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Abstract. We study the problem when a firm sets prices for products based on the transac-
tion data, that is, which product past customers chose from an assortment and what were 
the historical prices that they observed. Our approach does not impose a model on the dis-
tribution of the customers’ valuations and only assumes, instead, that purchase choices sat-
isfy incentive-compatible constraints. The uncertainty set of potential valuations of each 
past customer can then be encoded as a polyhedral set, and our approach maximizes the 
worst case revenue, assuming that new customers’ valuations are drawn from the empirical 
distribution implied by the collection of such polyhedra. We study the single-product case 
analytically and relate it to the traditional model-based approach. Then, we show that the 
optimal prices in the general case can be approximated at any arbitrary precision by solving a 
compact mixed-integer linear program. We further design three approximation strategies that 
are of low computational complexity and interpretable. In particular, the cutoff pricing heuris-
tic has a competent provable performance guarantee. Comprehensive numerical studies 
based on synthetic and real data suggest that our pricing approach is uniquely beneficial 
when the historical data has a limited size or is susceptible to model misspecification.
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1. Introduction
Online retailing has seen steady growth in the last 
decade. According to the survey by Gaubys (2020), the 
global market share of e-commerce is expected to have 
surpassed 20% in 2022, and the trend is only accelerat-
ing. Retailers, however, face various challenges when 
transitioning to an online business model. First, the granu-
larity of the data gathered from past customers, from 
which firms observe what customers bought, the products 
they viewed, and their prices at the time of the purchase, 
far exceeds that of the off-line business counterpart. Sec-
ond, the firm is able to roll out products rapidly, and many 
new products (or new configurations of old products) can 
be displayed each day (Caro et al. 2020). Seemingly contra-
dictory to the first point, there may be little purchase infor-
mation for a firm to take timely actions on these new 
products, such as price correction and adjustments.

In an attempt to address this challenge, we study the 
pricing decision of an assortment of products for a firm 
based on its historical transaction data. The data record the 
assortment of products viewed by past customers and 
their prices, which may vary across customers because of 

promotions. The data also record the decision made by the 
customers: the purchase of at most one of the products. 
However, those customers who do not make any purchase 
may not need to be observed and recorded in the transac-
tion data.

The common approach to handle this situation is 
what we refer to as “model-estimate-optimize.” The 
firm first builds a discrete choice model to characterize 
how customers form their utilities and make choices. 
For example, in the multinomial logit (MNL) model, the 
probability of a customer choosing product j from a set 
of n products priced at (p1, : : : , pn) can be expressed as

exp(αj� βpj)

1+
Pn

k�1exp(αk� βpk)

for some parameters {αk}
n
k�1 and β�representing the 

average attractiveness of the products and the price sen-
sitivity, respectively. It is equivalent to a random utility 
model in which a random customer has utility αk �

βpk + ɛk for product k, where ɛk follows an independent 
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and identically distributed Gumbel distribution and 
customers choose the product, or no purchase, with the 
highest utility. The second step is to estimate. Based on 
the historical data, the firm can estimate the parameters 
(see Train 2009 for the detailed steps). Finally, the firm 
optimizes its pricing decisions by setting the optimal 
prices for future customers using the estimated model. 
This approach enjoys wide popularity because of its 
simplicity and computational efficiency.

However, in the setting we consider, the model- 
estimate-optimize approach falls short in three aspects. 
First, when the data size is small relative to the number 
of products, the estimation of the parameters (such as αj 
in the MNL model) may be noisy and unstable. It is not 
clear whether the firm can rely on the estimation to make 
adequate pricing decisions. Second, the discrete choice 
model may not be able to capture the behavioral pattern 
in the data, which is referred to as model misspecifica-
tion. In this case, the firm can choose a more complex 
model, potentially with more parameters, to minimize 
the misspecification error. This inevitably exacerbates 
the first issue as pointed out in Abdallah and Vulcano 
(2020). Third, the model-based approach is sensitive 
to whether the no purchases are being observed and 
recorded in the data in contrast to our robust approach.

In this paper, we propose a data-driven approach 
to the assortment-pricing problem. As opposed to the 
model-estimate-optimize approach, we consider no prior 
models on how customers form their utilities for the pro-
ducts. Instead, when a customer is observed to choose a 
product from a set of products with given prices, we 
assume that a (model-free) incentive-compatibility con-
dition specifies the customer’s potential valuations for 
the products. For example, when a product is purchased 
by a customer, the utility of that product must be neces-
sarily at least as high as that of any of the products that 
are not purchased. Leveraging this condition, the data 
for a transaction define a polyhedral set containing the 
vector of valuations (v1, : : : , vn) of the particular cus-
tomer, which is referred to as the incentive-compatible (IC) 
polyhedron. When a new customer arrives, without know-
ing anything about the customer’s preferences, we uni-
formly sample from the IC polyhedra from customers in 
the historical data and set prices such that the expected rev-
enue derived from the arriving customer is maximized 
when the customer’s valuations, drawn from any sampled 
IC polyhedron, lead to the least possible revenue.

The contribution of this work is fourfold. First, to the 
best of our knowledge, this is the first study that le-
verages incentive-compatibility constraints to define a va-
luation polyhedron for pricing. With this novel approach, 
we circumvent the need for prespecified customer mod-
els as is customary in the random utility literature, inves-
tigating the optimal pricing directly based on the data. 
We believe this approach sheds new insights into the for-
mulation of other related data-driven problems.

Second, by exploiting the structure of the polyhedra, 
we present a disjunctive model of the pricing problem 
and several structural results associated with the optimal 
prices. We show that the disjunctive model can be ap-
proximated at any desired precision by a compact bilinear 
program, itself solvable by a compact mixed-integer pro-
gramming model after an appropriate reformulation. For 
scalability purposes, we also present low-complexity, in-
terpretable approximation algorithms that are shown to 
achieve strong theoretical and numerical performance. 
We also study special cases of practical interest in which 
the optimal prices can be obtained efficiently.

Third, we build the connection between our model- 
free approach and the traditional model-based approach 
when the firm sells only one product. In particular, the 
revenue garnered by our approach within a given un-
derlying model can be expressed in a closed form. As a 
result, when the number of historical customers ap-
proaches infinity and prices shown to past customers 
are randomly drawn from a uniform distribution, under 
mild technical conditions, we are able to establish a tight 
constant bound of 1/2 for the performance of our 
model-free pricing relative to the optimal model-based 
revenue. This result showcases the robustness of our 
approach under a model-based framework. Moreover, 
we show that if the no-purchases are not recorded in the 
data, our approach can lead to strictly higher revenue 
than the best the model-based approach could do.

Fourth, we conduct a comprehensive numerical study 
based on synthetic and real data. In particular, we use 
the well-studied IRI data set (Bronnenberg et al. 2008) 
and fit different choice models, including the linear, 
MNL, and mixed logit models. We then generate a small 
number of customer purchases based on the models. 
After applying our approach to the data, the generated 
revenues significantly outperform the incumbent prices 
in the data for all the models, demonstrating the benefit 
of the data-driven, model-free approach: the insensitiv-
ity to model misspecification and stable performance 
when the data size is limited.

Our findings in the numerical study suggest that (1) 
our best approximation algorithm consistently recovers 
at least 96% of the optimal robust revenue in various 
settings, and its computational complexity scales line-
arly with the number of samples. (2) When the histori-
cal data are generated from commonly used discrete 
choice models, such as the MNL model, our data- 
driven approach performs well compared with the 
optimal prices under the correctly specified estimated 
model, especially for a limited data size. On the other 
hand, when the discrete choice model is misspecified, 
our approach is more robust and outperforms the mis-
specified optimal prices. (3) Applying our data-driven 
approach to real data sets leads to an increase in reven-
ues over the incumbent prices in the data set.
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2. Related Work
Our study is broadly related to three streams of litera-
ture. The first steam is the papers studying the estima-
tion and optimization of the discrete choice models with 
prices, which provide the basis for the model-estimate- 
optimize approach. For the estimation of popular dis-
crete choice models including the MNL model, Train 
(2009) provides an excellent review. Recently, two new 
choice models have drawn attention of scholars in the 
operations research community: the rank-based model 
(Farias et al. 2013) and the Markov chain choice model 
(Blanchet et al. 2016). Because of their flexibility, the esti-
mation is not as straightforward as others, such as the 
MNL model. Several studies propose various algorithms 
to address the issue (van Ryzin and Vulcano 2015, 2017; 
Şimşek and Topaloglu 2018). As for optimal pricing, the 
MNL model is studied in, for example, Hopp and Xu 
(2005) and Dong et al. (2009). For the nested logit model, 
which is a generalization of the MNL model, Li and Huh 
(2011), Gallego and Wang (2014), and Li et al. (2015) 
investigate its optimal pricing problem. Zhang et al. 
(2018) study the optimal pricing problem of the general-
ized extreme value random utility models with the same 
price sensitivity. In contrast, Mai and Jaillet (2019) use 
a robust framework to tackle the same problem for ex-
treme value utilities.

