid the need for a geometric

number of “leaves”, we will resample from the initial pool to obtain a pool of the same size of observations

of R(1). In general, for the jth generation we will sample from the pool obtained in the previous step

of (approximate) observations of R( j−1) to obtain conditionally independent (approximate) copies of R( j).

In other words, to obtain a pool of approximate copies of R( j) we bootstrap from the pool previously

obtained of approximate copies of R( j−1). The approximation lies in the fact that we are not sampling from
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R( j−1) itself, but from a finite sample of conditionally independent observations that are only approximately

distributed as R( j−1). The algorithm is described below.

Let (Q,N,C1,C2, . . .) denote the generic branching vector defining the weighted branching process.

Let k be the depth of the recursion that we want to simulate, i.e., the algorithm will produce a sample of

random variables approximately distributed as R(k). Choose m ∈ N+ to be the bootstrap sample size. For

each 0 ≤ j ≤ k, the algorithm outputs P( j,m) ,

(

R̂
( j,m)
1 , R̂

( j,m)
2 , . . . , R̂

( j,m)
m

)

, which we refer to as the sample

pool at level j.

1. Initialize: Set j = 0. Simulate a sequence {Qi}
m
i=1 of i.i.d. copies of Q and let R̂

(0,m)
i = Qi for

i = 1, . . . ,m. Output P(0,m) =
(

R̂
(0,m)
1 , R̂

(0,m)
2 , . . . , R̂

(0,m)
m

)

and update j = 1.

2. While j ≤ k:

(a) Simulate a sequence {(Qi,Ni,C(i,1),C(i,2), . . .)}
m
i=1 of i.i.d. copies of the generic branching

vector, independent of everything else.

(b) Let

R̂
( j,m)
i = Qi +

Ni

∑
r=1

C(i,r)R̂
( j−1,m)
(i,r) , i = 1, . . . ,m, (8)

where the R̂
( j−1,m)
(i,r) are sampled uniformly with replacement from the pool P( j−1,m).

(c) Output P( j,m) =
(

R̂
( j,m)
1 , R̂

( j,m)
2 , . . . , R̂

( j,m)
m

)

and update j = j+1.

Remark 2 To simulate an approximation for the endogenous solution to the maximum equation (2), given

by R =
∨∞

j=0

∨

i∈A j
QiΠi, simply replace (8) with

R̂
( j,m)
i = Qi ∨

Ni
∨

r=1

C(i,r)R̂
( j−1,m)
(i,r) , i = 1, . . . ,m.

Bootstrapping refers broadly to any method that relies on random sampling with replacement (Efron

and Tibshirani 1993). For example, bootstrapping can be used to estimate the variance of an estimator, by

constructing samples of the estimator from a number of resamples of the original dataset with replacement.

With the same idea, our algorithm draws samples uniformly with replacement from the previous bootstrap

sample pool. Therefore, the R̂
( j−1,m)
(i,r) on the right-hand side of (8) are only conditionally independent given

P( j−1,m). Hence, the samples in P( j,m) are identically distributed but not independent for j ≥ 1.

As we mentioned earlier, the distribution of the {R̂
( j,m)
i } in P( j,m) are only approximately distributed

as R( j), with the exception of the {R̂
(0,m)
i } which are exact. The first thing that we need to prove is

that the distribution of the observations in P( j,m) does indeed converge to that of R( j). Intuitively, this

should be the case since the empirical distribution of the {R̂
(0,m)
i } is the empirical distribution of m i.i.d.

observations of R(0), and therefore should be close to the true distribution of R(0) for suitably large m.

