
This article was downloaded by: [138.51.13.13] On: 22 March 2021, At: 16:49
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Duopoly Competition with Network Effects in Discrete
Choice Models
Ningyuan Chen, Ying-Ju Chen

To cite this article:
Ningyuan Chen, Ying-Ju Chen (2021) Duopoly Competition with Network Effects in Discrete Choice Models. Operations
Research 69(2):545-559. https://doi.org/10.1287/opre.2020.2079

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2021, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2020.2079
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


OPERATIONS RESEARCH
Vol. 69, No. 2, March–April 2021, pp. 545–559

http://pubsonline.informs.org/journal/opre ISSN 0030-364X (print), ISSN 1526-5463 (online)

Crosscutting Areas

Duopoly Competition with Network Effects in Discrete
Choice Models
Ningyuan Chen,a Ying-Ju Chenb,c

aRotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada; b School of Business and Management,
The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; c School of Engineering, The Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Contact:ningyuan.chen@utoronto.ca, https://orcid.org/0000-0002-3948-1011 (NC); imchen@ust.hk, https://orcid.org/0000-0002-5712-1829 (Y-JC)

Received: August 9, 2018
Revised: March 9, 2019; October 25, 2019
Accepted: August 5, 2020
Published Online in Articles in Advance:
February 24, 2021

Subject Classifications: games/
noncooperative; marketing/choice models;
marketing/competition
Area of Review: Revenue Management

https://doi.org/10.1287/opre.2020.2079

Copyright: © 2021 INFORMS

Abstract. We consider two firms selling products to a market of network-connected cus-
tomers. Each firm is selling one product, and the two products are substitutable. The cus-
tomersmake purchases based on themultinomial logit model, and the firms compete for their
purchasing probabilities. We characterize possible Nash equilibria for homogeneous network
interactions and identical firms: When the network effects are weak, there is a symmetric
equilibrium that the two firms evenly split the market; when the network effects are strong,
there exist two asymmetric equilibria additionally, in which one firm dominates the market;
interestingly, when the product quality is low and the network effects are neither tooweak nor
too strong, the resultingmarket equilibrium is never symmetric, although the firms are ex ante
symmetric. We extend these results along multiple directions. First, when the products have
heterogeneous qualities, the firm selling inferior product can still retain market dominance in
equilibrium due to the strong network effects. Second, when the network effects are het-
erogeneous, customerswith higher social influences or larger price sensitivities aremore likely
to purchase either product in the symmetric equilibrium. Third, when the network consists of
two communities, market segmentation may arise. Fourth, we extend to the dynamic game
when the network effects build up over time to explain the first-mover advantage.
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1. Introduction
Network effects are widely observed when human
beings engage in social interactions. They arise from
the “payoff externality,” in the sense that an indi-
vidual’s payoff depends not only on her own action,
but also on the actions chosen by others. Examples
abound, from the classical videotapes, keyboards,
operating systems, and telecommunication networks,
to recent online games, cloud services, and mobile
apps. For instance, Dropbox allows users to conve-
niently share their files across platforms; users are
likely to choose Dropbox over other service providers
(e.g., Google Drive and OneDrive) if many of their
colleagues have already adopted Dropbox. As an-
other example, an increasing amount of users on one
side of a two-sided market (such as Airbnb) attracts
more users on the other side and, thus, generates
network effects for the users on the same side.

Because network effects largely enhance individ-
uals’ willingness to pay through the cascade of

externalities, the aforementioned industries are
highly profitable, and network effects lift the po-
tential and competition there to the next level.
Competition over networks gives rise to various
phenomena that could not be observed in conven-
tional industry structures. In particular, it is widely
believed that network effects create the winner-
take-all phenomenon (Bruner 2014): A product
(such as Dropbox) may capture a dominant market
share over its seemingly identical alternatives (such
as OneDrive). It is also pointed out in several studies
(Banerji and Dutta 2009, Bimpikis et al. 2016) that
the network structure is related to market segmen-
tation: Product adoption may vary tremendously
from segment to segment in the network (e.g.,
WeChat in China, Facebook’s Messenger in North
America, and WhatsApp in other regions; see Sevitt
2016). Such market dominance and market segmen-
tation do not arise if the market were monopolized
by a single firm.
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This paper attempts to gain deep understanding
of the firms’ competitive strategies when customers’
purchasing decisions are influenced by network effects.
We pay particular attention to the emergence of market
dominance and market segmentation in the form of
asymmetric equilibria. In pursuit of this goal, we con-
sider two firms that sell their substitutable products
to a market of network-connected customers. The
customers choose between the two products or leave
the market without purchasing. They make their
decisions based on price, quality, and the anticipated
network effect, in the sense that they are influenced by
the choices of their neighbors in the network. We
describe the choice process by a multinomial logit
(MNL)model (Anderson et al. 1992, McFadden 2001).
The MNL model has been very successful in cap-
turing discrete choices, due to its analytical tracta-
bility and interpretability. We focus on the Cournot-
type competition: The firms’ decision variables are
customers’ choice probabilities, or, equivalently, the
market shares, rather than the prices. We provide
practical and theoretical justifications for this mod-
eling choice in Section EC.3.1 of the online appendix.

Despite the parsimony of our model, the equilib-
rium analysis turns out to be highly intractable. The
complexity can be attributed to three sources: the
network interactions, the nonconcave payoff function
arising from the MNL model, and asymmetric equi-
libria. To the best of our knowledge, the first issue
has only been addressed under models with special
structures (such as Hotelling’s model and the linear-
quadratic framework; see Section 2 for more details)
in the literature, and the second and third issues have
not been addressed in this context. To circumvent the
difficulty and find the pure-strategy Nash equilibria
of the duopoly competition, we adopt a novel ap-
proach that focuses on the inverses of the best-
response functions (see Section 4). It allows us to
obtain analytical results, whereas selecting best re-
sponses from the local maxima of a nonconcave
function is virtually impossible.

We show that, depending on the products’ qualities
and the strength of the network effects, the Nash equi-
libria exhibit highly distinct features. When the prod-
ucts are symmetric and customers are homogeneous—
that is, the network that connects customers is a
complete graph—a single symmetric Nash equilib-
rium arises if the network effects are weak. At the
other extreme, when the network effects are strong
enough, there exist three Nash equilibria: two stable
asymmetric Nash equilibria, in which one firm cap-
tures almost all the entire market and the other firm is
left with little market share, and an unstable sym-
metric Nash equilibrium. The stable equilibria exhibit
some form of market dominance, and it emerges be-
cause of strengthened competition.

To understand the intuition, note that when the
network effects are not strong, customers’ purchas-
ing decisions are primarily driven by their intrinsic
consumption values. Thus, given that the firms are ex
ante symmetric, they equally split the market. When
the network effects are very strong, however, the
network effects start to take over. This, in fact, ho-
mogenizes the products, because now the firms pri-
marily compete on attracting the critical mass of
customers. In this vein, equal splitting becomes un-
stable, and the market structure is geared toward one
firm dominating the other. Notably, this asymmetric
equilibrium is also more efficient in terms of boosting
customers’ willingness to pay.
Under the same assumption of homogeneous cus-

tomers and products, when the product quality is low
and the network effects are neither too weak nor too
strong, the resulting market equilibrium is never sym-
metric, even if the firms are ex ante symmetric. This
result is somewhat paradoxical, but particularly ro-
bust, because it implies the nonexistence of even
unstable symmetric equilibria. In this sense, our result
demonstrates a strong rebuttal to the conventional,
and perhaps naı̈ve, intuition that symmetric equi-
libria shall exist for symmetric firms. We are not
aware of any priorwork that proves this in the context
of network effects with competition.
We next consider products with heterogeneous qual-

ities. When the network effects are strong enough, we
establish the existence of two Nash equilibria corre-
sponding to the respective market-dominance positions
of each firm, regardless of their quality difference. This
implies that, even though one product is far inferior to
its competitor, it may still retain market dominance
due to the strong network effects. This could happen,
for example, if the product has a first-mover advan-
tage. Some classical examples include the battle be-
tween VHS and Beta in the videotape industry and
the victory of the QWERTY keyboard over others.1