Although we also adopt a robust approach, we do not 
rely on a particular distribution, and the decision is fully 
guided by the data. Similarly, Rusmevichientong and 
Topaloglu (2012) and Jin et al. (2020) study the robust 
optimization problem of pricing or assortment planning 
in the MNL model. Several papers incorporate pricing 
into the rank-based model (Rusmevichientong et al. 
2006, Jagabathula and Rusmevichientong 2017) and the 
Markov chain model (Dong et al. 2019) and study the 
optimal pricing problem. More recently, Yan et al. (2022) 
use the transaction data to fit a general discrete choice 
model of a representative consumer and solve the opti-
mal pricing based on the fitted model by mixed-integer 
linear programming. Whereas the problem they study is 
essentially similar to ours, their approach relies on the 
model-estimate-optimize paradigm and, hence, is con-
ceptually distinct from the proposed approach here.

In the context of revenue management, the definition 
of the term “data-driven” typically depends on the prob-
lem context. When the agent makes decisions in the 
process of data collection, the data-driven approach is 
usually associated with a framework that integrates 
such a process with decision making so that the agent is 
learning the unknown parameters or environment and 
maximizing revenues.1 The previous works by Bertsi-
mas and Vayanos (2017), Zhang et al. (2022), Cohen 
et al. (2018, 2020), Ettl et al. (2020), and Ban and Keskin 
(2021) fall into this category. It is connected to a large 
body of literature on demand learning and dynamic 

pricing. We refer to den Boer (2015) for a comprehen-
sive review of earlier papers in this setting.

In contrast, our study essentially handles an off-line 
setting, in which the data is collected and given. Two 
recent papers also provide alternatives to the model- 
estimate-optimization approach. Bertsimas and Kallus 
(2020) leverage statistical methods, such as k nearest 
neighbors and kernel smoothing, to integrate past obser-
vations into the current decision-making problem given a 
covariate. It circumvents the step of estimating a statistical 
model. Elmachtoub and Grigas (2022) achieve a similar 
goal by skipping the minimization of the estimation error 
and directly focusing on the decision error. They design a 
new loss function that combines the errors in both stages: 
estimation and optimization. Both papers study a setting 
in which the optimization is conditioned on a covariate. 
Our problem is less general than their formulation and 
does not have a covariate, which allows us to utilize the 
special structure of the multiproduct pricing problem 
(i.e., the incentive compatibility of customers) that does 
not apply to their general approach. Ban and Rudin 
(2019) propose an algorithm integrating historical 
demand data and newsvendor-optimal order quantity 
without estimating the demand model separately.

There are a few papers using model-free approaches 
in revenue management. Allouah et al. (2022) study the 
problem that the seller observes samples from the 
buyer’s valuation but is agnostic to the underlying distri-
bution. The optimal price is solved for a family of possi-
ble distributions in the maximin robust sense. Chen et al. 
(2019) adopt the estimate-then-model approach, which 
is model-free, to estimate choice models using random 
forests. They do not consider the optimization stage. 
Our problem is similar to the work by Ferreira et al. 
(2016), who study the demand forecasting and price 
optimization of a new product by a retailer. However, it 
focuses on a single product, and it is unclear how to 
adapt it to multiple products. A few studies apply ana-
lytics to promotion planning (see, e.g., Cohen et al. 2017, 
Cohen and Perakis 2020). They consider more practice- 
based assumptions than ours and use various approxi-
mations for the demand model.

This paper uses the incentive compatibility of past 
customers as a building block and, hence, is related to 
the literature on auction designs, especially those papers 
using a data-driven or robust formulation. Bandi and 
Bertsimas (2014) study the multi-item auction design 
with budget-constrained buyers and use a robust formu-
lation for the set of valuations. The uncertainty set is con-
structed using the historical information, such as means 
and covariance matrices. Because of the polyhedral 
structure of the uncertainty sets, the robust optimization 
problem is tractable. Our formulation investigates the 
worst case revenue in the IC polyhedron (see Section 3), 
which is similar to the idea of robust optimization for 
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valuations drawn from uncertainty sets. However, there 
are three distinctions. First, in Bandi and Bertsimas 
(2014), the uncertainty set is constructed on the valua-
tions of all bidders for a single product, whereas in our 
problem, the valuations of a single customer for all the 
products fall into a polyhedron. This is because of the 
different applications. Second, our data-driven approach 
averages over the empirical distribution of historical cus-
tomers, whereas the historical information is used to 
construct the uncertainty set in Bandi and Bertsimas 
(2014). Third, the optimization problem in our problem 
cannot be solved efficiently, and we resort to approxima-
tion algorithms. Derakhshan et al. (2021) consider a 
data-driven optimization framework to find the optimal 
personalized reservation price of buyers when past bids 
are input to the algorithm. They do not impose assump-
tions on the valuation distributions and maximize the 
revenue when the valuation of the future customer is 
drawn from the empirical distribution of the historical 
data. This is similar to the motivation of this paper. 
However, because of the different contexts, the reduc-
tion and approximations have little in common with 
ours. Similarly, Koçyiğit et al. (2020) study the problem 
of designing an auction to sell an indivisible good to a 
group of bidders when the bidders’ valuations come 
from an ambiguous distribution and the bidders’ atti-
tude toward this ambiguity is unknown. They design 
optimal mechanisms that are robust to the worst case 
realization of bidders’ valuation and their attitudes. 
Koçyiğit et al. (2022) apply the robust approach to multi-
product pricing. The authors assume the valuation of a 
single customer is drawn from a rectangular uncertainty 
set and design mechanisms to maximize the worst case 
revenue ensuring incentive compatibility. They show 
that the optimal robust selling mechanism is to sell pro-
ducts separately with randomized posted prices. Finally, 
Allouah and Besbes (2020) study the single-item auction 
for a group of buyers when the seller does not have 
access to the valuation distribution of the buyers and 
buyers do not have any information about their competi-
tors. Instead, the auction is designed for a general class 
of distributions with a competitive-ratio objective, which 
is conceptually similar to our model-free approach.

3. Problem Description
We consider a firm that observes the transaction data of 
m customers C � {1, : : : , m} with respect to an assort-
ment of n products P � {1, : : : , n}. Specifically, the firm’s 
historical data includes the product prices Pi � (Pi1, : : : , 
Pin) > 0 viewed by each customer i ∈ C as well as the 
product ci ∈P that the customer chose from that assort-
ment. We consider that customers viewed all products 
P and purchased one product from that assortment 
(customers without purchases are censored in the data); 
both assumptions are made without loss of generality 

(Remarks 1 and 2). That is, we can incorporate the situa-
tion in which historical customers may have not ob-
served some of the products in the assortment during 
their transactions, and removing those customers who 
made no purchase during their shopping session does 
not change our results. The goal of the firm is to set the 
product prices p � (p1, : : : , pn) for newly arriving custo-
mers that leverages this off-line historical data.

In this study, we investigate a pricing approach that 
operates on the full set of possible customer utilities 
under incentive-compatibility constraints. More pre-
cisely, let vij ≥ 0 be the unknown valuation that cus-
tomer i ∈ C assigns to each product j ∈P. We assume 
that the utility of purchasing j is given by vij�Pij (and, 
hence, quasilinear in vij) and such utilities must be com-
patible with observations from the data; that is, the set 
of all possible valuations of customer i is

Vi ≡ {(vi1, : : : , vin) ∈ Rn
+ : vici �Pici ≥ 0,

vici �Pici ≥ vij′ �Pij′ , ∀j′ ∈P \ {ci}}: (1) 

The first inequality in (1) indicates that the utility of pur-
chasing product ci is nonnegative. The second inequality 
specifies that valuations are incentive-compatible, that 
is, that the utility of purchasing product ci must be either 
the same or larger than the utility for the remaining pro-
ducts P \ {ci}. We note that Vi is defined by a finite set of 
closed half-spaces and, hence, is a polyhedral set. We 
refer to Vi as the IC polyhedron of customer i.

For a newly arriving customer, however, the custo-
mer’s valuation is not known to the firm. Based on histor-
ical data, it is reasonable to use the empirical distribution 
to form such an estimate. That is, we assume that the cus-
tomer’s valuation is equally likely to fall into one of the IC 
polyhedra V1, V2, : : : , Vm. Given the new prices p and con-
sidering that the new customer’s valuation falls into Vi 
for some i, we apply a robust approach in which the arriv-
ing customer picks product j ∈P that yields the lowest 
possible revenue, and such a choice is consistent with Vi 
under prices p. Such a revenue is described by the pro-
gram

fi(p) ≡ min
vi∈Vi, r≥0

r (DP) 

s:t: ∨
j∈P

r � pj

vij� pj ≥ 0
vij� pj ≥ vij′ � pj′ , ∀j′ ∈P

0

B
@

1

C
A

∨ r � 0
vij � pj ≤ 0, ∀j ∈P

 !

