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Abstract. Revenue management (RM) is the application of analytical methodologies and 
tools that predict consumer behavior and optimize product availability and prices to maxi-
mize a firm’s revenue or profit. In the last decade, data has been playing an increasingly cru-
cial role in business decision making. As firms rely more on collected or acquired data to 
make business decisions, it brings opportunities and challenges to the RM research com-
munity. In this review paper, we systematically categorize the related literature by how a study 
is “driven” by data and focus on studies that explore the interplay between two or three of the 
elements: data, model, and decisions, in which the data element must be present. Specifically, 
we cover five data-driven RM research areas, including inference (data to model), predict then 
optimize (data to model to decisions), online learning (data to model to decisions to new data in 
a loop), end-to-end decision making (data directly to decisions), and experimental design (deci-
sions to data to model). Finally, we point out future research directions.

Funding: The research of N. Chen is partly supported by Natural Sciences and Engineering Research 
Council of Canada Discovery [Grant RGPIN-2020-04038]. The research of M. Hu is in part supported 
by Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2021-04295]. 

Keywords: revenue management • pricing • data-driven • inference • predict then optimize • online learning • end-to-end •
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1. Introduction
Revenue management (RM) is the application of analytical 
methodologies and tools that predict consumer behavior 
and optimize product availability and prices to maximize 
a firm’s revenue or profit. In the last decade, data has been 
playing an increasingly crucial role in business decision 
making. As firms rely more on collected or acquired data 
to make business decisions, it brings opportunities and 
challenges to the RM research community. On the one 
hand, because many traditional RM models do not auto-
matically incorporate the data component, the industry 
trend calls for innovative models, frameworks, algo-
rithms, and policies that are more data-driven, and as a 
result, the area of data-driven RM blossoms. On the other 
hand, researchers working on data-driven RM often find 
it hard to define the area clearly. From a methodological 
point of view, the boundaries between a number of disci-
plines, such as operations research, statistics, economet-
rics, and computer science, have never been blurrier when 
approaching data-driven research. From the practical 
point of view, the topic of RM increasingly interweaves 
with other traditional topics in operations management, 
such as supply chain and service operations management.

In this review paper, our objective is to systematically 
categorize the related literature by how a study is “driven” 

by data. In particular, in data-driven studies, there are usu-
ally three key elements: data, model, and decisions (Bertsi-
mas and Freund 2004, Simchi-Levi 2014), and the interplay 
among the elements is explored by researchers. For data- 
driven research in RM, the three elements usually encom-
pass specific contexts related to RM: 
•Data: Firms collect data to improve the understanding 

of the market or the quality of the decisions. Depending 
on the specific setting, the form of the data that is available 
to the firm or researchers is usually different and a starting 
point. In RM, for example, the transaction or sales data are 
a common form of data, recording the sales of products, 
the prices of the offered assortment, and available promo-
tions. Recently, the personal data of customers, such as 
age and past transactions, are also used to make personal-
ized recommendations and set personalized promotions.
• Model: In the context of RM, the model typically 

refers to the following two categories that have a signifi-
cant overlap: a utility-maximization economic frame-
work that explains the behavior of consumers, such as 
competitive models and strategic behavior, or a statisti-
cal framework that explains how the data are generated, 
such as demand functions and discrete choice models.
•Decisions: With data and models, firms are ultimately 

concerned with making reasonable decisions that benefit 
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themselves in the short or long term. Pricing and assort-
ment planning are the two primary operational decisions 
traditionally considered in RM. Recently, there have been 
a number of new decision regimes inspired by novel busi-
ness models and available data sources, such as product 
ranking and personalized recommendations.

A summary of the three elements is illustrated in 
Figure 1.

1.1. Scope of the Review
In this review, we focus on studies that explore the 
interplay between two or three of the elements: data, 
model, and decision, in which the data element must be 
present. Moreover, we include studies that specialize in 
an RM application or propose general frameworks that 
can be directly applied to RM problems. That is, the 
model element usually involves demand or consumer 
choices; the decision element is typically related to pric-
ing and assortment although this is not a strict criterion. 
We do not include studies that focus on inventory man-
agement as the primary decision, mainly because there 
is a large body of literature and already several excellent 
reviews on inventory and supply chain management 
(Chen et al. 2022b, chapters 11–13) although inventory is a 
critical operational lever for firms. We choose not to speci-
fically include empirical studies on RM topics, mainly 
because of the limited space. We note that there are 
emerging areas in RM attracting a lot of attention, such as 
auction, market/platform design, and reusable resources. 
We include a number of papers from these areas and 
incorporate them in the framework listed in Figure 1.

For the structure of the review, we take an unusual 
approach. Instead of categorizing the studies by their 
applications or topics, we primarily group them by the 
methods they apply to the interplay of those elements. 
This treatment can provide an overview of the method-
ologies for readers who are interested in conducting 

data-driven research in a broader area of operations 
management.

2. Inference
Inference or estimation is a central topic in statistics and 
predictive analytics. Given a class of models or the 
parametric/nonparametric structure that generates the 
data, there are numerous methods developed to find 
the model in the class that fits the data best and can be 
used to extrapolate to future patterns. Among them, the 
least-square and maximum likelihood estimators are 
probably the most celebrated. Inference is concerned with 
the interplay of data and model as shown in Figure 2.