Our second result justifies the investment in quality
improvement: If the quality difference is sufficiently
large, the superior product can penetrate the network
effects and secure its dominating position, which is the
only equilibrium outcome of the duopoly competition.
When the network effects are heterogeneous among

customers, we show that the firms are more likely to sell
to customers with higher social influences and larger
price sensitivities in the symmetric equilibrium. We also
study networks consisting of two communities—that is,
the connectivity inside each community is homoge-
neous,which is different from the externality between
communities. Such a network structure encompasses
many special networks that are investigated in the
literature, such as star graphs and complete bipartite
graphs. We show that market segmentation may arise
under the network effects: One product is dominating
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in one community, while the other product is popular
in the other community. This market segmentation
emerges if the network effects inside communities are
relatively strong in comparison with those between
communities. In the opposite case, wherein the net-
work effects between communities is stronger than
those within communities, the aforementioned seg-
mentation is no longer sustainable.

Finally, the game is extended to a dynamic setting,
when customers cannot coordinate perfectly and the
network effects build up over time. We show the
existence of the pure-strategy, open-loop Nash equilib-
rium. The steady state of the dynamic game is closely
related to the Nash equilibrium of a static game with
transformed parameters. We also provide an expla-
nation for the first-mover advantage using the dy-
namic game.

The rest of this paper is organized as follows.
Section 2 reviews some relevant literature. Section 3
introduces our model setup. In Section 4, we consider
the case with homogeneous customers—that is, the
network is a complete graph. We discuss the possible
equilibria with both symmetric and heterogeneous
firms. Section 5 discusses heterogeneous network
effects. In Section 6, we investigate the dynamic
version of the game. Section 7 concludes. All proofs
are included in the online appendix.

2. Literature Review
The study of the network effect and its influence on
economic activities has attracted many researchers in
the last few decades. Because of the seminal paper by
Katz and Shapiro (1985), monopoly pricing for net-
work goods has been studied extensively in various
settings; see Economides (1996) for a review. Re-
cently, local network effects have become a central
research topic in this area (see, e.g., Ballester et al.
2006). As opposed to global network effects, local net-
work effects capture the heterogeneous interaction be-
tween any pair of agents in the network and, thus, allow
for the analysis of agents’ “centrality” measure. For
example, Candogan et al. (2012), Bloch and Quérou
(2013), and Fainmesser and Galeotti (2015) investi-
gate the pricing problem when customers have local
network effects. Hu et al. (2015) incorporate so-
cial influence into the newsvendor model and study
marketing strategies to leverage the network effect.
Abeliuk et al. (2015) and Maldonado et al. (2018)
study a monopoly offering multiple products to cus-
tomers with social influence and position bias.

Our paper is related to a stream of literature that
investigates competition and network effects. Net-
work effects create complementarity between cus-
tomers’ choices and may significantly change the

market dynamics. For example, Laffont et al. (1998)
study duopoly competition for vertically differenti-
ated products in Hotelling’s model. They show the
existence of two asymmetric customer equilibria, in
which the market is cornered by one of the firms, in
addition to a symmetric equilibrium. See also Einhorn
(1992), Grilo et al. (2001), andKatz and Shapiro (1992).
See Farrell and Klemperer (2007) for a comprehensive
review of earlier papers.
In a more recent paper, Aoyagi (2018) also dem-

onstrates the multiplicity of Nash equilibria in the
customers’ buying subgame. His model uses a graph
to describe the network effects, and the two firms can
price-discriminate. In contrast, Chen et al. (2018)
characterize the unique Nash equilibrium and the
associated prices and consumptions in a closed form,
using quadratic utility functions and linear network
effects. Banerji and Dutta (2009) study market seg-
mentation when two firms use uniform pricing for
their network goods. In terms of model assumptions,
the setups in Calzada and Valletti (2008) and Tan and
Zhou (2021) are close to ours. They consider Bertrand-
type network competition under the MNL model
(or more general choice models). However, they only
study symmetric equilibria and cannot obtain the
insights provided by our model, such as the nonex-
istence of symmetric equilibria when the network
effects are neither tooweak nor too strong. In a setting
similar to ours, Feng and Hu (2017) observe that
market concentration increases with the network
effects. Different from us, theirmodel does not use the
MNL model for customer choice.
Our paper differs from the previous literature in the

following ways. First, we introduce customers’ dis-
crete choice modeling into competition. Customers
do not select a product simply because it generates a
higher utility than its competitor; instead, a choice
probability is assigned to each product, as well as the
no-purchase option. Second, in some previous pa-
pers, the multiplicity of Nash equilibria arises from
customers’ buying subgame, as customers have dif-
ferent expectations of the network effects. In contrast,
we focus on Cournot-type competition rather than
price competition, following papers such as Katz and
Shapiro (1985), Economides (1996), andDe Palma and
Leruth (1996). As a result, there is no purchasing
subgame in our model and the source of the multi-
plicity of Nash equilibria is the strategic interactions
between the firms. Third, we identify a scenario (see
Proposition 4) in which no symmetric equilibrium exists
for symmetric firms. This happens because the net-
work effects make the firms’ best response discon-
tinuous. To the best of our knowledge, this phe-
nomenon has not been analyzed in the literature.
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As aforementioned, we use the multinomial logit
model for customers’ discrete choices; see Anderson
et al. (1992) and McFadden (2001) for comprehensive
reviews. In this regard,ourpaper is related to the following
studies. Du et al. (2016) study the profit-maximization
problem of a monopoly offering a set of substitutable
products when customers have network effects. The
customers make their choices according to the MNL
model. Like us, they transform the decision variable
from pricing tomarket share.Wang andWang (2016)
show that assortment optimization under the MNL
model with network effects is NP-hard, but a simple
heuristic can achieve near-optimal performance.
Cohen and Zhang (2017) use the MNL model to
capture the decision process of riders choosing be-
tween platforms. Anderson et al. (1992), Bernstein
and Federgruen (2004), Gallego et al. (2006), Aksoy-
Pierson et al. (2013), and Gallego and Wang (2014)
establish various conditions for the existence and
uniqueness of Nash equilibria for theMNLmodel and
its generalizations, such as the mixed multinomial
logit model. They do not consider network effects
among customers. Brock and Durlauf (2001) inves-
tigate the equilibrium properties when individuals
make choices in the presence of social interactions,
according to the MNL model. They find that there
can be one or three choice levels in equilibrium,
depending on the parameter values. Although this ob-
servation seems similar to our Proposition 2 and
Proposition 3, our model and findings differ, in that
there is no competition between firms involved in
their model, and, as mentioned above, symmetric
equilibrium may not exist in our setup.

3. The Model
Consider two firms, X and Y, selling their substitut-
able products to a market of n customers. We use
superscripts X and Y to denote the features of their
respective products. The utilities and choices of
customers are subject to the network effects—that
is, customer j imposes network externality gij ≥ 0 on
customer i. The externality gij quantifies the level of
influence customer j has on customer i, or, equiva-
lently, customer i’s susceptibility to the behavior of
customer j. The role of gij will become clear when we
define the choice modeling of customers later in
the section.

3.1. Customer Choices
Let αX and αY be the quality parameters of the
products and βi be the price sensitivity of customer i.