: (2) 

Model (DP) (short for disjunctive program) is a classic 
disjunctive program (Balas 1998), that is, the set of fea-
sible solutions is defined by a disjunction of polyhedra 
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representing the feasible valuations for each product. 
Specifically, with the objective min r, we select the prod-
uct with the lowest revenue for which there exists a fea-
sible valuation vi ∈Vi that is also incentive-compatible 
under the new prices p. This is modeled by the first 
disjunction term of (2), in which some product j (and, 
hence, price pj) is selected only if its net utility (i.e., 
vij� pj) is nonnegative and at least as large as that of 
choosing other products. The second disjunction term of 
(2) formulates the case in which the customer chooses 
no product—only possible if the utility of choosing any 
product under p is nonpositive.

Remark 1. As noted earlier, we assume that the data 
are censored, and each historical customer i ∈ C has 
purchased one product from the assortment. In particu-
lar, if some customer i has not purchased any products, 
we can assume that i belongs to the polyhedron with 
zero revenue in Model (DP), that is, the second disjunc-
tion term in (2). Thus, revenue driven by customer i is 
always zero for any prices, and therefore, customer i 
can be removed from the model.

Based on (DP), we assign a weight 1=m and sum over 
i ∈ C to take the expectation with respect to the empirical 
distribution. To maximize over p, the objective function 
is expressed as

τ∗ ≡ sup
p≥0

1
m
X

i∈C
fi(p): (OP) 

Problem (OP) (short for optimal pricing) highlights im-
portant distinctions from existing pricing approaches. 
First, it does not rely on a parametric discrete-choice 
model that explicitly specifies the distribution of cus-
tomer utilities (see, e.g., Train 2009). Instead, we adopt a 
model-free approach and consider the worst case valua-
tion for a given p under quasilinearity and incentive- 
compatible customer preferences, which are arguably 
weaker and more justifiable than existing parametric 
models to the best of our knowledge. Second, we do 
not attempt to estimate a nonparametric model (e.g., 
Jagabathula and Rusmevichientong 2017). Instead, the 
goal is to investigate the structure of (OP), trade-offs, 
and scenarios in which prices derived from (OP) are 
beneficial in comparison with existing models given its 
data-driven nature and emphasis on the historical data.

Remark 2. The choice model (DP) assumes that each 
customer i ∈ C sees the same assortment P and their 
historical prices Pi. Whereas, in practice, customers may 
see different assortments, which can be subsets of P, 
this assumption can be relaxed by setting a sufficiently 
large Pij if customer i has not been offered product j 
(e.g., the sum of all historical prices). In that case, the 
structural results can be rewritten accordingly without 
loss of generality.

We next discuss two aspects of the pricing model.

Attaining the Maximum of (OP). We note that the maxi-
mum of (OP) may not be attainable because of the dis-
continuity of the customer choices in (2), hence, the use 
of supremum in the objective. For example, consider an 
instance with one customer (m � 1) and one product (n 
� 1), in which P11 � P∗ for some P∗ > 0 and c1 � 1. Thus, 
from (1), the customer valuation satisfies v11 ≥ P∗. Sup-
pose now we assign a price p1 ≥ P∗. It follows from (2) 
that the optimal revenue is zero because any valuation 
P∗ ≤ v11 ≤ p1 is incentive-compatible with the 
no-purchase option. However, for any p1 � P∗� ɛ with 
ɛ > 0, we have τ∗ → P∗ as ɛ→ 0: Thus, fi(p) is discontin-
uous in p.

Interpretation as a Choice Model. One may take the 
worst case choices embedded in (DP) of all historical 
customers and assign an equal probability to them. 
This construction could potentially be interpreted as 
the choice behavior of the new customer. However, the 
essence of our approach is to take a conservative map-
ping from the price vector directly to the revenue, 
bypassing the choice model. We do not claim that (OP) 
can be used as a proper predictive model for con-
sumer choices.

4. Model-Free Pricing for a Single 
Product

In this section, we investigate the special case of a single 
product, that is, n � 1. The traditional model-based 
approach for optimal pricing relies on a demand func-
tion that characterizes the distribution of customers’ 
valuations. Given that such a notion is absent in our 
framework, our goal in this section is to explore the 
connection between the proposed pricing scheme and 
the model-based approach when a known demand 
function specifies consumer purchase behavior. That is, 
we attempt to rigorously characterize the performance 
of model-free pricing in a model-based setting. To that 
avail, in this section we provide a sufficient condition 
under which the model-free pricing achieves the opti-
mal revenue in the model-based setting. Moreover, we 
provide tight performance guarantees for the model- 
free price in the model-based setting when historical 
prices are drawn independently from a uniform distri-
bution. Finally, we characterize the sample complexity 
of our model-free approach. Namely, we show the rate, 
in terms of the number of samples, at which the model- 
free optimal price converges to its asymptotic optimal 
price.

Let F : [0, +∞)→ [0, 1] denote the cumulative dis-
tribution function (CDF) of the random customer valu-
ation for the product. Thus, given a price p ≥ 0, the 
probability that a customer purchases the product is 
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1� F(p). The expected revenue at p, which is the target 
of model-based approaches, is R(p)¢p(1� F(p)). Our 
objective is to compare the price from (OP) with 
arg maxp≥0R(p). Note that the latter requires an infinite 
number of data points to estimate F exactly and is sus-
ceptible to data censoring, which we discuss in Lemma 
EC.1 in Section EC.4 of the e-companion.

To generate the historical data that can be used by our 
framework, we have to specify how the historical prices 
are drawn. We assume that the seller picks a price inde-
pendently from a distribution with CDF G(·).2 Observ-
ing a price p ~ G, the customer makes a purchase with 
probability 1� F(p). Because of the censoring, the histor-
ical data in our framework {(Pi1, ci)}

m
i�1 can be thought 

of being generated independently with P(Pi1 ≥ p) �
R +∞

p 
(1� F(x))dG(x) and ci � 1 (we assume Pi1�0 if the no- 
purchase option is chosen by customer i). As is shown in 
Section 5, the optimal price for our model-free approach 
satisfies p∗m ∈ arg maxp≥0 p

Pm
i�1 I(Pi1 ≥ p).

To compare the fundamentals of the model-based 
approach and our framework without the statistical 
noise, we let m→∞ and define p∗ as p∗ ∈ arg maxp≥0 

p limm→∞

Pm
i�1 I(Pi1≥p)

m

� �

. Moreover, for the simplicity 

of analysis and exposition, we assume the following.

Assumption 1. Both CDFs F(·) and G(·) have a probabil-
ity density function denoted by f (·) and g(·), respectively.

Our next result characterizes the optimal data-driven 
price p∗ in our framework asymptotically and compares 
it to the optimal price out of the model-based approach, 
assuming the model is known.

Proposition 1. Under Assumption 1, we have

p∗ ∈ arg max
p≥0

p
Z +∞

p
g(x)(1� F(x))dx: (3) 

Moreover, when g(p)∝ f (p)=(1� F(p)), the optimal price of 
our framework is also optimal for the model-based approach:

p∗ ∈ arg max
p≥0

R(p) � arg max
p≥0

p(1� F(p)):

Proposition 1 reveals connections and differences be-
tween the two approaches. First, the optimal price of 
our framework depends on the distribution of the his-
torical prices, which itself does not affect the optimal 
price of the model-based approach. The reason the his-
torical prices impact the expected revenue in our data- 
driven setting is that our approach needs to recover the 
true valuation distribution from censored demand. To 
estimate F(·) well, one needs to know the fraction of no 
purchases for the historical prices because the observed 
demand is censored by the offered price.

Second, even when the data size is sufficiently large, 
the model-free pricing is not expected to converge to 
the optimal model-based prices in general. When the 
historical prices in our framework have a probability 
density function specified by the hazard rate func-
tion of the valuation distribution, the optimal prices of 
the model-based and model-free approaches coincide. 
However, one likely does not know the hazard rate 
function exactly; otherwise, it is possible to infer F(·)
from such a hazard rate and use the optimal price of 
the model-based approach, assuming that the model is 
correctly specified.

4.1. Model-Free Pricing Under Uniformly 
Distributed Historical Prices

Next, we investigate a simple price distribution that does 
not require the information of F—the uniform distribu-
tion in the historical data—and study the performance of 
our framework. We consider the following assumption.

Assumption 2. The distribution f (·) is supported on [0, a]
and g(p) � 1=b for p ∈ [0, b], where 0 ≤ a ≤ b.

Under Assumption 2, the first order condition for p∗
in (3) implies that

R(p∗) � p∗(1� F(p∗)) �
Z a

p∗
(1� F(x))dx¢S(p∗): (4) 

In other words, the optimal model-free price from our 
framework is an equal divider of the welfare: the revenue 
earned by the firm, R(p∗), is equal to the surplus gained 
by the consumers, S(p∗). Our question, therefore, can be 
framed as follows: if we plug the optimal price from our 
framework p∗ (or, equivalently, an equal divider of the 
welfare) into R(p∗), how large would the gap be between 
the optimal model-free profit R(p∗) and the optimal model- 
based profit maxpR(p)? Once equipped with Assumption 
3, which we show later is not restrictive, Theorem 1
answers this question definitively.