Similarly, since the {R̂
(1,m)
i } are constructed by sampling from the empirical distribution of P(0,m), which

is close to the true distribution of R(0), then their empirical distribution should be close to the empirical

distribution of R(1), which in turn should be close to the true distribution of R(1). Inductively, provided

the approximation is good in step j−1, we can expect the empirical distribution of P( j,m) to be close to

the true distribution of R( j). In the following section we make the mode of the convergence precise by

considering the Kantorovich-Rubinstein distance between the empirical distribution of P( j,m) and the true

distribution of R( j).
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The second technical aspect of our proposed algorithm is the lack of independence among the observations

in P(k,m), since a natural estimator for quantities of the form E[h(R(k))] would be to use

1

m

m

∑
i=1

h(R̂
(k,m)
i ). (9)

Hence, we also provide a result establishing the consistency of estimators of the form in (9) for a suitable

family of functions h.

We conclude this section by pointing out that the complexity of the algorithm described above is of

order km, while the naive Monte Carlo approach described earlier, which consists on sampling m i.i.d.

copies of a weighted branching process up to the kth generation, has order (E[N])km. This is a huge gain

in efficiency.

4 CONVERGENCE AND CONSISTENCY

In order to show that our proposed algorithm does indeed produce observations that are approximately

distributed as R(k) for any fixed k, we will show that the empirical distribution function of the observations

in P(k,m) , i.e.,

F̂k,m(x) =
1

m

m

∑
i=1

1(R̂
(k,m)
i ≤ x)

converges as m → ∞ to the true distribution function of R(k), which we will denote by Fk. We will show

this by using the Kantorovich-Rubinstein distance, which is a metric on the space of probability measures.

In particular, convergence in this sense is equivalent to weak convergence plus convergence of the first

absolute moments.

Definition 1 let M(µ,ν) denote the set of joint probability measures on R×R with marginals µ and ν .

then, the Kantorovich-Rubinstein distance between µ and ν is given by

d1(µ,ν) = inf
π∈M(µ,ν)

∫

R×R

|x− y|dπ(x,y).

We point out that d1 is only strictly speaking a distance when both µ and ν have finite first absolute

moments. Moreover, it is well known that

d1(µ,ν) =
∫ 1

0
|F−1(u)−G−1(u)|du =

∫ ∞

−∞
|F(x)−G(x)|dx. (10)

where F and G are the cumulative distribution functions of µ and ν , respectively, and f−1(t) = inf{x ∈
R : f (x) ≥ t} denotes the pseudo-inverse of f . It follows that the optimal coupling of two real random

variables X and Y is given by (X ,Y ) = (F−1(U),G−1(U)), where U is uniformly distributed in [0,1].

Remark 3 The Kantorovich-Rubinstein distance is also known as the Wasserstein metric of order 1. In

general, both the Kantorovich-Rubinstein distance and the more general Wasserstein metric of order p can

be defined in any metric space; we restrict our definition in this paper to the real line since that is all we

need. We refer the interested reader to (Villani 2009) for more details.

With some abuse of notation, for two distribution functions F and G we use d1(F,G) to denote the

Kantorovich-Rubinstein distance between their corresponding probability measures.

The following proposition shows that for i.i.d. samples, the expected value of the Kantorovich-Rubinstein

distance between the empirical distribution function and the true distribution converges to zero.

Proposition 4 Let {Xi}i≥1 be a sequence of i.i.d. random variables with common distribution F . Let Fn

denote the empirical distribution function of a sample of size n. Then, provided there exists α ∈ (1,2)
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such that E [|X1|
α ]< ∞, we have that

E [d1(Fn,F)]≤ n−1+1/α

(

2α

α −1
+

2

2−α

)

E[|X1|
α ].

Proposition 4 can be proved following the same arguments used in the proof of Theorem 2.2 in del

Barrio, Giné, and Matrán (1999) by setting M = 1, and thus we omit it.

We now give the main theorem of the paper, which establishes the convergence of the expected

Kantorovich-Rubinstein distance between F̂k,m and Fk. Its proof is based on induction and the explicit

representation (10). Recall that ρβ = E
[

∑
N
i=1 |Ci|

β
]

.