3.1.1. Choice Probabilities. Given prices pXi and pYi
for i ∈ {1, . . . , n}, the customers anticipate the choice
probabilities of others and the resulting network
effects. It leads to a rational equilibrium, and the

customers form their choice probabilities by the
MNL model. More precisely, customer i’s choice
probability of product X and Y, denoted xi and yi,
satisfies2

xi �
exp αX − βipXi +∑n

j�1 gijxj
{ }

1 + exp αX − βipXi +∑n
j�1 gijxj

{ }
+

exp αY − βipYi +∑n
j�1 gijyj

{ } , (1)

yi �
exp αY − βipYi +∑n

j�1 gijyj
{ }

1 + exp αX − βipXi +∑n
j�1 gijxj

{ }
+

exp αY − βipYi +∑n
j�1 gijyj

{ } . (2)

TheMNLmodel has been very popular and successful
in modeling customer choices. It can be rationalized
by a random utility model with extreme value distri-
butions. More precisely, the utility of product X (Y) to
customer i is the sum of a deterministic part αX −
βipXi +∑n

j�1 gijxj (or αY − βipYi +∑n
j�1 gijyj) and a random

utility following a standard Gumbel distribution.
The deterministic part features the quality of the
product itself, the price, and the network effects.
We refer the readers to Anderson et al. (1992) for
more details.
We investigate personalized pricing here—that is,

different prices are set for different customers. Given
the unique positions of customers in a network,
personalized pricing is more natural within the the-
oretical framework and generates more profits. This
is why it is the focus of many papers in this area
(Candogan et al. 2012, Bloch and Quérou 2013).
Personalized pricing is also made increasingly fea-
sible for digital services and products. For example,
Dropbox used to provide free storage for customers
making referrals, which can be translated to lower
prices. These are the reasons behind our modeling
choice. Nevertheless, some of our results apply to
uniform pricing; see Section 4 and Section EC.3.4 in
the online appendix.

3.1.2. Network Externality or Network Effects. From (1)
and (2), we observe that customer i is more likely
to choose product X than Y if αX − βipXi +∑n

j�1 gijxj
is larger than αY − βipYi +∑n

j�1 gijyj. This can happen
if product X has a better quality (αX > αY), a lower
price (pXi < pYi ), or stronger network externalities
(
∑n

j�1 gijxj >
∑n

j�1 gijyj). The quantity gij captures the
heterogeneous interactions between customers in the
network. For example, in the choice of competing
social networks, if i and j are close friends, then the
choice of jmay have a stronger impact on the choice of
i thanmere acquaintances, and, thus, gij is large. In the
case of collaboration tools such asDropbox, the choice
ismainly drivenby the network effects, andwe expect gij
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to be large if i and j are collaborators.Moreover, we do
not assume gii � 0. Notice that the choice probability
of customer i depends on the choice probabilities of
other customers, not the realization of their discrete
choices. This is because the choice decision is made
simultaneously, and customers do not communicate
or coordinate their decisions.

3.2. Nash Equilibrium
The firms’ expected revenues are given by

∑n
i�1 xipXi

and
∑n

i�1 yipYi , respectively, which are simply the
(expected) sales multiplied by the prices. They are the
payoff functions of both firms in the game. We use
the choice probabilities {xi}ni�1, or, equivalently, the
market shares, as thefirms’ decision variables. That is,
we consider Cournot competition.We refer to Section
EC.3.1 in the online appendix for the justification for
this modeling choice. The key step is the following
transformation (see, e.g., Du et al. 2016):

pXi � 1
βi

αX +∑n
j�1

gijxj − log
xi

1 − xi − yi

( )( )
. (3)

The second term in the parentheses represents the
total network externality customer i receives; the
third term is the logarithm of the relative choice
probability of choosing product X to that of the no-
purchase option. In general, pXi can be negative for
given {xi}ni�1 and yi. This cannot happen in equilib-
rium, however, when customers are homogeneous
(see Proposition EC.1 in the online appendix). For
heterogeneous customers (Section 5), negative prices
may arise and can be interpreted as coupons used to
attract high-value customers.3

As Cournot-type competition, the best response of
firm X is therefore to choose a vector {xi}ni�1 to max-
imize its revenue for given {yi}ni�1:

max
xi{ }ni�1

∑n
i�1

xi
βi

αX+∑n
j�1

gijxj− log xi( )+ log

(
1−xi−yi
( ))

subject to 0≤ xi ≤ 1−yi. (4)

Having defined the game primitives, our next prop-
osition establishes the existence of pure-strategy Nash
equilibria. We transform the strategy of firm X to
obtain a supermodular game. The existence, thus,
follows from Milgrom and Roberts (1990).

Proposition 1. The duopoly game defined above has at least
one pure-strategy Nash equilibrium.

To characterize the equilibrium, we first argue that
the constraints 0 ≤ xi ≤ 1 − yi must not be binding in
any best response of firm X, unless yi � 1. Note that
xi � 1 − yi generates −∞ revenue and, thus, can never
be optimal. On the other hand, xi � 0 garners zero

revenue from customer i, while setting xi � ε < 1 − yi
for a sufficiently small ε always guarantees a positive
revenue from customer i and does not reduce the
revenues from other customers for firm X. Therefore,
any equilibrium must satisfy 0 < xi < 1 − yi. It im-
plies that the equilibria are fully characterized by
the first-order conditions. That is, the best response
{x∗i }ni�1 satisfies

αX −1+∑n
j�1

gij+βigji
βj

( )
x∗j − log

x∗i
1−x∗i −yi

− x∗i
1−x∗i −yi

� 0,

(5)
for all i � 1, . . . ,n. A similar first-order condition is
satisfied by the best response of firm Y given {xi}ni�1:

αY−1+∑n
j�1

gij+βigji
βj

( )
y∗j − log

y∗i
1−xi−y∗i

− y∗i
1−xi−y∗i

� 0.

(6)
If {x∗i }ni�1 and {y∗i }ni�1 is a Nash equilibrium in the
duopoly competition, then the two sets of first-order
conditions ((5) and (6)) must be satisfied simulta-
neously. In the remainder of this paper, we will use
this necessary condition to identify pure-strategy
Nash equilibria in different cases.

4. Homogeneous Customers
In this section, we assume that

Assumption 1 (Homogeneous Customers). βi ≡ β, ∀i �
1, . . . ,n, and gij ≡ γ/2n, ∀i, j � 1, . . . ,n.

Assumption 1 indicates that customers are equally
price-sensitive (βi ≡ β), and the network effects are ho-
mogeneous (gij ≡ γ/2n). This is an assumption adopted
by many previous papers (e.g., Katz and Shapiro 1985,
Cabral 2011).4 Because customers are homogeneous,
we also restrict the set of strategies in the assump-
tion below.

Assumption 2. The strategies are symmetric for all cus-
tomers: xi ≡ x and yi ≡ y.

In general, even though customers are homoge-
neous and identical to the firms, there may exist
Nash equilibria in which the choice probabilities of a
product differ across customers.5 We restrict our at-
tention to symmetric strategies because: (1) Our goal
is to examine the asymmetric equilibria arising from
the interaction between the firms, rather than those from
customers. Therefore, focusing on symmetric strategies
allows us to isolate the firms’ competitive behaviors
that lead to market dominance and market segmen-
tation. (2) Some prior papers have examined the
asymmetry arising from consumers (such as Brock
andDurlauf 2001 andDu et al. 2016).We deviate from
these papers because asymmetry arising from firms’
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strategic interactions is orthogonal to their analysis
and less explored. (3) In practice, it is often not fea-
sible to discriminate customers with identical fea-
tures. (4) In Section 5, we relax Assumptions 1 and 2
and show that many insights carry over to the general
case based on the analysis in this section.

4.1. Preliminaries
Given yi ≡ y, the best response of firm X solves the
following univariate optimization problem:

x∗ y
( ) ≡ argmax

0≤x≤1−y
x αX + γx

2
− log x( ) + log

({
1 − x − y
( ))}

.