Assumption 3. The maximizer of (3), p∗, is the only solu-
tion to (4) in [0, a] such that p∗

R a
p∗ (1� F(x))dx > 0; R(p) is 

unimodal in [0, a] and has a unique maximizer p̂.

Theorem 1. Suppose Assumptions 1–3 hold. We have R(p∗)
=R(p̂) ≥min{p̂=p∗, 1=2}: Moreover, the bound is asymptoti-
cally tight: for any ɛ > 0, we can construct F(·) such that 
R(p∗)=R(p̂) ≤ 1=2+ ɛ; for any 0 < x1 < x2 < 1=e, we can 
construct F(·) such that p̂ � x1 and |p∗ � x2 | < ɛ such that 
R(p∗)=R(p̂) ≤ p̂1�ɛ=p∗1�ɛ.

Proof Sketch. Based on F(·), we may have p∗ ≤ p̂ or 
p∗ > p̂. Hence, we consider both cases separately. When 
p∗ ≤ p̂, we show that R(p∗)=R(p̂) ≥ 1=2. Then, for any 
ɛ > 0, we construct a distribution F(·) that leads to R(p∗)=
R(p̂) ≤ 1=2+ ɛ. Intuitively, the worst case performance of 
p∗ is achieved when customers’ valuation distribution is 
heavily concentrated at a.
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When p∗ > p̂, we leverage the fact that p∗ is the 
divider of welfare into equal portions of revenue and 
consumer surplus. At p̂, consumer surplus is strictly 
larger than the firm’s revenue. These observations lead 
to R(p∗)=R(p̂) ≥ p̂=p∗. Moreover, for any ɛ > 0, we con-
struct a distribution F(·) that achieves R(p∗)=R(p̂) ≤
p̂1�ɛ=p∗1�ɛ. To elaborate on the intuition behind this worst 
case performance, beyond p̂, both S(p) and R(p) deterio-
rate at a nearly identical rate, leading to p∗ to be as far 
away from p̂ as possible. w

We note that our bound is asymptotically tight as ɛ in 
Theorem 1 can be chosen to be arbitrarily close to zero. 
Theorem 1 establishes a performance bound when we 
use model-free pricing in the model-based setting with a 
demand function. Because the revenue maximizer p̂ is 
typically larger than the welfare divider p∗, using our 
optimal price guarantees at least a half of the optimal 
revenue in this case. Note that our framework is co-
mpletely model-free and does not assume a behavioral 
pattern of consumers. Theorem 1 suggests the robust 
performance of our approach even when there is an 
embedded model. Moreover, it also establishes the reve-
nue bound for the welfare divider p∗, which may be of 
independent interest. The proof for the bound and the 
construction of tight instances are highly nontrivial. We 
defer it to the e-companion.

We point out that the bound established in Theorem 1
is applicable to a wide range of customer valuation distri-
butions and can be improved significantly when custo-
mers’ valuation distribution follows a specific distribution, 
such as the uniform distribution (see Proposition EC.2 in 
the e-companion for more details). The next lemma illus-
trates the applicability of the bound in Theorem 1 by estab-
lishing that Assumption 3 is not restrictive and is satisfied 
for a large array of distributions.

Lemma 1. Suppose the distribution f (·) is supported on 
[0, a] and has a strictly increasing generalized failure rate, 
that is, xf (x)=(1� F(x)) is strictly increasing on [0, a]. 
Then, Assumption 3 holds.

Lemma 1 shows that Assumption 3 holds for distri-
butions with a finite support that have a strictly increas-
ing generalized failure rate. As Ziya et al. (2004) point 
out, assuming a strictly increasing generalized failure 
rate for customer valuation distributions is widely used 
in the literature of revenue management.

Another implication is that, when p̂ ≥ p∗, Theorem 1
guarantees that R(p∗)=R(p̂) ≥ 1=2. The following lemma 
puts forward a sufficient condition for p̂ ≥ p∗.

Lemma 2. Suppose Assumptions 1–3 hold. Moreover, let 
H(p) �

R p
0 (1� F(x))dx=

R a
0 (1� F(x))dx and assume that 

H(·) has a failure rate that is no less than that of F(·), that 
is, h(p)=(1�H(p)) ≥ f (p)=(1� F(p)) for any p ∈ [0, a], 

where h(p) � (1� F(p))=
R a

0 (1� F(x))dx. Then, we have 
p̂ ≥ p∗, and thus, R(p∗)=R(p̂) ≥ 1=2 by Theorem 1.

As pointed out by Chen et al. (2020), the conditions 
of Lemma 2 are arguably mild and are satisfied for 
many distributions that have increasing failure rates 
and are commonly used in the marketing and opera-
tions management literature, for example, uniform and 
right-truncated exponential distributions.

Finally, if the no purchases are not recorded in the 
data, our approach can lead to strictly higher revenue 
than what the best model-based approach could do (see 
Section EC.4). This result demonstrates the advantage of 
our model-free robust approach in requiring no informa-
tion on observing the no-purchases in contrast to the tra-
ditional model-based approach, which is sensitive to the 
information on the no-purchases (see Figure EC.3).

4.2. Sample Complexity of Model-Free Pricing
We investigate the sample complexity of model-free 
pricing, that is, how fast the optimal price of our frame-
work approaches its asymptotic optimal price p∗ given 
the increasing number of historical customers, m. The 
following proposition establishes the rate of conver-
gence under some mild conditions.

Proposition 2. Suppose Assumption 1 holds and g(·) is con-
tinuous and supported on [0, b]. Assume that p∗ is the unique 
maximizer of maxp≥0p

R b
p g(x)(1� F(x))dx and there exists 

α > 0 such that p∗
R b

p∗g(x)(1� F(x))dx� p
R b

p g(x)(1� F(x))
dx ≥ α(p� p∗)2 for all p ∈ [0, b]. Then, with m historical cus-
tomers and for any ɛ > 0, we have P( |p∗m� p∗ | ≥ ɛ) ≤

4e
�α2ɛ4m

2b2 . This suggests a sample complexity of O
�

b2

α2ɛ4

� �
log 

1
δ

� ��
to ensure that |p∗m� p∗ | ≥ ɛ with probability at most δ.

5. Reformulations of the Pricing 
Model (OP)

In this section, we investigate linear reformulations of 
(OP) that serve as the basis of our exact and tractable 
approximation strategies. We start in Section 5.1 with an 
analysis of the optimal policy structure for Problem 
(DP), presenting a small linear programming (LP) model 
to compute fi(p) that is compact with respect to the num-
ber of products and customers. We leverage this model 
in Section 5.2 to derive an alternative, compact mixed- 
integer linear program that approximates τ∗ at any de-
sired absolute error with respect to the optimal solution 
of (OP). Finally, we use this reformulation in Section 5.3
to show the optimal price structure of two commonly 
seen special cases.

5.1. Optimal Revenue from an IC Polyhedron
We first characterize the IC polyhedron Vi and fi(p) for 
given i ∈ C and p. It can be interpreted as how customer 
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i behaves under the new price p based on the custo-
mer’s historical choice. Proposition 3 uses classical poly-
hedral results to transform (DP) into an equivalent 
linear program.

Proposition 3. Formulation (DP) is equivalent to the lin-
ear program

fi(p) � min
v1

i , : : : , vn
i , vØ

i , x≥0

X

j∈P
pjxj (DP-LP) 

s:t: vj
ij � pjxj ≥ 0, ∀j ∈ P, (5) 

vj
ij � pjxj ≥ vj

ij′ � pj′xj,

∀j, j′ ∈ P, (6) 

vØ
ij ≤ pjxØ, ∀j ∈ P, (7) 
X

j∈P
xj + xØ � 1, (8) 

vj
ici
� Pici xj ≥ 0,

∀j ∈ P ∪ {Ø}, (9) 

vj
ici
� Pici xj ≥ vj

ij′ � Pij′xj,

∀j, j′ ∈ P ∪ {Ø}, (10) 

where v j
i � (v

j
i1, : : : , vj

in) ∀ j ∈P ∪ {Ø} and x � (x1, : : : , xn, 
xØ).

Model (DP-LP) (short for disjunctive program LP 
reformulation) is a linear program with O(n2) variables 
and constraints. In particular, the variables x1, : : : , xn, xØ 
represent which product is picked by an arriving cus-
tomer who draws the IC polyhedron Vi, where xØ 
encodes the no-purchase option. Constraint (8) ensures 
that the customer selects either one product or the 
no-purchase option. Constraints (5) and (6) imply that v j

i 
is incentive-compatible with the choice xj. They are 
equivalent to the jth disjunctive term of (2), whereas the 
other inequalities j′ ≠ j of the same family become re-
dundant whenever xj � 0. This same reason applies 
analogously to the no-purchase option and Inequalities 
(7). Constraints (9) and (10) ensure that v j

i ∈Vi, that is, 
the valuation must be incentive-compatible with the his-
torically chosen product ci. The generated revenue 

P
j∈P 

pjxj is minimized over such v j
i for all j and x.