Theorem 5 Suppose that the conditions of Proposition 1 are satisfied for some β > 1. Then, for any

α ∈ (1,2) with α ≤ β , there exists a constant Kα < ∞ such that

E
[

d1(F̂k,m,Fk)
]

≤ Kαm−1+1/α
k

∑
i=0

ρ i
1. (11)

Proof. By Proposition 1 there exists a constant Hα such that

Hα = sup
k≥0

E
[

|R(k)|α
]

≤ sup
k≥0

(

E
[

|R(k)|β
])α/β

< ∞.

Set Kα = Hα

(

2α
α−1

+ 2
2−α

)

. We will give a proof by induction.

For j = 0, we have that F̂0,m(x) =
1
m ∑

m
i=1 1(Qi ≤ x), where {Qi}i≥1 is a sequence of i.i.d. copies of Q.

It follows that F̂0,m is the empirical distribution function of R(0), and by Proposition 4 we have that

E
[

d1(F̂0,m,F0)
]

≤ Kαm−1+1/α .

Now suppose that (11) holds for j− 1. Let {Ui
r}i,r≥1 be a sequence of i.i.d. Uniform(0,1) random

variables, independent of everything else. Let {(Qi,Ni,C(i,1),C(i,2), . . .)}i≥1 be a sequence of i.i.d. copies

of the generic branching vector, also independent of everything else. Recall that Fj−1 is the distribution

function of R( j−1) and define the random variables

R̂
( j,m)
i =

Ni

∑
r=1

C(i,r)F̂
−1
j−1,m(U

i
r)+Qi and R

( j)
i =

Ni

∑
r=1

C(i,r)F
−1
j−1(U

i
r)+Qi

for each i = 1,2, . . . ,m. Now use these random variables to define

F̂j,m(x) =
1

m

m

∑
i=1

1(R̂
( j,m)
i ≤ x) and Fj,m(x) =

1

m

m

∑
i=1

1(R
( j)
i ≤ x).

Note that Fj,m is an empirical distribution function of i.i.d. copies of R( j), which has been carefully coupled

with the function F̂j,m produced by the algorithm.

By the triangle inequality and Proposition 4 we have that

E
[

d1(F̂j,m,Fj)
]

≤ E
[

d1(F̂j,m,Fj,m)
]

+E [d1(Fj,m,Fj)]≤ E
[

d1(F̂j,m,Fj,m)
]

+Kαm−1+1/α .

To analyze the remaining expectation note that

E
[

d1(F̂j,m,Fj,m)
]

= E

[

∫ ∞

−∞
|F̂j,m(x)−Fj,m(x)|dx

]

≤
1

m

m

∑
i=1

E

[

∫ ∞

−∞

∣

∣

∣1(R̂
( j,m)
i ≤ x)−1(R

( j)
i ≤ x)

∣

∣

∣dx

]

=
1

m

m

∑
i=1

E
[∣

∣

∣R̂
( j,m)
i −R

( j)
i

∣

∣

∣

]

=
1

m

m

∑
i=1

E

[∣

∣

∣

∣

∣

Ni

∑
r=1

C(i,r)(F̂
−1
j−1,m(U

i
r)−F−1

j−1(U
i
r))

∣

∣

∣

∣

∣

]

≤ E

[

N

∑
r=1

|Cr|

]

E
[

d1(F̂j−1,m,Fj−1)
]

,
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where in the last step we used the fact that (Ni,C(i,1),C(i,2), . . .) is independent of
{

Ui
r

}

r≥1
and of F̂j−1,m,

combined with the explicit representation of the Kantorovich-Rubinstein distance given in (10). The

induction hypothesis now gives

E
[

d1(F̂j,m,Fj)
]

≤ ρ1E
[

d1(F̂j−1,m,Fj−1)
]

+Kαm−1+1/α ≤ Kαm−1+1/αρ1

j−1

∑
i=0

ρ i
1 +Kαm−1+1/α

= Kαm−1+1/α
j

∑
i=0

ρ i
1.

This completes the proof.