(7)
By Assumption 1 and the first-order condition (5), x �
x∗(y) satisfies log x

1−x−y + x
1−x−y � αX − 1 + γx. The first-

order condition for y∗(x) can be obtained by symmetry.
The difficulty in analyzing the Nash equilibrium

lies in the fact that (7) may have multiple solutions
because of the nonconcavity of the objective function.
To obtain x∗(y), one has to compare several potential
local maxima. This is virtually infeasible because
those local maxima do not have tractable expressions.

To deal with this difficulty, we use the following
novel approach. In (7), if the best response of X is
given as x � x∗(y), then y has a unique solution that
can be expressed in closed form. More precisely,

Definition 1. Define

ȳ x( ) � 1 − x − x
h−1 αX − 1 + γx

( ) ,
where h−1(·) is thewell-definedinverseofh(t) ≡ t+ log(t).6

Clearly, a given x is the optimal solution to (7) only
if y � ȳ(x). The function ȳ(x) (and symmetrically x̄(y))
can be interpreted as follows: If x is the action of firm X,
then ȳ(x) is the action of firm Y that makes x the best
response. We shall also elaborate on the mathematical
connection between ȳ(·) and x∗(·). If ȳ(·) has a well-
defined inverse, for example, when ȳ(·) is strictly
deceasing, then the inverse ȳ−1(·) coincides with the
best response x∗(·). If ȳ(·) does not have an inverse,
then there may be multiple solutions of x to ȳ(x) � y,
and one of them is the best response x∗(y).

In our approach, we focus on ȳ(·) instead of x∗(·),
thanks to the explicit expression of the former. The
main technical challenge remains to be the non-
monotonicity of ȳ(·). As we shall see in Figure 3, such
nonmonotonicity may lead to discontinuities in the best
response, a surprising outcome in symmetric games.

4.2. Products with Identical Qualities
In this section, our analysis is based on the follow-
ing assumption.

Assumption 3 (Identical Qualities). αX � αY � α.

Assumption 3 suggests that the game is entirely
symmetric, and in the sequel, we characterize Nash
equilibria that may arise.
Under Assumption 3, symmetric equilibria x∗ � y∗

satisfy the first-order condition

log
x∗

1 − 2x∗ +
x∗

1 − 2x∗ � α − 1 + γx∗, (8)

following (5).

4.2.1. Weak Network Effects. When the network ef-
fects are not strong, our first result features a single
symmetric Nash equilibrium. For a given α, define γ1

to be the unique solution to γ1 � h−1(α − 1 + γ1) + 1.

Proposition 2. Suppose Assumptions 1–3 hold. If γ < γ1,
then there exists one and only one equilibrium (x∗, x∗),
where x∗ is the only solution to (8).

The characteristics of symmetric equilibria for sym-
metric firms have been documented in, for example,
Calzada and Valletti (2008), Chen et al. (2018), and
Laffont et al. (1998), where they use the linear demand
model or Hotelling’s model to describe the network
effects. To understand Proposition 2, we illustrate the
best responses in Figure 1. We note that a sufficient
condition for the existence of a single symmetric
equilibrium is the following: The derivative of the best
response, (x∗)′(y), is between −1 and 0 in the domain.
We can show that when γ < γ1, the derivative of ȳ(·) is

Figure 1. (Color online) One Symmetric Nash Equilibrium
Corresponding to Proposition 2

Note. In this example, we set αX � αY � 1 and γ � 5.
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less than −1. Because ȳ(x) is strictly decreasing, it
follows that its inverse is exactly x∗(y). By the property
of function inverses, the derivative of x∗(·) is be-
tween−1 and 0. Symmetrically, the same property can
be obtained for y∗(x), and there must be a single
symmetric and stable Nash equilibrium.

When the network effects are not strong, both firms
take up equalmarket shares in equilibrium, according
to Proposition 2. This result is consistent with our
observations of traditional industries: If two products
are similar, such as Pepsi and Coca-Cola, then the
market is more or less evenly split, and both firms
coexist. This may no longer be the case when the
network effects are strong.

4.2.2. Strong Network Effects. Our next result features
three Nash equilibria when the network effects are
strong enough.

Proposition 3. Suppose Assumptions 1–3 hold. For any
δ ∈ (0, 1/4), there is a constant Γ(α, δ) such that when
γ > Γ, there exist three Nash equilibria:

• Two stable asymmetric Nash equilibria (x∗1 , y∗1) and
(x∗3 , y∗3), in which x∗1 � y∗3 ∈ (1 − δ , 1) and y∗1 � x∗3 ∈ (0, δ);
and

• An unstable symmetric Nash equilibrium (x∗2 , y∗2).
The rise of asymmetric equilibria is pertinent to

discrete-choice modeling. When customers have
linear utilities (Chen et al. 2018) or make choices by
Hotelling’s law (Laffont et al. 1998), only symmetric
equilibria exist.

The best responses and the Nash equilibria of
Proposition 3 are illustrated in Figure 2. The deriva-
tive of the best response y∗(x) changes more drasti-
cally comparedwith Figure 1. In particular, there is an
interval of x (when x is small), in which (y∗)′(x) < −1,
whereas in Proposition 2, we always have (y∗)′(x) >−1.
This phenomenon suggests that y∗(x) + x may de-
crease in x. It, therefore, implies that when the net-
work effects strengthen, the total market share may
decrease as the dominated firm (firmXwhen x is small)
tries to promote its product. Because of the dominated
firm’s aggressive behavior, the leading firm (firm Y)
holds back its market share substantially in order to
maintain a high profitmargin. This crowding-out effect
ismorepronounced than the usual strategic substitution,
which only indicates the direction rather than the
magnitude of firm Y’s adjustment.

An implication of the above difference is that when
the network effects are strong enough, there are
two asymmetric equilibria that can be arbitrarily
close to a market dominance. Here, market dominance
refers to a Nash equilibrium (x∗, y∗), in which one of
the products takes almost all the market share—for
example, x∗ < δ and y∗ > 1 − δ for some small δ.
Moreover, the two asymmetric Nash equilibria are

more likely to emerge than the unstable symmet-
ric equilibria in the following sense: If the two firms
start from a tuple of actions (x0, y0) and play the best
response sequentially (xt, yt) � (x∗(yt−1), y∗(xt)) for t �
1, 2, . . ., then the actions converge to one of the asym-
metric Nash equilibria as t → ∞. In other words, when
the network effects are strong, one of the products
will eventually dominate the market, rather than
two products equally split the market.
The emergence of market dominance arises from

strengthened competition. Specifically, recall from (1)
and (2) that customers’ choices are influenced by two
factors: the appeal of the product itself (measured by
αX − βipXi and αY − βipYi ) and the network externality
(measured by

∑n
j�1 gijxj and

∑n
j�1 gijyj). In addition, the

choice model also embeds a random utility that
captures product differentiation (i.e., the two prod-
ucts are differentiated in nature). When the network
effects are not strong, customers’ purchasing decisions
are primarily driven by their intrinsic consumption
values. Thus, given that the firms are ex ante symmetric,
they naturally equally split the market.
When the network effects are very strong, however,

the network externality terms start to take over. This,
in fact, homogenizes the products, because now the
firms primarily compete on attracting the critical
mass of customers. In this vein, equal splitting be-
comes unstable, and the market structure is geared
toward one firm dominating the other. Notably, this
asymmetric equilibrium is also more efficient in
terms of boosting customers’ willingness to pay.

Figure 2. (Color online) One Symmetric Nash Equilibrium
and Two Asymmetric Nash Equilibria Corresponding to
Proposition 3

Note. In the example, we set αX � αY � −1 and γ � 10.
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When customers “coordinate” on purchasing from the
same firm, their decisions collectively enhance others’
utilities all together. This probably explains why market
dominance can emerge among seemingly identical
products, such as Dropbox and OneDrive. In addition,
the result also implies that when investors invest in
startup firms in industries with strong network effects,
the outcome tends to be binary and riskier.