We now analyze the structure of (DP-LP) to draw 
insights into the optimal customer choices and reduce the 
size of the formulation. To this end, consider the set of 
valuations from (DP-LP) that are incentive-compatible 
with product j ∈P, that is, W j

i (p) ≡ {v
j
i ∈Vi : vj

ij � pj ≥ 0, 
vj

ij � pj ≥ vj
ij′ � pj′ , ∀j′ ∈P} and those incentive-compatible 

with the no-purchase option: WØ
i (p) ≡ {vØ

i ∈Vi : vØ
ij ≤

pj, ∀j ∈P}: We now characterize in Lemma 3 when 
such valuation sets have at least one feasible point; that 
is, there exists a valuation vector for the products that is 
incentive-compatible with both the historical choice ci 

under the historical price Pi and product j being chosen 
under the new price p.

Lemma 3. For any price p ≥ 0, the following statements 
a–c hold: 

a. The no-purchase option is feasible to the ith customer 
type (i.e., WØ

i (p)≠ Ø) if and only if pci ≥ Pici , that is, the 
new price of the historically chosen product ci remains the 
same or increases.

b. The purchase of the historically chosen product ci by the 
ith customer type is always feasible (i.e., Wci

i (p)≠ Ø) for all 
p ≥ 0.

c. The purchase of j ∈P \ {ci} by the ith customer type is 
feasible (i.e., Wj

i(p) ≠ Ø) if and only if pj� pci ≤ Pij�Pici , 
that is, the price difference of j with respect to ci remains the 
same or decreases.

Lemma 3 provides easy-to-check conditions for whether 
the choice of a specific product or none is feasible. It also 
leads to a more compact formulation of (DP-LP). Intui-
tively, one can simply screen all products j ∈P and the 
no-purchase option according to Lemma 3 for feasible 
options and choose the one with the lowest revenue. 
Formally, let I(C) be the indicator function of the logical 
condition C; that is, it is equal to one if C is true and zero 
otherwise. Proposition 4 applies Lemma 3 to a reformu-
lation of (DP-LP) via a projective argument.

Proposition 4. Formulation (DP-LP) is equivalent to the 
linear program

fi(p) � min
x≥0

X

j∈P
pjxj (DP-C) 

s:t:
X

j∈P
xj � I(pci < Pici), (11) 

xj ≤ I(pj � pci ≤ Pij � Pici), ∀j ∈ P,
(12) 

where x � (x1, : : : , xn).

Formulation (DP-C) (short for disjunctive program- 
combinatorial) reveals the combinatorial structure of the 
problem for prices p and the IC polyhedron of customer 
i. Specifically, the optimal objective value is the mini-
mum price pj among the feasible products and 0 if the no- 
purchase option is feasible, according to Lemma 3. Notice 
that (DP-C) is always feasible for any p because either 
P

j∈Pxj � 0 or xci � 1 is always a viable purchase option 
according to Lemma 3, (a) and (b). Furthermore, of partic-
ular importance to our methodology is the dual of (DP-C):

fi(p) � max
µi≥0,τi

I(pci < Pici)τi�
X

j∈P
I(pj� pci ≤ Pij�Pici)µij

(DP-C-Dual) 
s:t: τi�µij ≤ pj, ∀j ∈P: (13) 

To draw insights on this dual problem, suppose prices 
are ordered as p1 ≤ p2 ≤⋯≤ pn. If pci < Pici , then the 
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no-purchase option is not feasible by Lemma 3(a) and 
the customer necessarily purchases one product from 
P. In this case, the worst case revenue is pj∗ , where j∗ ≡
minj∈P{j : pj� pci ≤ Pij�Pici}: In an optimal solution 
(τ∗i ,µ∗i ), variable τ∗i � pj∗ yields the revenue obtained 
when prices are set to p. The solution µ∗ij for each j ∈P 

captures the lost objective value if the product is feasi-
ble, that is,

µ∗ij �
pj∗ � pj, if j < j∗,
0, otherwise:

�

We note that these solutions are optimal because all are 
nonnegative (because of the ascending order of prices), 
feasible to (13), and equal to the same solution value of 
(DP-C) as only terms indexed by j ≥ j∗ have nonzero 
objective coefficients in the dual problem. The structure 
of the optimal duals also implies two immediate prop-
erties that we leverage in our reformulations.

Proposition 5. For any p ≥ 0, the following statements 
hold: 

a. We have fi(p) ≤min{pci , Pici}, which implies that the 
optimal revenue is bounded by the new price of the histori-
cally chosen product ci.

b. Let Pmax ≡maxi∈CPici be the maximum historical price 
paid by any customer. There exists some p′ ≥ 0 such that 
fi(p′) ≥ fi(p) and p′j < Pmax for all j ∈P, which implies that 
pricing any product higher than Pmax does not lead to any 
increase in revenue.

Given this dual interpretation and Proposition 5, we 
obtain an equivalent version of the dual that is written 
in terms of the single variable τi:
fi(p) � max

τi≥0
I(pci < Pici)τi (DP-D) 

s:t: τi ≤ pj + I(pj � pci > Pij � Pici)Pici , ∀j ∈ P:

(14) 

If pj� pci ≤ Pij�Pici for some j ≠ ci, then the jth product 
is feasible for purchase and Inequality (14) reduces to 
τi ≤ pj; that is, the maximum revenue is bounded by pj. 
Otherwise, the inequality becomes redundant given 
Proposition 5(a). We also note that τi ≤ pci for j � ci in 
(14), that is product ci is always feasible for customer i, 
and the model is consistent with Proposition 5(a).

5.2. Robust Pricing Reformulation
We now develop reformulations to address our origi-
nal pricing problem (OP). We consider the inner opti-
mization of (OP) obtained by dropping the constant 
term 1=m and replacing fi(·) by (DP-D), which has the 
same objective sense as the outer problem (hence, mov-
ing from a sup min problem to a sup max problem, which 

is simply sup):

sup
p,t≥0

X

i∈C
I(pci < Pici)τi (OP-C) 

s:t: τi ≤ pj + I(pj� pci > Pij �Pici)Pici , ∀i ∈ C, j ∈P:

(15) 

Multiplying the optimal value of (OP-C) (short for opti-
mal pricing-combinatorial) by 1=m yields the optimal 
revenue τ∗. The difficulty in this problem is its noncon-
cave and discontinuous objective function, which is 
defined in terms of indicator functions on both open 
and closed half-spaces. We, however, exploit the con-
straint structure of (OP-C) to price products to any 
absolute error of τ∗ by a two-step process, the first of 
which involves a significantly more computationally 
tractable model.

In particular, the indicator terms of (OP-C) can be 
reformulated in several ways (see, e.g., Belotti et al. 
2016). For our purposes, we study the following equiv-
alent bilinear mixed-integer model:

sup
p, t≥0, y

X

i∈C
yiciτi (OP-B) 

s:t: τi ≤ pj + (1� yij)Pici , ∀i ∈ C, j ∈ P, (16) 
pci < Pici + (Pmax � Pici)(1� yici), ∀i ∈ C, (17) 
pj � pci > Pij � Pici � (Pmax + Pij � Pici)yij,

∀i ∈ C, j ∈ P \ {ci}, (18) 
y ∈ {0, 1}m×n

: (19) 

To see the correspondence between the variables of 
(OP-B) (short for optimal pricing bilinear reformulation) 
and (OP-C), consider a set of new prices {p1, : : : , pn}. 
The condition I(pj� pci > Pij �Pici) � 0 for j ∈P \ {ci}

implies yij � 1 because of (18), which may be inter-
preted as product j being feasible for customer i under 
the new prices as per Lemma 3(c). Moreover, when 
I(pj� pci > Pij�Pici) � 1, both assignments yij � 0 and 
yij � 1 are feasible for (OP-B). However, yij � 0 leads to 
a (weakly) higher objective function value. Similarly, 
I(pci < Pici) � 0 implies yici � 0 because of (17), indicat-
ing that the no-purchase option is available for cus-
tomer i. Further, I(pci < Pici) � 1 implies that both 
assignments of yici � 1 and yici � 0 are feasible, whereas 
yici � 1 always leads to a (weakly) higher objective func-
tion value.

To elaborate more on the equivalency of (OP-C) and 
(OP-B), we note that, for both programs, the objective 
and constraints for each customer i reduce to Problem 
(DP-D). Further, we also remark that Inequalities (17) 
and (18) are big-M constraints that rely on Pmax defined 
in Proposition 5. For completeness, we formalize the 
validity of Model (OP-B).
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Proposition 6. At optimality, the solution values of (OP-C) 
and (OP-B) match.