Note that the proof of Theorem 5 implies that R̂
( j,m)
i → R

( j)
i =∑

Ni

r=1C(i,r)F
−1
j−1(U

i
r)+Qi

D
= R( j) in L1-norm

for all fixed j ∈ N, and hence in distribution. In other words,

P
(

R̂
(k,m)
i ≤ x

)

→ Fk(x) as m → ∞, (12)

for all i = 1,2, . . . ,m, and for any continuity point of Fk. This also implies that

E
[

F̂k,m(x)
]

= P
(

R̂
(k,m)
1 ≤ x

)

→ Fk(x) as m → ∞, (13)

for all continuity points of Fk.

Since our algorithm produces a pool P(k,m) of m random variables approximately distributed according

to Fk, it makes sense to use it for estimating expectations related to R(k). In particular, we are interested

in estimators of the form in (9). The problem with this kind of estimators is that the random variables in

P(k,m) are only conditionally independent given F̂k−1,m.

Definition 2 We say that Θn is a consistent estimator for θ if Θn
P
→ θ as n → ∞, where

P
→ denotes

convergence in probability.

Our second theorem shows the consistency of estimators of the form in (9) for a broad class of functions.

Theorem 6 Suppose that the conditions of Proposition 1 are satisfied for some β > 1. Suppose h : R→R

is continuous and |h(x)| ≤C(1+ |x|) for all x ∈ R and some constant C > 0. Then, the estimator

1

m

m

∑
i=1

h(R̂
(k,m)
i ) =

∫

R

h(x)dF̂k,m(x),

where P(k,m) =
(

R̂
(k,m)
1 , R̂

(k,m)
2 , . . . , R̂

(k,m)
m

)

, is a consistent estimator for E[h(R(k))].

Proof. For any M > 0, define hM(x) as

hM(x) = h(−M)1(x ≤−M)+h(x)1(−M < x ≤ M)+h(M)1(x > M),

and note that hM is uniformly continuous. We then have

∣

∣

∣

∣

∫

R

h(x)dF̂k,m(x)−
∫

R

h(x)dFk(x)

∣

∣

∣

∣

≤ 2C

∫

|x|>M
(1+ |x|)dFk(x)+2C

∫

|x|>M
(1+ |x|)dF̂k,m(x)

+

∣

∣

∣

∣

∫

R

hM(x)dF̂k,m(x)−
∫

R

hM(x)dFk(x)

∣

∣

∣

∣

. (14)
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Fix ε > 0 and choose Mε > 0 such that E
[

(|R(k)|+1)1(|R(k)|> Mε)
]

≤ ε/(4C) and such that −Mε and Mε

are continuity points of Fk. Define (R̂(k,m),R(k)) = (F̂−1
k,m(U),F−1

k (U)), where U is a uniform [0,1] random

variable independent of P(k,m). Next, note that g(x) = 1+ |x| is Lipschitz continuous with Lipschitz

constant one and therefore
∫

|x|>Mε

(1+ |x|)dF̂k,m(x) = (1+Mε)
(

F̂k,m(−Mε)+1− F̂k,m(Mε)
)

+
∫

x<−Mε

F̂k,m(x)dx+
∫

x>Mε

(1− F̂k,m(x))dx

≤ (1+Mε)
(

F̂k,m(−Mε)+1− F̂k,m(Mε)
)

+d1(F̂k,m,Fk)

+
∫

x<−Mε

Fk(x)dx+
∫

x>Mε

(1−Fk(x))dx

= (1+Mε)
(

F̂k,m(−Mε)−Fk(−Mε)+Fk(Mε)− F̂k,m(Mε)
)

+d1(F̂k,m,Fk)

+E
[

(|R(k)|+1)1(|R(k)|> Mε)
]

.