The “asymmetry” in the equilibrium is regarding
the strategy of the firms—that is, the market share. It
does not directly imply that the dominating firm is
earning more revenue, because it could be retaining
the position by setting very low prices. Our next re-
sult demonstrates the power of network effects: The
leading firm is able to charge a higher price while
gaining a majority of the market at the same time.

Corollary 1. In the asymmetric Nash equilibrium of
Proposition 3, the firm dominating in market share charges
higher prices.

4.2.3. Nonexistence of Symmetric Equilibrium. Our
third result features two asymmetric equilibria (and
no symmetric equilibrium) when the quality is low
and the network effects are neither too weak nor
too strong.

Proposition 4. Suppose Assumptions 1–3 hold. There exist
constants α0, Γ(α), and Γ(α) such that if α < α0 and
γ ∈ (Γ(α),Γ(α)), then there are only two asymmetric equilibria.

Somewhat paradoxically, Proposition 4 documents
the possibility that even if the firms are ex ante
symmetric, the resulting market equilibrium is never
symmetric. This statement remains true, even if we
allow for unstable equilibria. In this sense, our result
demonstrates a strong rebuttal to the conventional,
and perhaps naı̈ve, intuition that symmetric equi-
libria shall exist for symmetric firms.

To help visualize the nonexistence of symmetric
equilibrium, the best responses and the Nash equi-
libria are illustrated in Figure 3. In the online ap-
pendix, we provide the exact expressions of α and the
interval.We verify that for such α and γ in the interval,
ȳ(x) is not monotone. Because of this, the best response
x∗(y) involves selecting the global maximum from the
multiple solutions (local maxima) to ȳ(x) � y, which is
virtually intractable.

To circumvent this difficulty,we directly dealwith ȳ(x).
First, we show that ȳ(x) � x has only one solution x0,
which implies that if a symmetric equilibrium exists,
it must be (x0, x0). Second, we show that ȳ(x) � x0 has
three solutions, including x � x0. Then, the best re-
sponse of firm Xwhen firmYplays x0 is selected from
the three solutions. Furthermore, we prove that x0 is
not a global maximum. In other words, x0 cannot be

the best response among the three solutions. This
observation rules out the existence of any symmetric
equilibria. Third, we analyze the behavior of the
function ȳ(x) when x is approaching 0 and 1 and,
hence, establish the existence of two asymmet-
ric equilibria.
Having articulated the mathematical reasoning for

the nonexistence of symmetric equilibrium, we now
turn to the economic rationale for Proposition 4.
To decipher the counterintuitive phenomenon, it is
crucial to understandwhy the firms’ strategies change
dramatically in response to the competitor’s aggres-
siveness (the discontinuity of the best-response func-
tion). It can only happen when the network effects are
neither too strong nor too weak (γ is in a bounded
interval) and the quality is low:
• When the opponent acts passively—that is,

takes a small market share—then the best response is
to take a large market share to capitalize the (not too
weak) network effects—that is, x∗(y) ≈ 1 − y when y
is small.
• When the opponent acts aggressively—that is,

takes a substantial market share—then the best re-
sponse is to virtually quit the market—that is, x∗(y) ≈ 0
when y is above a threshold (in Figure 3, this happens
when y ≥ 0.36). This is because the remaining market
share does not create strong enough network effects
to overcome the low quality. Therefore, customers
are unwilling to pay much for the product, and
virtually exiting the market turns out to be a better
option for the firm.

Figure 3. (Color online) Two Asymmetric Nash Equilibria
Corresponding to Proposition 4

Note. In this example, we set αX � αY � −2.5 and γ � 15.
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As a result, only asymmetric equilibria arise due to
the discontinuity. Our analysis, therefore, indicates a
concrete operating regime in which such “anom-
aly” occurs.

Remark 1. It is worth pointing out that our method-
ology can be generalized to oligopoly competitions.
When there are n symmetric firms competing with each
other in our model, there does not exist any symmetric
equilibrium when the quality is low and the network
effects are neither too weak nor too strong.

Remark 2. Propositions 2–4 do not exhaust all the
possible values of parameters—for example, when α
and γ are moderate. In theory, more complex equi-
librium structures may emerge. However, based on the
numerical study in Section 4.4, the three types of
equilibria demonstrated from Propositions 2–4 cover
all the cases.

4.3. Differentiated Products
In this section,weconsiderdifferentiatedproducts—that
is, αX 
� αY. One firm’s product is inherently superior to
the competitor’s. Ourfirst result extends Proposition 3:
There are two asymmetric Nash equilibria that are close
to a market dominance when the network effects are
strong enough, regardless of their quality difference.

Proposition 5. Suppose Assumptions 1 and 2 hold. For given
αX, αY, and δ ∈ (0, 1/4), there is a constant Γ(αX, αY, δ) such
that for γ > Γ, there are three Nash equilibria:

• Two stable Nash equilibria (x∗1 , y∗1) and (x∗3 , y∗3), in
which x∗1 , y∗3 ∈ (1 − δ , 1) and y∗1 , x∗3 ∈ (0, δ), and

• An unstable Nash equilibrium (x∗2 , y∗2) such that x∗1 >
x∗2 > x∗3 and y∗1 < y∗2 < y∗3.

It is worthwhile to elaborate on the procedure to
prove Proposition 5. Because the firms (products) are
heterogeneous, we cannot apply the same approach
as in the proof of Proposition 4 (which requires
symmetry). In the first step, we show that when γ is
sufficiently large, both ȳ(x) and x̄(y) are decreasing
and have inverse functions. Moreover, there are, at
most, three Nash equilibria. Next, we compare the
functions ȳ(x) and y∗(x) in a neighborhood of x � 0.We
conclude that ȳ(0) � 1 > y∗(0), but ȳ(·) is decreasing
slightly faster than y∗(·), which leads to an intersection
(a Nash equilibrium) in that neighborhood. By the
same token, a Nash equilibrium exists close to y � 0.
Finally, a Nash equilibrium always exists between the
two equilibria mentioned because the best response is
continuous in this case.

Proposition 5 states that, even though one product,
say, product X, is far inferior to its competitor, it
can still retain market dominance due to the strong
network effects. In the battle between the QWERTY
keyboard and others, QWERTY is widely acknowl-
edged to be inferior to the Dvorak typewriter. Its

victory could be partially explained by our theory, as
the strong network effects lead to the dominance of
the QWERTY keyboard over the Dvorak typewriter
and other alternatives.
Although Proposition 5 hints at the possibility that

an inferior product may dominate the market, the
next result shows that the quality superior firm can
secure its dominating position if the quality difference
is sufficiently large.

Proposition 6. Suppose Assumptions 1 and 2 hold. For
given αY and γ, and δ ∈ (0, 1/4), there is a constant
α0(αY, γ, δ) such that for αX > α0, there exists one and only
one Nash equilibrium (x∗, y∗), where x∗ ∈ (1 − δ , 1).
Proposition 6 does some justice to the firm that

invests substantially in quality: It suggests that if the
qualities are not “in the same league,” then the high-
quality firm will unambiguously become the market
leader. This may explain why Gmail was able to
overtake Hotmail and Yahoo Mail as the largest
global email service, despite the huge customer base
the others have.