Recent developments in RM have seen the benefits of 
more sophisticated models. These models offer flexibility 
in explaining the behavior of consumers and may lead to 
interpretable and efficiently computable optimal decisions. 
In turn, the general approaches may not work, and they 
call for specially designed estimation procedures. Next, we 
review these papers according to their applications.

2.1. Discrete Choice Models
The bulk of the literature that studies the estimation prob-
lem in RM is concerned with the estimation of discrete 
choice models. Discrete choice models provide a frame-
work to describe and explain the choice behavior of con-
sumers when they are faced with a set of products. Train 
(2009) provides a comprehensive review of commonly 
used discrete choice models and their estimation, includ-
ing the multinomial logit (MNL), generalized extreme 
value, probit, and mixed logit models. The book also dis-
cusses the estimation problem when the consumer and 
product features are present in the data. Although the 
general framework for estimating these models has been 
developed, typically using likelihood-based methods, 
the RM community has been focusing on issues that are 
not covered in the general framework or the estimation 
of recently developed discrete choice models.

2.1.1. Practical Considerations. One important practi-
cal issue is the effect of stockouts on the choice of consu-
mers. When the inventory of a particular product runs 
out, discrete choice models, especially the MNL model, 
provide powerful mechanisms to capture the substitu-
tion effects in the purchase behavior. Anupindi et al. 
(1998) is one of the early papers that focuses on demand 
estimation in this situation. Kök and Fisher (2007) and 
Musalem et al. (2010) provide a more formal treatment 
for the estimation problem using the MNL model. Wan 
et al. (2018) study the substitution effect not only inside 

Figure 1. The Three Elements of Data-Driven Research in 
Revenue Management and Examples 

Figure 2. Inference 
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a store, but also between stores. Through numerical 
simulation, they find that the nested logit model (see 
Train 2009, chapter 4, for more details) provides accu-
rate estimation. Azadeh et al. (2015) use a different 
framework of mixed-integer nonlinear programming to 
formulate the estimation problem in order to minimize 
the estimated and observed bookings in an RM setting.

Another important issue is the unobserved lost demand 
or demand censoring: the consumers who browsed the 
offered products but did not make a purchase are not 
observed. Vulcano et al. (2012) tackle the problem by 
postulating a nonhomogeneous Poisson process for the 
arrival process of consumers and the MNL model for 
the choice. They use the expectation–maximization (EM) 
algorithm (Dempster et al. 1977) to handle the unobserved 
lost demand. Abdallah and Vulcano (2021) further investi-
gate the theoretical properties, such as the identifiability 
of this framework, and provide an efficient algorithm, 
minorization-maximization, for the maximization of the 
likelihood function. Facing the problem of demand cen-
soring from a different angle (the demand for some alter-
natives is not observed), Newman et al. (2014) provide a 
two-step algorithm to maximize the likelihood function. 
Instead of likelihood-based methods, Subramanian and 
Harsha (2021) introduce mixed-integer programming to 
directly minimize a convex loss function between the 
market share in the data and the model in the presence 
of demand censoring. Amjad and Shah (2017) employ 
matrix completion to estimate censored demand. Cho et al. 
(2023) apply Bayesian inference to data from the hotel 
industry, which handles unobserved no purchases as well 
as customer clustering simultaneously. A review can be 
found in Azadeh et al. (2014).

Wang (2021) investigates the MNL model when the 
market size may vary based on the total attraction of 
products in the offered assortment. An estimation pro-
cedure based on the EM algorithm is provided. Chen 
et al. (2022d) study the theoretical properties of maxi-
mum likelihood estimation for the MNL model when 
the data are collected based on personal information. 
The majority of the studies in this area focus on online 
learning. See Section 4.1 for more details.

2.1.2. Estimation for Recently Developed Discrete 
Choice Models. Recently, there have been new discrete 
choice models proposed to capture more complex con-
sumer behavior to overcome the limitation of random util-
ity models. For example, Farias et al. (2013) propose a 
rank-based discrete choice model that requires very few 
structural assumptions of the choice behavior. As a result, 
the estimation problem given the transaction data of the 
model becomes very challenging because of the factorial 
number of parameters: the estimation is typically uni-
dentifiable, and there are numerous sets of parameters 
that are consistent with the data. Farias et al. (2013) 
introduce a robust approach and attempt to identify 