Finally, since hMε is bounded and uniformly continuous, then ω(δ ) = sup{|hMε (x)−hMε (y)| : |x−y| ≤ δ}
converges to zero as δ → 0. Hence, for any γ > 0,

∣

∣

∣

∣

∫

R

hMε (x)dF̂k,m(x)−
∫

R

hMε (x)dFk(x)

∣

∣

∣

∣

≤ E
[∣

∣

∣hMε (R̂
(k,m))−hMε (R

(k))
∣

∣

∣

∣

∣

∣
F̂k,m

]

≤ ω(m−γ)+KεE
[

1
(

|R̂(k,m)−R(k)|> m−γ
)∣

∣

∣
F̂k,m

]

≤ ω(m−γ)+Kεmγd1(F̂k,m,Fk),

where 2Kε = sup{|hMε (x)| : x ∈R}. Choose 0 < γ < 1−1/α for the α ∈ (1,2) in Theorem 5 and combine

the previous estimates to obtain

E

[∣

∣

∣

∣

∫

R

h(x)dF̂k,m(dx)−
∫

R

h(x)dFk(dx)

∣

∣

∣

∣

]

≤ 2C(1+Mε)
(

E[F̂k,m(−Mε)]−Fk(−Mε)+Fk(Mε)−E[F̂k,m(Mε)]
)

+ ε +ω(m−γ)+(2C+Kεmγ)E
[

d1(F̂k,m,Fk)
]

.

Since E[F̂k,m(−Mε)]→ Fk(−Mε) and E[F̂k,m(Mε)]→ Fk(Mε) by (13), and mγE
[

d1(F̂k,m,Fk)
]

→ 0 by The-

orem 5, it follows that

limsup
m→∞

E

[∣

∣

∣

∣

∫

R

h(x)dF̂k,m(dx)−
∫

R

h(x)dFk(dx)

∣

∣

∣

∣

]

≤ ε.

Since ε > 0 was arbitrary, the convergence in L1, and therefore in probability, follows.

5 NUMERICAL EXAMPLES

This last section of the paper gives a numerical example to illustrate the performance of our algorithm.

Consider a generic branching vector (Q,N,C1,C2, . . .) where the {Ci}i≥1 are i.i.d. and independent of N

and Q, with N also independent of Q.

Figure 2a plots the empirical cumulative distribution function of 1000 samples of R(10, i.e., F10,1000 in

our notation, versus the functions F̂10,200 and F̂10,1000 produced by our algorithm, for the case where the Ci

are uniformly distributed in [0,0.2], Q uniformly distributed in [0,1] and N is a Poisson random variable

with mean 3. Note that we cannot compare our results with the true distribution F10 since it is not available

in closed form. Computing F10,1000 required 883.3 seconds using Python with an Intel i7-4700MQ 2.40

GHz processor and 8 GB of memory, while computing F̂10,1000 required only 2.1 seconds. We point out
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(b) The functions 1−F10,10000(x), 1− F̂10,10000(x)
and G10(x), where G10 is evaluated only at integer

values of x and linearly interpolated in between.

Figure 2: Numerical examples.

that in applications to information ranking algorithms E[N] can be in the thirties range, which would make

the difference in computation time even more impressive.

Our second example plots the tail distribution of the empirical cumulative distribution function of R(10)

for 10,000 samples versus the tail of F̂10,10000 for an example where N is a zeta random varialbe with a

probability mass function P(N = k) ∝ k−2.5, Q is an exponential random variable with mean 1, and the

Ci have a uniform distribution in [0,0.5]. In this case the exact asymptotics for P(R(k) > x) as x → ∞ are

given by

P(R(k) > x)∼
(E[C1]E[Q])α

(1−ρ1)α

k

∑
j=0

ρ
j

α(1−ρ
k− j
1 )αP(N > x),

where P(N > x) = x−αL(x) is regularly varying (see Lemma 5.1 in Jelenković and Olvera-Cravioto (2010)),

which reduces for the specific distributions we have chosen to

G10(x),
(0.25)2.5

(1− (0.49))2.5

10

∑
j=0

(0.07) j(1− (0.49)10− j)2.5P(N > x) = (0.365)P(N > x).

Figure 2b plots the complementary distributions of F10,10000, F̂10,10000 and compares them to G. We can

see that the tails of both F10,10000 and F̂10,10000 approach the asymptotic roughly at the same time.
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