4.4. Parameter Ranges and Equilibrium Types
To give a concrete view of the connection between pa-
rameters and equilibrium types, we conduct a numerical
study assuming identical qualities (Assumption 3) to
complement our theoretical studies. More precisely,
we sample α and γ from the range [−6, 6] × [0,∞).
For a particular combination of α and γ, we investi-
gate the resulting equilibrium type after numerically
solving the best-response function. We do not sample
|α| > 6 because exp(±6) ≈ 10±2 already has a different
order of magnitude from the utility of the outside
option 1 in the Choice Probability (1). Thus, α ∈ [−6, 6]
seems to cover the practical range of parameters.
For all the combinations, the numerical results of

the equilibrium structure can always be categorized
into three types: type I (one symmetric Nash equi-
librium; e.g., Figure 1), type II (two Nash equilibria;
e.g., Figure 3), and type III (three Nash equilibria; e.g.,
Figure 2). The ranges of the parameters correspond-
ing to the equilibrium types are listed in Table 1.
For α ≥ −1, a type-II equilibrium structure does not
emerge. The types are not monotone in the parame-
ters: For example, a type-III equilibrium structure
emerges for two disjoint intervals of γ, [8.5, 9.0) and
[13.7,+∞), when α � −2.

5. Heterogeneous Customers
In this section, we investigate the general setting and
analyze a market of customers who might be het-
erogeneous in their price sensitivities and network
effects. We first show that when the network effects
are weak, then there exists a unique Nash equilib-
rium, extending Proposition 2.
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Proposition 7. Given αX, αY and βi for all i, there exists a
constant G(αX, αY, β1, . . . , βn) such that when the network
effects gij < G for all i and j, there exists a unique pure-
strategy Nash equilibrium.

In the proof, we are able to obtain an explicit
condition. Let c � (1 + h−1(αX) + h−1(αY))−1. If∑n

i�1

gij
βi

+ gji
βj

( )
≤ min 1,

c2

βj 1 − c( )
{ }

for all j,

then the Nash equilibrium is unique.

5.1. Symmetric Nash Equilibrium
By Proposition 7, if the network effects are weak and
qualities of the two products are identical (αX � αY � α;
i.e., Assumption 3), then the uniqueNash equilibrium
must be symmetric—that is, x∗i � y∗i for all i in the
equilibrium. Naturally, we are interested in the fol-
lowing question: To which customer are the firms
eager to sell their products? The following proposi-
tion gives a sufficient condition.

Proposition 8. Suppose Assumption 3 holds. If βjgij + βigji
is decreasing in i for all j � 1, 2, . . . ,n, then in any sym-
metric Nash equilibrium, x∗i � y∗i is decreasing in i.

When customers can be ranked in the same order by
the quantity βjgij + βigji for all j, the firms are vying for
the customers who rank high—that is, their equilib-
rium choice probabilities for both products are large.
To better interpret the quantity, consider a homo-
geneous network.

Corollary 2. Suppose Assumption 3 holds. If gij > 0 are
equal for all i and j and β1 ≥ β2 ≥ . . . ≥ βn, then in any
symmetric Nash equilibrium, x∗i � y∗i is decreasing in i.

The corollary states that customers who are more
price-sensitive turn out to be more likely to pur-
chase either product in equilibrium. To understand
this seemingly counterintuitive result, note that an
extremely price-sensitive customer is unwilling to

pay even a small amount for the products. Therefore,
neither firm can make much revenue from him.
The only purpose for the firms to attract such a
customer is to benefit from his network effects on
other customers. The benefit from network effects
is always increasing in the choice probability. Thus,
the firms are willing to set very low prices and
forgo the revenue. For customers who are less price-
sensitive, the firms attempt to earn revenue and
utilize the network effects at the same time. The
former objective is not always increasing in the
choice probability. Facing such trade-off, the choice
probabilities are relatively low for such customers
(so thathigherprices canbe charged) in equilibrium.This
is common in the online game industry. For example,
Hearthstone, a popular collectible card game, is F2P
(free to play). For price-sensitive players, they can
spend more time to grind and wait for the needed
cards to drop, while VIP players can skip the
grinding and directly buy their dream decks.
If the customers are equally price-sensitive, then

Proposition 8 implies:

Corollary 3. Suppose Assumption 3 holds. If βi ≡ β for all i
and gij + gji is decreasing in i for all j � 1, 2, . . . ,n, then in
any symmetric Nash equilibrium, x∗i � y∗i is decreasing in i.

If the social influences of the customers can be
ranked unanimously, then the firms tend to increase
their market share for customers with higher network
effects in equilibrium. This is consistent with the in-
tuition: The market share for those customers is of
higher value because it significantly increases the
choice probabilities of all customers and, thus, the
total revenue. As a special case, for a network with
a single “star”—that is, gi1 ≡ γ > 0 and gij � 0 for
j ≥ 2—the equilibrium market share for the star is
higher than the rest of the market. This is usually
implemented through the referral program, in which
the influential customers earn bonuses and are happy
to consume more at a lower or even negative price.
The firmmakes up for the revenue loss bymonetizing
their influences in the network.

5.2. Two Communities
In this section, we consider a network with two
communities. Suppose n � n1 + n2, where n1 and n2
are the sizes of the two communities. The network
effects are specified as follows:

Assumption 4 (Two Communities). The network matrix
{gij} satisfies:

gij �
γ1 i, j ∈ 1, . . . , n1{ }
γ2 i, j ∈ n1 + 1, . . . ,n{ }
γ12 i ∈ 1, . . . , n1{ } , j ∈ n1 + 1, . . . ,n{ }
γ21 j ∈ 1, . . . , n1{ } , i ∈ n1 + 1, . . . ,n{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Table 1. Ranges of Parameters and the Equilibrium Types

α Type I Type II Type III

6 γ ∈ [0, 200.3) — γ ∈ [200.3,+∞)
4 γ ∈ [0, 112.2) — γ ∈ [112.2,+∞)
3 γ ∈ [0, 43.2) — γ ∈ [43.2,+∞)
2 γ ∈ [0, 17.9) — γ ∈ [17.9,+∞)
1 γ ∈ [0, 8.8) — γ ∈ [8.8,+∞)
0 γ ∈ [0, 6.0) — γ ∈ [6.0,+∞)
−1 γ ∈ [0, 6.5) — γ ∈ [6.5,+∞)
−2 γ ∈ [0, 8.5) γ ∈ [9.0, 13.7) γ ∈ [8.5, 9.0) ∪ [13.7,+∞)
−3 γ ∈ [0, 11.1) γ ∈ [11.2, 19.4) γ ∈ [11.1, 11.2) ∪ [19.4,+∞)
−4 γ ∈ [0, 13.5) γ ∈ [13.6, 24.5) γ ∈ [13.5, 13.6) ∪ [24.5,+∞)
−6 γ ∈ [0, 18.2) γ ∈ [18.2, 34.1) γ ∈ [34.1,+∞)
Note. We use bisection search to find the cutoff values of γ, which are
rounded to one digit.
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Under Assumption 4, the connectivity inside each
community is homogeneous, which is different
from the externality between communities. This
network structure encompasses many special net-
works that are investigated in the literature, such as
star graphs and complete bipartite graphs. In prac-
tice, it can capture a segmented market structure
whose customers in the two groups differ signifi-
cantly in their locations, ages, or other characteris-
tics. We assume βi ≡ β for all customers and focus on
firms’ strategies that induce the same market share
inside a community.

5.2.1. Market Segmentation. The next result is con-
cerned with market segmentation under network
effects: Product X is dominating in one community,
whereas productY is popular in the other community.

Proposition 9. Suppose Assumption 4 holds and βi ≡ β, ∀i.
• For any δ ∈ (0, 1/4), there is a constant Γ that may

depend on αX, αY, β, n1, n2, γ12, γ21, and δ, such that if
γ1 > Γ and γ2 > Γ, then market segmentation arises in the
Nash equilibrium—that is, there exists a Nash equilibrium
(x∗1 , y∗1 , x∗2 , y∗2) satisfying x∗1 > 1 − δ and y∗2 > 1 − δ.

• Suppose the two communities are identical—that is,
n1 � n2, γ1 � γ2. If γ12 + γ21 ≥ γ1 + γ2, then any Nash
equilibrium (x∗1 , y∗1 , x∗2 , y∗2) satisfies x∗1 � x∗2 and y∗1 � y∗2.