the parameters that minimize the expected revenue. 
The resulting optimization problem still has a large 
number of variables, or equivalently, the dual problem 
has many constraints. The authors provide approxima-
tions to the dual problem by sampling constraints or 
coming up with efficient representations of the con-
straints. How to obtain a sparse solution, which takes as 
few as possible nonzero weights for the rankings, is 
also discussed in the paper and further explored in 
Farias et al. (2020). Instead of robust optimization, van 
Ryzin and Vulcano (2015) take a likelihood-based ap-
proach. To maximize the likelihood function and han-
dle the astronomical number of variables, van Ryzin 
and Vulcano (2015) gradually add new rankings to the 
current set via column generation. The resulting solu-
tion is, thus, sparse. A similar approach is taken in Jena 
et al. (2020) for partially ordered rankings. As an alter-
native for likelihood maximization, van Ryzin and Vul-
cano (2017) use the EM algorithm by treating the actual 
preference ranking of each customer as missing vari-
ables. The issue of demand censoring is also studied in 
this paper. Ho-Nguyen and Kılınç-Karzan (2021) focus 
on the estimation of rank-based choice models in a 
dynamic setting when the observations are collected 
over time. They formulate a mathematical program to 
minimize the distance between the implied choice prob-
ability from the model and the data. It is cast as a 
dynamic saddle point problem using a primal–dual 
framework. Jagabathula and Rusmevichientong (2017) 
extend the choice model to incorporate price informa-
tion. Customers are making choices based on the prefer-
ence ranking subject to a price threshold generated 
from a common distribution. The estimation is conduct-
ed using the EM algorithm due to the unobserved rank-
ings and thresholds. The rank-based model is extended 
in Jagabathula and Vulcano (2018), which provides a 
nonparametric framework to estimate the preference of 
customers from panel data, that is, the purchase history 
of individual customers as well as the product availabil-
ity and promotion at the time of purchases. The goal is 
not to recover the preference ranking but a directed acy-
clic graph (DAG) that represents the partial order (a set 
of preferences over pairs of products) of the customer. 
They use likelihood-based methods to construct the 
DAG. The DAGs are then clustered among similar cus-
tomers with conflicting edges removed.

Besides the rank-based model, there are other dis-
crete choice models that are gaining popularity in RM. 
The Markov chain choice model and its associated 
assortment optimization problem are studied in Blan-
chet et al. (2016), which encapsulates the MNL model 
as a special case. Şimşek and Topaloglu (2018) use the 
EM algorithm to estimate the parameters of the Mar-
kov chain choice model. The parameter identification 
problem of the model is studied in Gupta and Hsu 
(2017). Replacing the discrete-time Markov chain with 
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its continuous-time counterpart, Ragain and Ugander 
(2016) study a similar but different choice model and 
its likelihood-based estimation.

One stream of literature builds discrete choice models 
by solving a consumer welfare maximization problem 
for a representative consumer when the utilities toward 
products are random (Natarajan et al. 2009, Mishra et al. 
2014). Given the marginal distribution or the first and 
second moments of the random utilities, the choice 
probabilities can be solved using convex optimization 
that maximizes the expected welfare over all eligible 
joint distributions. This allows for the estimation of the 
parameters by maximizing the likelihood on top of the 
choice probabilities.

Recently, a special case of the random utility model, 
the exponomial choice model, is proposed in Alpteki-
noğlu and Semple (2016). The random utility has an 
exponential distribution, potentially with heteroscedas-
ticity, instead of the Gumbel distribution as in the MNL 
model. Alptekinoğlu and Semple (2016, 2021) and Aouad 
et al. (2018) demonstrate that, under the exponomial 
choice model, the log-likelihood function is concave in the 
parameters, and standard convex optimization tools can 
be leveraged for the maximum likelihood estimation.

Even more flexible than the rank-based choice model, 
tree-based choice models are proposed in Chen et al. 
(2019c) and Chen and Mišić (2022). They are shown to be 
able to represent any discrete choice models. Because of 
the model’s nonparametric nature, its estimation becomes 
challenging. Chen and Mišić (2022) propose mixed- 
integer programming to find a sparse set of trees of limited 
depth. The authors show that a number of “shallow” 
trees that are logarithmic in the number of assortments 
are sufficient to fit the data. Chen et al. (2019c) modify 
random forests, a popular algorithm in machine learn-
ing, for the estimation of such a model. The authors 
establish the consistency of this method, analyze the 
prediction error, and discuss the practical flexibility of 
this approach. In Aouad et al. (2022), decision trees are 
used to segment customers based on the response of 
customers in various settings, such as choice models 
or bidding in auctions. The method also demonstrates 
promising empirical performance. The idea of using ma-
chine learning algorithms to estimate discrete choice mod-
els is further explored in Cai et al. (2022) and Aouad and 
Désir (2022), which use neural networks to model and 
capture the choice behavior. Thanks to the development 
of deep learning, neural networks can be efficiently esti-
mated with standard programming packages.

2.1.3. Empirical Studies of Discrete Choice Models. 
Vulcano et al. (2010) study the empirical performance 
of the MNL model using data from a major U.S. airline. 
For the estimation of the model, they provide solutions 
to two practical issues: demand censoring and the fact 
that alternatives in the choice set need to be inferred from 

the data. Another empirical study in a similar application 
is conducted in Ratliff et al. (2008). Feldman et al. (2022) 
compare the empirical performance of an MNL model 
with product features and a sophisticated machine 
learning algorithm by conducting a field experiment on 
Alibaba’s marketplaces, and this was adopted by Ali-
baba as the current practice. The assortment optimiza-
tion is then solved based on the estimated choice 
model. The authors find that the MNL-based approach 
leads to a 28% increase in revenue per customer. Berbe-
glia et al. (2022) compare a wide range of discrete choice 
models and their predictive power on a number of syn-
thetic and public real data sets. The authors find that, 
when the historical data are scarce, the exponomial 
model (Alptekinoğlu and Semple 2016) performs the 
best, followed by the mixed logit, rank-based (see, e.g., 
Farias et al. 2013), and nested logit (Train 2009) models. 
With a large data size, the Markov chain model (Blan-
chet et al. 2016) performs the best empirically, followed 
by the rank-based and exponomial models. They also 
compare the computational time of the models.