The set of feasible solutions to (OP-B), however, is not 
polyhedral because the linear Inequalities (17) and (18) 
are defined by open half-spaces. We propose to solve a 
parameterized version of (OP-B) by setting a precision 
parameter ɛ on the constraint violation of (OP-B), which 
allows us to replace the supremum by a maximum:

g(ɛ) ≡ max
p, t≥0, y

X

i∈C
yiciτi (OP-ɛ)

s:t: τi ≤ pj + (1� yij)Pici ,
∀i ∈ C, j ∈ P, (20) 

pci ≤ Pici + (Pmax � Pici)(1� yici)� ɛ,
∀i ∈ C, (21) 

pj� pci ≥ Pij�Pici� (Pmax +Pij�Pici)yij

+ ɛ, ∀i ∈ C, j ∈P \ {ci}, (22) 

y ∈ {0, 1}m×n
: (23) 

Because (OP-ɛ) restricts the feasible space of (OP-B) for 
ɛ > 0, the optimal value must be no greater than the one 
from the original problem, that is, g(ɛ) ≤mτ∗ for ɛ > 0. 
Conversely, when ɛ � 0, (OP-ɛ) serves as a relaxation, 
and therefore, g(0) ≥mτ∗.

The challenge in solving g(ɛ) is to choose an appropri-
ate ɛ > 0 that leads to a sufficiently close approximation 
to the real supremum mτ∗. Large values of ɛmay lead to 
poor approximations because of the discontinuity of 
(OP), whereas small values are not computationally trac-
table because of the numerical limitations of solvers. 
Theorem 2, however, shows that it suffices to solve g(0)
to obtain a sufficiently close value to mτ∗ at any desired 
(absolute) error. It also prescribes a set of final prices 
with a formal guarantee that can be used by the firm.

Theorem 2. Consider Formulation (OP-ɛ) with ɛ � 0. The 
following statements hold: 

a. The model has a finite optimal value attainable by some 
p0 ≥ 0.

b. If a product j ∈P is priced at zero by the optimal vector 
p0, we can reprice it at p0

j �mini∈C,j∈PPij > 0 without losing 
optimality.

c. Let p0 > 0 be an optimal vector of positive prices after 
ordering, that is, 0 < p0

1 ≤ p0
2 ≤

: : : ≤ p0
n. For any desired 

error δ > 0, let p′ be a vector of prices such that

p′ � p0
1�
δ′

mn
, p0

2� 2 δ
′

mn
, p0

3� 3 δ
′

mn
, : : : , p0

n� n δ
′

mn

� �

for any sufficiently small 0 < δ′ ≤ δ�so that p′ > 0. Then,
0 ≤ g(0)�mτ∗ ≤ g(0)�

X

i∈C
fi(p′) ≤ δ, 

where τ∗ is the optimal solution of the original pricing prob-
lem (OP).

By Theorem 2, we are able to solve (DP) for any 
desired error δ�using Reformulation (OP-ɛ) with ɛ � 0. 
More precisely, the set of prices p∗ can be obtained by 

1. Solving (OP-ɛ) for p with ɛ � 0, which is guaran-
teed to exist because of Theorem 2(a).

2. If any price is zero, increasing it to a positive value 
according to Theorem 2(b).

3. Applying the transformation from Theorem 2(c) to 
any desired error δ.

Whereas modern commercial solvers can address 
nonlinear models of the form (OP-ɛ), we also present 
an equivalent mixed-integer linear program by a stan-
dard big-M reformulation of the quadratic constraints. 
The program is the key to the analysis of our approxi-
mation algorithms.

g(0) � max
p, t, t̄≥0, y

X

i∈C
τi (OP-MIP) 

s:t: (20), (21), (22), (23) with ɛ � 0, (24) 

τi ≤ yici Pici , ∀i ∈ C, (25) 

τi ≤ τi, ∀i ∈ C, (26) 

τi ≥ τi � (1� yici)Pici , ∀i ∈ C: (27) 

Prioritizing Market Share. We note that, in some mar-
ket environments, the firm may want to ensure a cer-
tain purchase probability for the new customer 
through its pricing in addition to revenue maximiza-
tion. The optimization program (OP-MIP) can be modi-
fied accordingly to tackle such a setting with market 
penetration considerations. For example, to guarantee 
a purchase probability of at least ρ�for the new cus-
tomer, it suffices to add the constraint 

P
i∈Cyici ≥mρ�to 

(OP-MIP). Thus, our approach can accommodate the 
case when the firm prioritizes the market share consid-
eration in its revenue maximization objective.

5.3. Special Cases
We now discuss two cases of practical interest in which 
(OP-MIP) can be solved analytically. First, we consider 
the scenario in which each individual customer is 
offered the same price for all products in the assort-
ment. The prices, however, can be different per cus-
tomer. This occurs when products are similar in nature 
and customers are offered personalized promotions 
over time. Proposition 7 states the structure of the opti-
mal solution for this case.

Proposition 7. Suppose that, for each customer i ∈ C, all 
products j ∈P have the same historical price Pij � Pi. Further-
more, without loss of generality, assume prices are ordered, that 
is, P1 ≤ P2 ≤ : : : ≤ Pm. The price vector p∗ defined by p∗j � Pi∗

for all j ∈P, where i∗ � arg maxi∈C{(m� i+ 1)Pi}, is opti-
mal to (OP-MIP).
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Proposition 7 reveals a connection with the classic 
pricing literature. Specifically, if we perceive the set 
{P1, : : : , Pm} as the empirical distribution of the cus-
tomer valuations, then our problem, when all products 
are offered at the same price, reduces to the well- 
studied revenue maximization problem maxp{p · d(p)}, 
where d(p) is the demand function of price p.

As our second practical case, we consider a setting in 
which the price for any product is fixed over time. 
More precisely, prices may differ per product but not 
per customer. Proposition 8 also indicates that the opti-
mal prices have a simpler structure; that is, it suffices to 
set them to their historical prices.

Proposition 8. Suppose that, for each product j ∈P, 
all customers observe the same historical price Pj. The 
price vector p∗ such that p∗j � Pj for all j ∈P is optimal to 
(OP-MIP).

6. Approximate Pricing Strategies 
and Analysis

Formulation (OP-MIP), albeit amenable to state-of-the- 
art commercial solvers, may still be challenging to solve 
because of its difficult constraint structure (e.g., the 
presence of big-M constraints). Moreover, Abdallah 
and Vulcano (2020) point out that, in retail, the number 
of SKUs in a family of products could be on the order of 
several hundred. Thus, even with a few data points per 
product, the size of (OP-MIP) can be significantly large. 
Whereas recent works focus on choice model estima-
tion in such high-dimensional settings (Jiang et al. 
2020), to the best of our knowledge, model-free pricing 
approaches are yet to be developed for such settings.

In this section, we analyze three interpretable and 
intuitive approximation algorithms that are of low- 
polynomial time complexity in the input size of the 
problem and, hence, scalable to large problem sizes. 
We discuss their benefits and worst case revenue per-
formance in comparison with the optimal solution of 
(OP-MIP). Specifically, we evaluate in Sections 6.1 and 
6.2 two standard heuristics based on historical prices 
and LP relaxations, respectively. In Section 6.3, we pro-
pose an approximation based on a simplified version of 
(OP-MIP), which provides the strongest approximation 
factor among the three policies, is efficient to compute, 
and is also interpretable.

We note that, in practice, the firm might want to use 
simpler pricing algorithms, such as offering the pro-
ducts at their average historical prices or at the prices 
observed by a random historical customer. However, it 
can be shown that such pricing algorithms can lead to 
an arbitrarily poor revenue performance in comparison 
with the optimal solution of (OP-MIP). See Proposi-
tions EC.3 and EC.4. Thus, we do not discuss them in 
detail in this section.

6.1. Conservative Pricing
A simple approximation a conservative firm may con-
sider is to price all the products at their historically low-
est purchase price. That is,

pj � min
i∈C:ci�j

Pij, ∀j ∈ P: (28) 

By Inequality (20) for j � ci, these prices guarantee that 
each customer i purchases at least one product (i.e., the 
no-purchase option is not chosen). Furthermore, it also 
follows that the final total revenue is at least mP, where 
P ≡mini∈CPici .

Such a pricing policy maximizes the demand at the 
cost of a lower profit margin and is, thus, referred to as 
“conservative pricing.” We show that it has a straight-
forward worst case performance bound, which is also 
tight.

Proposition 9. Let P ≡mini∈CPici and P ≡maxi∈CPici be 
the minimum and maximum historical purchase prices, 
respectively. The revenue from the conservative pricing 
(28) is at least P=P of the optimal value of (OP-MIP). Fur-
thermore, this ratio is asymptotically tight as the worst case 
is achieved when the number of historical customers grows 
to infinity.

As one may expect, when products are not similar in 
nature and their prices vary in a wide range, this 
approximation is too conservative and does not per-
form well. However, the ratio P=P provides a useful 
benchmark that can be used to gauge the performance 
of other approximations.

6.2. LP Relaxation Pricing
It is a natural practice to consider the LP relaxation of 
Program (OP-MIP), that is, to replace the integrality 
constraint (23) by the continuous domain y ∈ [0,1]m×n. 
The resulting LP model can be solved in (weakly) poly-
nomial time, from which we can extract a candidate 
price vector pLP. We wish to evaluate the quality of pLP 

with respect to the optimal prices of (OP-MIP). Notice 
that the remaining variables of (OP-MIP) can be easily 
determined when p is fixed to pLP.