This proposition gives a potential explanation for
market segmentation. It can arise if the network
effects inside communities are relatively strong in
comparison with those between communities. This
is parallel to the equilibrium behavior in Bimpikis
et al. (2016), where in the context of duopoly-targeted
advertising, each of the two firms chooses to target a
“hub” in one of the two clusters in the graph. This
may explain why different messaging apps domi-
nated different regions and developed their own
ecosystems—that is, WeChat in China, Facebook’s
Messenger in North America, and WhatsApp in
other regions.

On the other hand, when the connections between
communities are stronger, we find that the afore-
mentioned segmentation is no longer feasible. Under
the symmetric-community assumption, each firm
will obtain the same market share in the two com-
munities. Notably,market dominancemay still exist,
in the sense that one firm dominates the other in
both communities.

6. Dynamic Game
The game studied in the previous sections is static. It
can be viewed as the market outcome when all cus-
tomers have perfect foresight: They can predict the
consumption of connected customers and are willing
to coordinate with each other to realize the Choice

Probabilities (1) and (2). In reality, network effects
usually build up over time: Customers cannot foresee
the potential network effects in the distant future.
Rather, they make consumption based on the current
network effects. This assumption is made in other
dynamic competitions (Mitchell and Skrzypacz 2006,
Cabral 2011). It also better explains the first-mover
advantage, as early entrants are able to build stronger
current network effects and attach customers, which
potentially blocks later entrants that may have better
quality. In this section, we extend the game to such a
dynamic setting.

6.1. Open-Loop Nash Equilibrium
Next, we introduce the dynamic game and the as-
sociated equilibrium concept. Suppose xt and yt are
the market shares of firm X and Y in period t.
The current network effects are, thus,

∑n
j�1 gijxj,t and∑n

j�1 gijyj,t for customer i. In period t + 1, the customers
observe and enjoy the network effects generated in
period t, and their market shares are given by the
following choice model:7

xi,t+1 �
exp αX − βipXi,t+1 +∑n

j�1 gijxj,t
{ }

1 + exp αX − βipXi,t+1 +∑n
j�1 gijxj,t

{ }
+

exp αY − βipYi,t+1 +∑n
j�1 gijyj,t

{ } , (9)

yi,t+1 �
exp αY − βipYi,t+1 +∑n

j�1 gijyj,t
{ }

1 + exp αX − βipXi,t+1 +∑n
j�1 gijxj,t

{ }
+

exp αY − βipYi,t+1 +∑n
j�1 gijyj,t

{ } , (10)

where the network effects are based on the market
share in period t. Such dynamic setting with myopic
expectation of other customers’ consumption was
originally proposed in the seminal paper of Brock and
Durlauf (2001) to understand the limiting behavior
of a dynamic game in the network context. When
customers have perfect foresight and can anticipate
the network effects in the next period (replacing xj,t
and yj,t by xj,t+1 and yj,t+1), it is equivalent to the static
game (1) and (2).
The dynamic game proposed in this section is more

suitable to describe the market evolution of nondu-
rable services/products with network effects, such
as Netflix subscriptions. The customers repeatedly
make purchases in each period based on the network
effects experienced in the last period. The model does
not apply to durable network goods that customers
only purchase once, such as video game consoles. The
dynamic game of competing durable goods requires
new formulations that depart from the static game
and is, thus, out of the scope of this paper.
In the static MNLmodel, we implicitly assume that

customers generate random utilities for both products,
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as well as the outside option. In a dynamic model,
however, it is not reasonable to assume that customers
independently redraw their random utilities over time
for the same product. Although this setup has appeared
in the literature of dynamic mechanism design and
structural models for dynamic discrete choices
(Aguirregabiria and Mira 2010, Pavan et al. 2014), we
acknowledge that this is a weakness of the model when
extended to the dynamic setting, and a dynamic model
with microfoundations remains our priority in fu-
ture research.

Again, we consider Cournot competition in the
dynamic setting: Given initial market share x0 and y0,
firm X is deciding xt for t � 1, 2, . . . to maximize

max
xt{ }∞t�1

∑∞
t�1

rt
∑n
i�1

xi,tpXi,t

s.t. pXi,t �
1
βi

αX+∑n
j�1

gijxj,t−1− log

(
xi,t

1−xi,t−yi,t

( ))
0≤ xt ≤ 1−yt, t� 1,2, . . .,

where r ∈ (0, 1) is the discount factor, and pi,t is solved
from (9) and (10). The payoff function of firm Y can be
defined symmetrically.

We investigate the equilibrium-concept open-loop
Nash equilibrium (OLNE) (see, e.g., Basar and Olsder
1999) arising from the dynamic game. Given the
initial market share at t � 0, x0, and y0, firm X (Y) is
deciding {xt}∞t�1 ({yt}∞t�1) to maximize the total dis-
counted revenue

∑∞
t�1 rt

∑n
i�1 xi,tpXi,t (

∑∞
t�1 rt

∑n
i�1 yi,tpYi,t)

subject to the constraint xt + yt ≤ 1. This is in contrast
to the feedback Nash equilibrium (FNE), in which the
firms are deciding xt+1 (yt+1) dynamically based on the
market condition (xt, yt) at t. In general, the two
concepts do not lead to the same equilibrium strategy.
In this paper, we adopt OLNE instead of FNE because
of two reasons: (1) We focus on the industries where
the infrastructure and capacity have to be planned
ahead; and (2) technically, the Bellman equations
arising from FNE are intractable because of the lack of
structure in the objective function.

6.2. Existence
We first establish the existence of such an OLNE.
Similar to Proposition 1, we first transform the game
to a supermodular game and apply the lattice theory.
Note that the transformation is crucial: FirmsX and Y
are clearly selling substitutable products, and the
dynamic game is not supermodular/complementary.
After the transformation, we replace firm X by an-
other playerX′, which turns out to be complementary
tofirmY. Thisallowsus touse the theoryof supermodular
games and establish the existence. Because there is a

one-to-one correspondence between the Nash equilib-
ria of the transformed game and the original game, we
can establish the existence of the OLNE of the original
game as well.

Proposition 10. There exists a pure-strategy OLNE.

There are other methods commonly used to establish
existence, including fixed-point theorems (Brouwer’s
or Kakutani’s). However, as we have seen, the best-
response functions exhibit discontinuity and non-
concavity, even in the static case. Thus, they cannot be
applied to the dynamic game.

6.3. Necessary Conditions
Suppose {xt}∞t�1 and {yt}∞t�1 form an OLNE. Given
{yt}∞t�1, {xt}∞t�1 maximizes the payoff function of firm
X—that is,

∑∞
t�1 rt

∑n
i�1 xi,tpXi,t. Therefore, for a given t, xt

must maximize the terms in the payoff function that
involve xt. More precisely,

xt � argmax
0≤x≤1−yt

∑∞
s�1

rs
∑n
i�1

xi,spXi,s

� argmax
0≤x≤1−yt

∑n
i�1

xi
βi

αX +∑n
j�1

gijxj,t−1 + rgjiβi
βj

((
xj,t+1

)
− log

xi
1 − xi − yi,t

( ))
.

Similarly, yt satisfies

yt � argmax
0≤y≤1−xt

∑n
i�1

yi
βi

αY +∑n
j�1

(
gijyj,t−1 + rgjiβi

βj

(
yj,t+1

)

− log
yi

1 − xi,t − yi

( ))
.