2.2. Other Topics
As with discrete choice models, demand functions are 
an equally important class of models in RM, and they 
describe how demand reacts to the price(s) of the offered 
product(s). However, the estimation of demand func-
tions is not a focus in the literature. This is partly because 
the estimation of most demand functions, such as the lin-
ear demand model, can usually be viewed as special 
cases of statistical learning problems, such as regression. 
Therefore, the literature typically focuses on down-
stream pricing optimization after estimating the demand 
models. We review papers in this area in Section 3.

Recently, some researchers have started focusing on 
causal inference and the endogeneity in observational 
data. For example, historical prices and market demand 
are observed and used in estimating the demand func-
tions. If the prices are correlated with the demand through 
observed/unobserved covariates as the firm uses specific 
pricing policies in the data, then the eventual optimal price 
based on the estimated demand function can be distorted. 
This is a common issue in empirical studies. Bertsimas and 
Kallus (2023) quantify the error when the firm uses the 
past data to find the downstream optimal price, failing to 
handle the endogeneity. In Alley et al. (2022), the authors 
handle this issue in secondary ticket selling by construct-
ing a semiparametric model that explicitly takes account 
of the endogeneity and using a recently developed tool in 
causal inference, double machine learning, to estimate the 
model. Biggs et al. (2021a) focus on the observational data 
when the firm sets personalized prices. The authors design 
loss functions, minimizing which directly yields the op-
timal prices instead of the demand functions. Li and 
Talluri (2020) propose a generalized method-of-moments 
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approach to estimate the MNL model with the observa-
tional choice data. The method is robust to the firm’s pol-
icy of assortment selection in the data. Wang et al. (2022) 
combine the instrumental variable with random forest 
to obtain a nonparametric estimator that can identify 
unobserved confounding in observational data.

Bundle pricing is another common selling mechanism 
when customers may buy multiple items. The literature 
typically assumes that the customers’ valuations of pro-
ducts (or their distributions) are given and focuses on 
the optimal or near-optimal bundle pricing schemes. 
There are a few papers studying the estimation of con-
sumers’ valuations from bundle sales data. Jedidi et al. 
(2003) use Bayesian inference to learn the distribution of 
valuations from the regions. Letham et al. (2014) approx-
imate the region with boxes and derive closed-form 
estimators for the distribution parameters. Ma and 
Simchi-Levi (2022) propose a method to extract the lin-
ear demand function for individual products from the 
bundle sales data. Chen et al. (2022a) leverage the fact 
that a data point of bundle transactions (the choice of a 
bundle from a price menu) does not reveal the exact 
valuations, but rather a region in which they reside. 
They convert the estimation problem to one with 
region-censored observations.

3. Predict Then Optimize
RM ultimately studies the optimal decisions for firms, 
such as assortments, pricing, or promotions. Applying 
optimization tools to the estimated models from the 
data, the firms can make high-quality decisions supported 
by the predictive model. This predict-then-optimize 
framework is a natural extension to Section 2. The 
papers reviewed in this section typically include esti-
mation and optimization as separate modules, which 
distinguishes them from those reviewed in Sections 4
and 5. They are usually motivated by real-world pro-
blems which, because of the scale or the special struc-
ture of the application, call for novel treatments. The 
paradigm is illustrated in Figure 3.

Building on work with Zara, a fast-fashion retailer, 
Caro and Gallien (2010, 2012) and Gallien et al. (2015) 
design forecasting models to predict the demand over 
a replenishment cycle or a sale season. The demand 
model is then fed to inventory (price) optimization to 
determine the optimal order quantities (clearance prices). 
The framework is designed for the specific application, 
taking into account many nuances of the business prac-
tice, including the age of a product (specific to the fast- 

fashion industry), item clustering, and so on. Subsequent 
field experiments at Zara show the superb performance 
of their approaches compared with the existing method. 
Ferreira et al. (2016) propose a demand prediction and 
price optimization model for Rue La La, an online fash-
ion retailer. Their approach based on regression trees 
overcomes the challenge of demand prediction for new 
products and improves the revenue significantly for the 
company. The tree-based prediction model is also used 
in Ban et al. (2019) to forecast the demand for new pro-
ducts with features and manage its procurement. Cohen 
et al. (2017) focus on the promotion optimization problem 
for the fast-moving consumer goods industry and in-
corporate business rules of the industry. After estimating 
the demand functions, the authors propose linear pro-
gramming to approximately solve the problem. They 
work with Oracle Retail and apply the framework to a 
large-scale case study. Fisher et al. (2018) and Schlosser 
and Boissier (2018) consider the competitive market and 
propose frameworks to estimate the demand function 
with competitors’ prices and show improved performance 
based on the estimation. Baardman et al. (2020) propose a 
model to forecast the customer trend and then plan 
the optimal promotion targeting policy. Boada-Collado 
and Mart́ınez-de Albéniz (2020) propose an econometric 
model to quantify the impact of inventory levels on sales 
in a fashion retail setting. The authors use the estimated 
model to provide instructions on how to balance the 
inventory across products optimally. In Besbes et al. 
(2020), the authors develop a framework that estimates 
the demand and then sets prices for a large number of 
rotable spare parts for an aircraft manufacturer. Xu et al. 
(2019) design a demand model and an estimation proce-
dure for Major League Baseball ticket sales, which leads 
to significantly higher profits after optimizing the price 
from the model. Arslan et al. (2022) develop a frame-
work to estimate the purchase behavior from customers 
in a sports ticket market with multiple sales channels, 
which is then used to optimize the price.