In Example EC.1, we show that the resulting LP prices 
can have a worse worst case performance than the con-
servative pricing approach. However, even though the 
worst case revenue is not necessarily superior relative to 
conservative pricing, we show in Section 7 that the LP 
relaxation pricing usually outperforms conservative 
pricing numerically in most cases. Intuitively, conserva-
tive pricing is more concerned with the worst case, 
whereas LP relaxation can be close to maximizing the 
expected performance, specifically because we have 
tuned the big-M constrained to be very tight with re-
spect to the input parameters.
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6.3. Cutoff Pricing
In this section, we provide a heuristic by manipulating 
and reshaping the IC polyhedra. In particular, consider 
the historical customer i in (DP-C). Suppose we omit 
Constraint (12) when deciding which product to buy 
under p in the worst case. In other words, the customer 
does not fully follow the IC constraints; rather, as long 
as the price of the historically chosen product ci is lower 
than its historical price, that is, pci ≤ Pici , all products 
are eligible for purchase. Therefore, if the customer 
plans to purchase a product (i.e., pci ≤ Pici ), then the cus-
tomer chooses the product with the lowest price, that 
is, product arg minj∈Ppj, in the worst case.

We formulate this setting in the following model:

max
p, t≥0

X

i∈C
I(pci ≤ Pici)τi : τi ≤ pj, ∀j ∈ P

( )

:

(OP-CP) 

Under the assumed purchase rule, all historical custo-
mers choose the same product with the minimum price 
as long as they decide to purchase under p. Thus, the 
key is to determine the minimum price p∗. Then, set-
ting all products at this price (pi ≡ p∗) maximizes the 
objective in (OP-CP). As we vary the value of p∗, the 
indicator functions only change values when p∗ � Pici . 
Letting p∗ � Pici for some i ∈ C, Formulation (OP-CP) 
simplifies to

max
i∈C

X

i′∈C
I(Pi′ci′ ≥ Pici)Pici , (29) 

which can be solved in O(m) time complexity by 
inspecting one Pici at a time. We denote the optimal 
solution to (OP-CP) by p∗ � Pici for some customer i. In 
particular, p∗ can be perceived as a cutoff price: the his-
torical customer i′ does not purchase any product if 
and only if the historical price paid by customer i′, Pi′ci′ , 
is below p∗. We leverage this to propose the cutoff pric-
ing approximation pCP as follows. For every j ∈P,

pCP
j �

min
i∈C
{Pici : ci � j, Pici ≥ p∗},

if {i ∈ C : ci � j, Pici ≥ p∗}≠ Ø,

min
n

max
n

max
i∈C

Pij, p∗
o

, P
o

, otherwise,

8
>>><

>>>:

(30) 

where each product j is priced at its lowest historical 
purchase price that was greater than or equal to the cut-
off price p∗. We note that not all products are priced at 
the cutoff price. Rather, they are often priced slightly 
higher than p∗. Such modifications do not impact 
the indicator functions and, thus, the optimal value of 
(OP-CP) but lead to better and less conservative em-
pirical performances. We next show its performance 
in Proposition 10, recalling that P ≡mini∈CPici and P ≡
maxi∈CPici are the minimum and maximum historical 

purchase prices, respectively, and introducing med(P) 
and avg(P) as the median and mean of {Pici}

m
i�1.

Proposition 10. The cutoff pricing (30) generates a reve-
nue that is at least max 1

1+log(P=P)
, med(P)

2avg(P)

n o
of the optimal 

value of (OP-MIP). Furthermore, this bound is asymptoti-
cally tight as it is achieved when both the number of pro-
ducts and number of historical customers grow to infinity.

Proof Sketch. We create a random variable X whose 
support is on the set {P1c1 , : : : , Pmcm}. We show that the 
performance bound of cutoff pricing can be translated 
to maxxx(1� FX (x))=E[X ], where FX (x) is the CDF of 
X . This is a classic problem and leads to the bound 
max 1

1+log(P=P)
, med(P)

2avg(P)

n o
.

To show that the performance bound is asymptoti-
cally tight for any P and P, we construct an example 
with n products and m customers that achieves a ratio 
arbitrarily close to 1

1+log(P=P)
, when both n and m grow 

arbitrarily large. Intuitively, this worst case perfor-
mance happens when a small decrease in the price of 
historically lower priced products leads to all the his-
torical customers with high historical purchase prices 
to choose them, hence showcasing the limitation of 
cutoff pricing in assuming a customer does not follow 
the IC constraints. w

Compared with Proposition 9, the cutoff pricing dra-
matically improves upon the worst case scenario of the 
conservative pricing, especially when P≫ P. Whereas 
Proposition 10 implies a strong performance bound for 
this pricing policy, we show that, for any P and P, we 
can construct an asymptotic example such that the reve-
nue from cutoff pricing is arbitrarily close to 1

1+log(P=P)
. 

Thus, we note that, when P=P is near zero, in theory, the 
performance of cutoff pricing can be poor. However, 
this is unlikely to happen in practical settings, primarily 
because Proposition 10 suggests that cutoff pricing 
always generates a revenue with a factor that is at least 
a half of the ratio of the median to the mean of the his-
torical purchase prices. Unless the purchase prices are 
highly skewed, this ratio is likely to be close to 1/2.

Empirical observations of the price dispersion P=P 
(see, e.g., Hosken and Reiffen 2004, Anania and Nisticò 
2014, Dubois and Perrone 2015) often lead to a reason-
able bound by Proposition 10. For example, in a study 
of grocery prices across the United States, Hosken and 
Reiffen (2004) investigate the frequency distribution of 
scaled prices for 20 categories of goods (the price of 
each good is scaled by its annual modal price) and 
show that the entirety of this distribution lies within 
[0:6, 1:4]. Moreover, in e-companion EC.1, we demon-
strate bounds computed from 31 different categories in 
the IRI academic data set. We show that, for almost all 
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the categories, the bound implied by Proposition 10
falls into the range of 30%–50%. Finally, we also ob-
serve in Section 7 that cutoff pricing is superior numeri-
cally to the two earlier proposed heuristics.

Remark 3. In the case of model-free pricing with a sin-
gle product, cutoff pricing recovers the optimal price. 
This follows from Proposition 7 and the fact that the 
cutoff price achieves the optimum of (29).

7. Numerical Analysis
We now present a numerical study of the proposed 
approaches on both synthetic and real data sets, evaluat-
ing our methodologies with respect to classical model- 
based methodologies in scenarios of practical interest. 
We start in Section 7.1 with an analysis of the empirical 
performance of the approximation pricing strategies 
from Section 6. In Section 7.2, we evaluate our data- 
driven pricing approach on “small data” regimes, which 
are typically challenging for classic model-based meth-
ods. Next, we consider a scenario in Section 7.3 in which 
the firm misspecifies the pricing model. Finally, in Sec-
tion 7.4, we compare all approaches on a large-scale data 
set from the U.S. retail industry.

7.1. Approximation Performance
In this section, we use synthetic data to investigate the 
performance of the approximation algorithms devel-
oped in Section 6. We generate instances with m ∈ {50, 
100, 150, 200}, n ∈ {10, 15, 20, 25}, and historical prices Pij 
drawn uniformly at random from the interval (0, 10). 

Each customer chooses a product in the assortment 
with equal probability 1=n. Based on the synthetic data, 
we compute the optimal value g(0) from (OP-MIP) and 
the objective of the three approximations in Section 6. 
We report the objective values of the approximations 
relative to the optimal value g(0) for 200 independent 
instances.

Figure 1 depicts the relative performance ratio in per-
centage (i.e., 100 × optimal revenue/heuristic revenue) 
of the conservative, LP relaxation, and cutoff pricing 
when the number of customers m and the number of 
products n vary in the historical data. The figures sug-
gest that conservative pricing performs poorly (achiev-
ing less than 15% of the optimal revenues on average), 
and cutoff pricing does the best among the three, 
obtaining at least 96% of the optimal value in all the 
cases. Increasing the number of customers or decreas-
ing the number of products improves the performance 
of LP relaxation and cutoff pricing. Moreover, the 
numerical results suggest that cutoff pricing signifi-
cantly outperforms conservative pricing as expected 
from its theoretical performance guarantee (Proposi-
tion 10) because cutoff pricing generally has an average 
performance that is an order of magnitude higher than 
that of conservative pricing. Finally, we observe that 
the numerical performance by cutoff pricing is far 
above that of its theoretical performance; we include 
additional tables in the e-companion EC.1 with the 
expected theoretical performance.