The necessary conditions are satisfied by any OLNE.
From the necessary condition, it is clear that xt and

yt form a Nash equilibrium of the following static
Cournot game: Firm X (Y) is choosing the market
share x � xt (y � yt) to maximize

∑n
i�1 xipXi (

∑n
i�1 yipYi ),

where the relationship between xi and pXi (yi and pYi ) is
given by the vanilla MNL model:

xi � exp α̃X − βipXi
{ }

1 + exp α̃X − βipXi
{ } + exp α̃Y − βipYi

{ } ,
yi � exp α̃Y − βipYi

{ }
1 + exp α̃X − βipXi

{ } + exp α̃Y − βipYi
{ } ,

where α̃X≜αX+∑n
j�1(gijxj,t−1+ rgjiβi

βj
xj,t+1) and α̃Y ≜αY +∑n

j�1(gijyj,t−1 + rgjiβi
βj

yj,t+1). In particular, if we treat xt−1,
xt+1, yt−1, and yt+1 as exogenous variables, then xt
and yt are the Nash equilibrium of a classic MNL
Cournot game, in which the qualities are en-
hanced by the network effects in the neighbor-
ing periods.
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6.4. Connection Between the Dynamic and
Static Games

Dynamic games are generally intractable, especially
given the complexity of the static game. A crucial
question in this section is, thus, whether the equi-
librium structures and insights derived in the static
case continue to hold in the dynamic game. We are
able to provide a positive answer to this question:

Proposition 11. If the dynamic game converges, then the
limit x∞ and y∞ satisfy the Nash equilibrium first-order
conditions (5) and (6) of the following static game (denoted
by ·̃): α̃X � αX, α̃Y � αY, and

∑n
j�1(g̃ij + β̃i g̃ji

β̃j
) � ∑n

j�1(gij +
rβigji
βj

) for all i.
Proposition 11 connects the static and the dynamic

games. When both firms are myopic (r → 0), the dy-
namic game is essentially equivalent to the static game as
the evolving market reaches a steady state. For r > 0,
the relationship

∑n
j�1(g̃ij + β̃i g̃ji

β̃j
) � ∑n

j�1(gij + rβigji
βj

) implies
that the static game discounts the network effects by r,
and the qualitative characteristics of the equilib-
rium still hold. For example, in the homogeneous
case (Assumptions 1–3) gij � γ/2n and g̃ij � γ̃/2n �
(1 + r)γ/4n, and Propositions 2–4 can beused topredict
the equilibrium outcome of the dynamic game. This
connection makes the theoretical results derived for the
static game applicable to the dynamic game.

Remark 3. The proposition has two restrictions. First,
we have to assume that the OLNE has a steady state.
This is not a merely technical simplification. In general,
because the dynamic game has an infinite number of
decision variables and the payoffs are highly non-
concave, OLNEsmaywell be cyclic, in which case we
cannot draw useful insights. It also a common as-
sumption adopted in the literature (Mitchell and
Skrzypacz 2006). Second, the connection between
the dynamic and static games is based on the first-
order conditions, instead of the Nash equilibria.
Again, the complexity arises from the nonconcavity
of the payoff functions, as the first-order conditions
do not necessarily lead to Nash equilibria.

6.5. First-Mover Advantage
One appealing feature of dynamic games is the ca-
pability to capture the phenomena emerging from the
market evolution, which cannot be explained by the
static game. For example, it is widely believed that an
earlier entrant to amarketwith strong network effects
is able to enjoy the first-mover advantage and dom-
inate the market eventually without having superior
quality. To simplify the analysis, we consider a two-
period model in this section: The choice model is

given by (9) and (10). The game lasts for two periods,
and the payoff function of firm X is given by

max
x1,x2

∑2
t�1

rt
∑n
i�1

xi,tpXi,t

s.t. pXi,t �
1
βi

αX+∑n
j�1

gijxj,t−1− log

(
xi,t

1−xi,t−yi,t

( ))
0≤ xt ≤ 1−yt, t� 1,2.

The benefit of considering a two-period model is to
avoid the complexity and potential ill behavior (see
Remark 3) of a full dynamic game, while retaining the
dynamic feature.8

If firmX has the first-mover advantage, then x0 > y0.
That is, at the beginning of the game (possibly the time of
entry of firm Y), firm X gains more market share than
firm Y. Then, a natural question is, under which con-
ditions the advantage is retained—that is, x2 > y2 for
any OLNE (x1, x2) and (y1, y2)? For example, if firm X
has inferior quality and the network effects are weak,
then firm Ymay end up being the market leader. The
next proposition provides such a sufficient condition.

Proposition 12. For any ε, δ > 0, there are constants
G(ε, δ, αX, αY, {βi}ni�1) and R(ε, δ, αX, αY, {βi}ni�1, {gij}ni,j�1)
such that if gij > G for all i, j and r < R, then xi,0 − yi,0 > δ
for all i implies xi,2 − yi,2 > (1 − ε)δ for all i in any OLNE.
Moreover, firm X makes more revenues than firm Y.

Proposition 12 states that firmX is able to retain the
market-leader position over periods, regardless of
the quality differences, if (1) the network effects are
strong, and (2) the discount factor is small. The first
point is straightforward, as strong network effects are
necessary topersuade customers to keepusingproductX,
even though its quality could be inferior. To see the
second point, consider firm Y’s strategy to break the
first-mover advantage of the opponent: It can subsi-
dize the customers heavily to counter the network
effects of firm X. In the long run, the subsidy may
secure the market-dominance position for firm Y and
makes the investment worthwhile. Therefore, first-
mover advantage remains validwhen future revenues
are greatly discounted and subsidizing customers
is costly.

7. Conclusion
In this paper, we consider two firms that sell their
substitutable products to a market of network-
connected customers, who make their purchasing
decisions through the MNL model. We demon-
strate the different market structure when the
strength of network effects varies. The results can
be used to predict the competitive outcome under
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various market conditions. They can also consis-
tently explain real-world market phenomena.

Our analysis hopefully opens up potential research
directions related to firms’ competitive strategies
when confrontedwith network-connected customers.
In particular, we believe that (1) investigating the
strategic interaction between firms and customers in a
dynamic setting can generate valuable insights and
explain market phenomena; and (2) analyzing com-
plicated network structures may reveal the link be-
tween competitive outcomes and social interactions.

Endnotes
1The QWERTY keyboard is widely regarded to be inferior to the
Dvorak typewriter (David 1985). However, when a majority of users
have already gotten used to typing using the QWERTY keyboard,
they can easily obtain support and help from other QWERTY key-
board users. Ultimately, this leads to the dominance of the QWERTY
keyboard over the Dvorak typewriter and other alternatives. Simi-
larly, in the video-recordings industry, Betamaxwas considered to be
superior to VHS at equal network sizes (Gabel (1991)), but VHS was
more widely adopted, and, eventually the VCR market tipped in
favor of VHS (Farrell and Klemperer 2007). See also Cusumano
et al. (1992) for a detailed review of VHS–Beta battle.
2We can also interpret xi and yi as customer i’s fraction of con-
sumptions in X and Y.
3 For the applications we have in mind, such as Dropbox and One-
Drive, customers typically cannot purchase/subscribe to the same
product twice. Therefore, negative prices do not induce multiple
purchases from the same customer.
4We have assumed homogeneous network effects for simplicity of
notation. The subsequent analysis extends naturally to a network
with symmetric, but heterogeneous customers—for example, when
the customers form a “cycle” network—that is, g12 � g23 � . . . �
gn−1,n � gn1 > 0, while all other gij � 0.
5Du et al. (2016) consider a monopoly pricing problem with network
effects. Under certain circumstances, the firm is optimal to promote a
single product, although the set of products is homogeneous. Such
asymmetry may also arise in our problem.
6 Some useful properties of h(·) and h−1(·) can be found in LemmaEC.1
in the online appendix. In fact, h−1 is closely related to the LambertW
function as h−1(x) � W(ex).
7 In the dynamic game, it ismore natural to interpret x and y asmarket
share instead of binary choices. As a result, the dynamics describes
the mean field of the game.
8The two-period model adopted in this section is not a special case.
In fact, the main result Proposition 12 can be generalized to any
T-period models.
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