4. Online Learning
Online learning is a framework that integrates estimation/ 
inference and decision making. The decision maker 
(e.g., the firm) starts with no or little knowledge of the 
model (e.g., the price elasticity of the market). The data 
(the historical price and demand) is typically not pre-
sent either. The firm has to make decisions over time 
(e.g., setting prices), collect data to learn the model, and 
gradually approximate the actual optimal decision as if 
the ground-truth model were known from the begin-
ning. It is a dynamic process as the collection of data, 
inference of the model and decision making are all 
interdependent and have to be conducted in a cyclic 
manner. The diagram illustrating the process is shown 
in Figure 4.

Figure 3. Predict Then Optimize 
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Many of the early works using online learning in RM 
applications are reviewed in den Boer (2015). In this 
survey, we focus on a number of new directions in this 
area that have been studied in the last few years.

4.1. Personalized Pricing
Personalization is the business practice by which a firm 
customizes the displayed products or offered promo-
tions for individual customers. It is enabled by the 
increasing amount of data firms collect from their 
customers, including their personal information (often 
referred to as features), preferences, and how the latter 
is predicted by the former. For example, a bank can 
offer personalized rates to a car loaner. Personalized 
pricing models can also be applied to a setting in which 
a firm customizes prices for individual products (e.g., 
Rue La La offerings and Airbnb listings) based on the 
features of the products with the customers’ valuations 
for different features possibly learned over time. Qiang 
and Bayati (2016) is one of the earliest papers that incor-
porates the covariate into the demand function. That is, 
the demand function is linear in the offered price and 
the covariate (customer features or market environ-
ment) present in a period. The decision maker needs to 
determine the price and learn the linear coefficients of 
the covariate simultaneously. The authors show that, 
under certain conditions, a greedy algorithm achieves 
log(T) regret, where T is the length of the learning hori-
zon. A similar linear setting is studied in Ban and 
Keskin (2021) and Javanmard and Nazerzadeh (2019). 
In Ban and Keskin (2021), the authors focus on the spar-
sity structure of the covariate (only s out of d features in 
the covariate affect the demand function), and their 
algorithm, leveraging LASSO regularization, can detect 
the ambient features in the demand model and incur 
near-optimal regret that mainly depends on s. Sparsity is 
also considered in Javanmard and Nazerzadeh (2019); 
however, the algorithm is based on the maximum likeli-
hood instead of the least squares because of the different 
demand models. Motivated by the same application, 
Cohen et al. (2020) investigate personalized dynamic pric-
ing for customers whose valuations are linear functions of 
their features with the same coefficient among customers. 
However, the basic model does not have any randomness, 
and the binary outcome depends on whether the valua-
tion is higher than the offered price. Therefore, the algo-
rithm can be seen as a binary search in high dimensions.

There are multiple extensions to the personalized 
pricing problem with linear covariates. Chen and Gal-
lego (2021) investigate the nonparametric formulation 
in which the demand model depends on the covariate 
in an unstructured way. Their algorithm is based on 
adaptive binning and achieves the optimal regret; how-
ever, the regret rate inevitably scales with the dimen-
sion of the covariate unlike the linear demand function 
studied in other papers. Bastani et al. (2022) consider a 
number of online learning experiments in which the lin-
ear coefficient in each experiment is generated from a 
common prior, and each experiment has the same hori-
zon. This is motivated by the dynamic pricing of differ-
ent products, in which the learned knowledge of one 
product may be transferred to others. Because of the 
increasing concern about the infringement of privacy 
when the firm collects consumer information or fea-
tures, Tang et al. (2020) and Chen et al. (2022c) provide 
privacy-preserving learning algorithms when differen-
tial privacy is required. Nambiar et al. (2019) consider 
the model misspecification when the firm mistakenly 
uses a demand model linear in the features, whereas 
the ground-truth model can be nonlinear. Their pro-
posed algorithm achieves the optimal regret against a 
clairvoyant who uses the optimal price of a linear 
model that best approximates the actual nonlinear one. 
Miao et al. (2022) tackle the challenge when many pro-
ducts have low sales. By clustering the sales data of pro-
ducts of similar demand patterns and learning their 
demand functions on the fly, they provide an algorithm 
that performs well theoretically and empirically. Shah 
et al. (2019) provide a semiparametric formulation in 
which the residual distribution is nonparametric. Wang 
et al. (2021) relax the independent and identically dis-
tributed assumption on the covariates.

4.2. Network Revenue Management
Network RM is originally proposed in Gallego and van 
Ryzin (1997). It studies the pricing problem of multiple 
products over a finite horizon when each product may 
consume various resources that are stored at the begin-
ning of the horizon but cannot be replenished. Typical 
examples include the sales of airline itineraries (pro-
ducts), each of which may include multiple legs of 
flights (resources). The online learning of network RM 
is studied in Besbes and Zeevi (2012), in which the 
demand for the products under a price vector is initially 
unknown. Their base model studies a finite set of possi-
ble price vectors. The regret for continuous prices is 
higher because of the curse of dimensionality. The 
model with discrete prices is also studied in Badani-
diyuru et al. (2013) with a different asymptotic regime, 
and the optimal regret is obtained by their algorithm. 
Ferreira et al. (2018) apply Thompson sampling to the 
problem in Besbes and Zeevi (2012) and prove the 
optimal regret. Other papers tackle the problem with 

Figure 4. Online Learning 
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continuous prices. Chen et al. (2019a) show that, under an 
infinite degree of smoothness, the optimal regret can be 
obtained. Chen and Gallego (2022) use a primal–dual 
algorithm that achieves the optimal regret under separa-
ble demand and a single resource constraint. Chen and 
Shi (2023) design an algorithm that achieves dimension-
less regret, which does not depend on the number of pro-
ducts or resources. In a recent paper, Miao and Wang 
(2021) develop an algorithm to achieve the optimal regret 
O(

ffiffiffiffi
T
√
) for continuous prices under a set of relatively stan-

dard assumptions.

4.3. Assortment Optimization
Unlike pricing, the optimal assortment features a dis-
crete optimization problem: the firm chooses to offer a 
subset of products to customers in order to maximize 
the expected revenue. The customers typically follow a 
discrete choice model (see Section 2 for more introduc-
tion). When the firm doesn’t have the information of 
the discrete choice model initially, online learning has 
to be used: the parameters of the discrete choice model 
are unknown, and the firm needs to learn them by 
offering different assortments over time. Online learn-
ing of assortment optimization is first studied in Rus-
mevichientong et al. (2010), Ulu et al. (2012), and Sauré 
and Zeevi (2013). Rusmevichientong et al. (2010) and 
Sauré and Zeevi (2013) focus on the MNL model and 
use the explore-then-commit algorithm (see Lattimore 
and Szepesvári 2020, chapter 6, for more details). That 
is, the estimation of the model parameters and the opti-
mization based on the estimation are disintegrated, and 
the firm conducts both modules episodically. Integrated 
algorithms that have better empirical performances in 
general online learning problems, such as Thompson sam-
pling and upper confidence bound (UCB), are applied to 
assortment optimization in Agrawal et al. (2017, 2019), 
respectively.

One of the main extensions to online learning for 
assortment optimization is personalization, that is, dif-
ferent customers may have different preferences, and it 
should be accommodated with personalized assort-
ments. The primary framework to incorporate personal-
ization is the linear MNL model, which adjusts the 
expected utilities of the products for preferences by a 
linear function of the contextual information, such as 
customer covariates. Kallus and Udell (2020) study a 
case in which both customers and products have high- 
dimensional features. For the efficient use of data, the 
authors impose a low-rank structure and leverage the 
matrix-norm regularization to recover the structure, 
which effectively lowers the regret. Cheung and Simchi- 
Levi (2017) and Oh and Iyengar (2019) apply Thompson 
sampling to the linear MNL model, focusing on Baye-
sian and worst case regret. Chen et al. (2020c) investigate 
the nonstationary case when the context information 
may shift over time. Instead of linearizing the features, 

Bernstein et al. (2019) use nonparametric Bayesian 
methods to cluster customers on the fly and formulate 
the problem as a dynamic program.

Other than personalized assortment, there are other 
extensions. Chen et al. (2021b) study the online learning 
of the nested logit model instead of the MNL model. 
Miao and Chao (2021) study the online learning of a 
joint pricing and assortment problem based on Thomp-
son sampling. Dong et al. (2020) consider switching 
costs when the firm changes the products in the assort-
ment in online learning. In Feng et al. (2022), the objec-
tive is not to minimize the regret, but to learn the 
customer preference rankings as efficiently as possible 
by offering a sequence of assortments. In that sense, it is 
closer to the best arm identification problem (see Latti-
more and Szepesvári 2020, chapter 33) or experimental 
design.

4.4. Other Topics
We discuss a few other topics that are studied using the 
online learning framework. One such topic is product 
ranking, which can be seen as a more flexible way to 
display products than assortments without orders dis-
cussed in Section 4.3. The firm can not only choose an 
assortment of products to display to the customers, but 
also their display orders. It is enabled by the prevalence 
of online platforms. The display order of the products, 
thus, has an impact on customers’ behavior. The most 
widely used ranking model is the cascade model (Cras-
well et al. 2008). In the RM community, there are a 
number of papers recently tackling the ranking prob-
lem, usually with an angle from online learning. In Fer-
reira et al. (2022), the authors consider heterogeneous 
customers whose attention span and clicking probabili-
ties are drawn from a distribution. As a result, the opti-
mal off-line ranking is not decreasing in terms of 
popularity, which is the case for the cascade model. 
They show a greedy algorithm can guarantee a 1/2- 
approximation ratio and provide an online learning 
algorithm that can learn the optimal ranking algorithm 
with high probability. Gao et al. (2022) incorporate the 
pricing decision into the cascade model and provide a 
UCB-based learning algorithm. Cao and Sun (2019) and 
Chen et al. (2021a) investigate the cascade model with 
random attention spans to maximize the revenue. Their 
online learning algorithms are based on UCB and grad-
ually learn the distribution of the attention spans and 
the clicking probabilities. Golrezaei et al. (2023) consider 
fake users that may corrupt the data and design algo-
rithms to counter such adversaries.

Revenue management and pricing with reusable re-
sources are also studied in the online learning frame-
work, in which the capacity can be reused, such as in 
service systems (Jia et al. 2023). It is also a key feature of 
vehicle-sharing systems as vehicles completing trips 
can be reused (Banerjee et al. 2022, Benjaafar and Shen 
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2022). The online learning approach to such systems is 
studied in Benjaafar et al. (2023).

Another topic that is gaining traction is learning in 
auctions. Balseiro and Gur (2019) consider a budget- 
constrained advertiser participating in sequential auc-
tions and learning the value of future auctions. The 
existence of competing bidders makes the analysis dif-
ferent from single-agent learning models. Kanoria and 
Nazerzadeh (2021) focus on the interaction between the 
auctioneer and the bidders. When the auctioneer attempts 
to learn the distribution of bidders’ valuations, it may 
induce strategic behavior of the buyer and untruthful 
bids. They show that personalized reserve prices can be 
used to solve the problem when there are multiple bid-
ders. Amin et al. (2014) and Golrezaei et al. (2021) study 
contextual second price auctions in which the bidders’ 
valuations may depend on the context and the relation-
ship is unknown to the auctioneer. The authors propose 
policies that are robust to strategic behavior and achieve 
sublinear regret. Ye et al. (2023) use online learning to han-
dle the problem when the platform intends to learn the 
value of new ads within a short time.

Other extensions to the online learning framework in 
RM include learning algorithms assisted by an off-line 
data set (Bu et al. 2020), demand learning when custo-
mers have reference effects (den Boer and Keskin 2022), 
learning discontinuous demand functions (den Boer 
and Keskin 2020), nonstationary market environments 
(Chen et al. 2019b, 2020; Zhu and Zheng 2020), add-on 
discounts (Simchi-Levi et al. 2022), and competition (in 
particular, algorithmic collusion) (Hansen et al. 2021, 
Meylahn and den Boer 2022).

5. End-to-End Decision Making
End-to-end decision making is a new paradigm that 
has gained popularity in the last few years. The end- 
to-end framework deemphasizes the role of models in 
the process and tries to establish a direct link from data to 
decision, demonstrated in Figure 5. The term first appears 
in Donti et al. (2017), which discusses a few operational 
applications, such as inventory management. A popular 
formulation coined as “prescriptive analytics” is provided 
in Bertsimas and Kallus (2020). Bertsimas and Kallus 
(2020) study a generic optimization problem: consider 
covariate X, intermediate variable Y, decision z, and an 
objective function c(z, Y). Given the historical data {(Xi, 

Yi)}
n
i�1, the decision maker attempts to minimize the 

objective c(z, Y) over z after observing a new covariate 
X � x, that is, minzE[c(z, Y) | X � x]. Although c(z, Y) is 
known, the relationship between X and Y needs to be 

learned from the data. This formulation inspired a num-
ber of methods and directions, such as Kallus and Mao 
(2023) and Elmachtoub and Grigas (2022). A similar 
framework specialized for the newsvendor problem is 
presented in Ban and Rudin (2019). This paradigm is 
also familiar to the optimization community and bears 
similarity to sample average approximations (Kleywegt 
et al. 2002) and data-driven distributionally robust opti-
mization (Esfahani and Kuhn 2018).

In this section, we review recent papers using this 
paradigm in the context of RM. In a series of papers (Fu 
et al. 2015, Babaioff et al. 2018, Huang et al. 2018, Daska-
lakis and Zampetakis 2020, Allouah et al. 2022), the 
authors consider a seller maximizing revenue by sett-
ing prices when the demand function (the distribution 
function of consumers’ valuations) is unknown. The 
seller only observes a number of samples from the un-
known distribution and aims at mapping the samples 
to a price directly without estimating the demand func-
tion. The performance of the pricing policy is measured 
by the expected revenue for the worst case distribution 
among a class, whereas the expectation is taken over 
the random samples. The studies provide upper and 
lower bounds for the policies for a different number of 
samples (one to infinite) and classes of distributions 
(regular or monotone hazard rate). Chen et al. (2023) 
consider assortment pricing when a firm needs to set 
prices for a basket of products to maximize the expected 
revenue based on transaction data in which the offered 
prices and purchases of historical customers are ob-
served. Instead of using the transaction data to fit a dis-
crete choice model, the authors directly construct from 
the data a number of polytopes (one for each historical 
customer) into which their valuation vector falls and is 
consistent with the observed transactions. To set the 
prices, the seller attempts to maximize the revenue 
when the valuation vector of a new customer is the 
worst case within a valuation polytope that is drawn 
uniformly randomly from the past polytopes. In Biggs 
(2022), the framework is generalized to personalized 
pricing using a convex surrogate loss function without 
modeling the personalized demand function.

This end-to-end framework is used frequently in the 
study of auctions, which has become one of the major 
topics in RM. Biggs et al. (2021a, b) study personalized 
pricing policies that directly map customer features to 
the optimal personalized price without modeling the 
demand. In Cole and Roughgarden (2014), the authors 
study the standard revenue-maximizing single-item auc-
tion when the distributions of bidders’ valuations are 
unknown. Samples drawn from the distributions are 
given. The auctioneers, thus, replace the unknown distri-
butions with the empirical distributions of the samples. 
The sample complexity is analyzed when the optimal rev-
enue can be approximated within a given precision. 
Derakhshan et al. (2022) study the data-driven reserve 

Figure 5. End-to-End Decision Making 
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price optimization problem and use linear programming 
to provide a bound that improves those offered in the 
literature.

6. Experimental Design
Recently, experimental design has attracted the atten-
tion of many RM researchers, partly because of the 
wide adoption of A/B testing in the industry. Experi-
mental design is concerned with the generation of 
historical data such that the model inference can be per-
formed efficiently. For example, in the RM context, the 
firm may be interested in learning the attractiveness of 
recently launched products. When a customer queries a 
related keyword, the firm can display an assortment of 
products and record the purchase behavior. The firm is 
interested in the display of products such that the pro-
ducts’ attractiveness can be learned as efficiently as pos-
sible. The paradigm can be represented by Figure 6. In 
particular, the design of experiments studies how to 
make decisions to affect the collection of data (the first 
arrow), and it is usually paired with the estimation of 
quantities of interest (the second arrow). Although 
experimental design is a classic topic in statistics (Dean 
et al. 2017), the recent literature focuses on problems 
emerging from large-scale A/B tests conducted on 
online platforms. As a result, the papers reviewed in 
this section may not be directly related to traditional 
RM topics such as pricing. It remains an exciting direc-
tion to explore the design of experiments in specific RM 
applications.

Bhat et al. (2020) is among the earliest papers that 
provide a theoretical framework and algorithms to con-
duct A/B tests in an online fashion in order to achieve 
statistical efficiency. In two-sided online platforms, 
Johari et al. (2022) use a mean-field model to study the 
interaction between the two sides of demand and sup-
ply: although the subjects of one side can be divided 
into treatment and control groups, they are not inde-
pendent because of the interference through the other 
side. Therefore, the traditional estimation of the treat-
ment effect has a bias. Although the design problem is 
not studied, Johari et al. (2022) analyze the bias caused 
by the interference. Switchback experiments are com-
monly used by platforms to mitigate such bias. Bojinov 
et al. (2023) study the optimal design of switchback 
experiments and provide statistics for inference. To 
debias the estimated treatment effect under interfer-
ence, Farias et al. (2022) propose a new estimator 
inspired by Q-learning in reinforcement learning, which 
significantly reduces the bias and meanwhile has a 

small variance. Zhao and Zhou (2022) study the design 
of experiments that sequentially allocate subjects with 
covariates in order to balance the covariate distribution 
between the treatment and control groups.

7. Concluding Remarks
The field of RM has been shifting from model-based to 
data-driven approaches in the last decade, thanks to the 
availability of large-scale data, emerging business mod-
els heavily reliant on data analytics, and industry practi-
tioners with an analytics mindset. Despite the recent 
advances in data-driven RM, the area is far from fully 
explored, and there are many exciting directions to 
explore. We list some as follows.

7.1. Computationally Efficient Algorithms
Large-scale data sets introduce new challenges for clas-
sic algorithms. For example, the EM algorithm is widely 
adopted to handle missing variables and is used in RM 
applications when the lost demand is censored. Unfor-
tunately, it does not scale to data sets of even moderate 
sizes. The design of algorithms in the large-data regime 
may have to take into account the calculated trade-off 
of computational efficiency and performance or theoret-
ical guarantees.

7.2. New Sources and Forms of Data
The last decades have witnessed not only the increasing 
scale of data but also the increasing variety. The per-
sonal features of consumers, the browsing history, the 
display of the web page upon a query, and new media 
such as short videos or live streaming all introduce 
novel forms of data that cannot be tackled by traditional 
RM methods. How to make good use of them has 
become an important topic in RM and has inspired new 
models, frameworks, and algorithms.

7.3. Social Responsibility
Firms are raising awareness of the importance of their 
social responsibility. They are taking action to reduce 
the carbon footprint of their operations, improve the 
working conditions of their employees, and protect the 
privacy of their customers. Although RM focuses on 
revenue or profit traditionally, researchers are now ex-
ploring other objectives, such as fairness, privacy, and 
sustainability. Addressing these new objectives in a 
data-driven fashion remains a critical topic.

7.4. Impact of Artificial Intelligence (AI)
AI has become a transformative force in many indus-
tries in the last decade. In the past few years, reinforce-
ment learning, large language models, computer vision, 
and generative models have far outpaced human be-
ings’ expectations of what AI can achieve. The technolo-
gies have not quite penetrated the industries in which 

Figure 6. Experimental Design 
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RM scholars are typically interested, such as retailing, 
fast fashion, airline, and hospitality. As RM researchers, 
we hope to envision the future of RM with AI and 
explore the new opportunities and challenges that AI 
brings to RM.
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