Table 1 shows the solution time of the conservative, 
LP relaxation, cutoff pricing, and optimal problem when 

Figure 1. (Color online) Performance of the Three Approximation Algorithms 

Table 1. The Average Solution Time of the Approximation Strategies and Optimal Solution

Solution time in seconds

(m, n) Conservative LP relaxation Cutoff Optimal

(50, 10) 0.041 (0.001) 0.453 (0.001) 0.040 (0.001) 1.477 (0.078)
(50, 15) 0.065 (0.001) 1.049 (0.005) 0.062 (0.001) 4.250 (0.195)
(50, 20) 0.080 (0.001) 1.762 (0.006) 0.083 (0.001) 5.691 (0.254)
(50, 25) 0.103 (0.001) 2.767 (0.007) 0.109 (0.001) 8.003 (0.313)
(100, 10) 0.081 (0.001) 0.929 (0.002) 0.078 (0.001) 17.260 (0.800)
(150, 10) 0.117 (0.001) 1.419 (0.003) 0.132 (0.002) 89.050 (5.400)
(200, 10) 0.165 (0.002) 2.018 (0.006) 0.181 (0.003) 525.800 (42.930)

Note. Standard errors are reported in parentheses.
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the number of customers m and the number of products 
n vary in the historical data. The results suggest that, 
whereas the optimal solution time for midsize problems 
is not too egregious, it does not scale well when the 
problem size grows as is expected. However, cutoff pric-
ing solves all problem sizes in under one second.

7.2. Small Sample Size
When the data size is small, model-based methods risk 
unstable estimations even when the model is correctly 
specified. In this section, we evaluate revenues obtained 
from the proposed pricing approaches in such cases, 
comparing with a classic MNL model (Train 2009).

We generate synthetic instances with n � 10 products 
and varying number of customers m ∈ {20,30, : : : , 500}. 
The probability of customer i choosing product j from 
the assortment is given by

exp(αj � βPij)

1+
Pn

k�1exp(αk � βPik)
, 

where β � 0:5. So the number of data points m is merely 
enough to estimate 10 parameters. We consider two sets 
of experiments for the remaining parameters α�and the 
historical prices, representing low and high customer 
utility. Specifically, for the high-utility experiment, his-
torical prices Pij are drawn uniformly at random from 
the interval [5:5, 8:5], and {αj}

10
j�1 are independent and 

drawn uniformly at random from the interval [1, 3]. In 
the low-utility experiment, historical prices are drawn 
uniformly at random from the interval [2:5, 4:5] and 
{αj}

10
j�1 are independent and drawn uniformly at random 

from the interval [�2, 0]. Table 2 summarizes the setup 
of the two experiments. Note that, in both cases, this 
choice of parameters guarantees that the optimal price 
of the MNL model is within the range of the historical 
prices. In Section EC.1, we also study the effect of the dis-
persion of historical prices in the data on the compara-
tive performance of our data-driven framework.

We simulate 200 independent instances for each m. 
In each instance, we calculate the optimal solution to 
(OP-MIP) and cutoff pricing. Moreover, we use the 
BIOGEME package developed by Bierlaire (2003) to 
estimate the parameters of the MNL model with the 
historical data and then calculate the optimal price 
based on the fitted model. Note that they are the prices 
obtained from the model-estimate-optimize approach 
under the correct model specification. We then evaluate 

the three sets of prices with respect to the ground-truth 
model and compare their expected revenues.

In Figure 2, we illustrate the average difference of the 
revenues of cutoff (data-driven optimal) pricing and the 
estimated MNL prices relative to the optimal MNL reven-
ues when the parameters are known. For the data-driven 
optimal pricing policy, we do not compute it for more 
than 350 customers because of the prohibitive computa-
tional cost. Note that in the figure, if the average improve-
ment quantity is positive, then it implies that our approach 
outperforms the estimated MNL prices. From the figure, 
when the number of customers is less than 70, both data- 
driven pricing schemes outperform the estimated MNL 
prices in both experiments. Note that the MNL prices are 
estimated based on the correct specification of the model. 
This experiment further suggests that data-driven ap-
proaches may be beneficial with respect to model-based 
approaches when the data size is small. It is also expected 
that, as the data size grows, the model-estimate-optimize 
approach would eventually converge to the optimal prices 
of the true model when the model is correctly specified. In 
this regime, data-driven approaches may not be beneficial. 
We note the MNL prices are estimated from uncensored 
data, favoring the model-based approaches and not affect-
ing the data-driven prices (Remark 1). In Figure EC.3 and 
Section EC.4, we investigate the case when the MNL prices 
are estimated from censored data and demonstrate the 
benefit of our data-driven approaches in terms of the 
robustness to censored data.

7.3. Model Misspecification
Another potential benefit of the proposed approach is 
that it is agnostic to the underlying model and, thus, 

Table 2. Instance Parameters for the Study in 
Section 7.2

Experiment α Pij

Low utility [�2, 0] [2:5, 4:5]
High utility [1, 3] [5:5, 8:5]

Figure 2. (Color online) Performance of the Data-Driven 
Optimal Pricing (OP-MIP) and Cutoff Pricing Relative to the 
Optimal MNL Prices Estimated from the Data 

Note. The difference in the revenues is converted to percentage by 
dividing it by the optimal revenue of the model before being averaged.
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less sensitive to model misspecification. We assess this 
scenario in the next experiment with synthetic in-
stances. We consider m � 50 customers and n � 10 pro-
ducts in two experiment sets, also representing low 
and high utilities. The historical prices Pij are drawn 
uniformly at random from [2:5, 4:5] and [5:5, 8:5] in 
the two experiments. For each customer, we generate 
choices using a mixed logit model with two classes 
(Train 2009). More precisely, given (Pi1, : : : , Pin), the 
probability of customer i choosing product j is

1
2 ·

exp(α1j� β1Pij)

1+
Pn

k�1exp(α1k � β1Pik)

+
1
2 ·

exp(α2j� β2Pij)

1+
Pn

k�1exp(α2k� β2Pik)
:

Here, we set β1 � 0:5 and β2 � 2. In each of the 200 
instances, we randomly draw (α1j,α2j) independently 
from [�2, 0] (for Pij ∈ [2:5, 4:5]) and [1, 3] (for Pij ∈ [5:5, 
8:5]). The range choices of P and α�guarantee that the 
historical price ranges cover the optimal MNL prices 
with β � 0:5 (see Table 3).

We investigate the case in which the model is mis-
specified. In particular, we fit the MNL model, instead 
of the mixed logit model, using BIOGEME to the histor-
ical data. We calculate the optimal prices for the fitted 
MNL model and compare its expected revenue to our 
data-driven approaches (optimal solution and cutoff 
pricing) under the mixed logit model.

Table 4 suggests a better performance of our model- 
free approach as the optimal prices of the MNL model 
are designed for a misspecified model. Note that, in 
this case, the misspecification error between the MNL 
model and the mixed logit model with two classes is 
arguably mild. We may expect the benefit of model- 
free assortment pricing to be more substantial when 
there are strong irregular patterns in the data that 

cannot be captured by the assumed model. Combined 
with the results in Section 7.2, this further suggests that 
our proposed pricing models can be beneficial when 
the data size is small or the firm has little confidence in 
the modeling of the demand.

7.4. Real Data Sets
In this section, we apply model-free assortment pricing 
to the IRI Academic data set (Bronnenberg et al. 2008). 
The IRI data collects weekly transaction data from 47 
U.S. markets from 2001 to 2012, covering more than 30 
product categories. Each transaction includes the week 
and store of the purchase, the universal product code 
of the purchased item, the number of units purchased, 
and the total paid dollars. We investigate the product 
category of razors and the transactions from the first 
two weeks in 2001. We focus on this category primarily 
because it forms a proper assortment, that is, customers 
are unlikely to purchase more than one unit if they pur-
chase any. To construct the assortments, we focus on 
the top 10 (out of 45) purchased products from all stores 
during the two weeks, that is, n � 10. The purchases of 
all other products are treated as “no purchase.” An 
assortment is, thus, defined as the products of the same 
store in the same week when the customer visits. More-
over, we follow the procedures in van Ryzin and Vul-
cano (2015) and Şimşek and Topaloglu (2018): for each 
purchase record, four no-purchase records of the same 
assortment are added to the data set. Although model- 
free pricing does not depend on the censored demand, 
the benchmark model-based approaches do. It is ideal 
to create a reasonable fraction of customers who do not 
buy any products. After data preprocessing, there are 
in total 18,217 transactions with 2,460 unique sets of 
assortment price vectors (store/week combinations).

For the performance evaluation, we resort to a model 
(estimated from the data) that describes how consumers 
choose products and calculate the expected revenue 
under this model. We fit three models to the data to 
highlight the model-free or model-insensitive nature of 
our approach. More precisely, in the first MNL model 
we estimate {αj}

10
j�1 and β�in the choice probability

exp(αj � βPij)

1+
P10

k�1exp(αk � βPik)
:

Table 3. Instance Parameters for the Study in 
Section 7.3

Experiment α Pij

Low utility [�2, 0] [2:5, 4:5]
High utility [1, 3] [5:5, 8:5]

Table 4. Expected Revenues of Data-Driven Assortment Pricing and 
Misspecified MNL Model

Expected revenue in the mixed logit model

Pricing method Low-utility experiment High-utility experiment

Data-driven optimal 0.725 (0.005) 2.393 (0.007)
Cutoff pricing 0.734 (0.005) 2.415 (0.007)
MNL optimal pricing 0.635 (0.014) 2.113 (0.035)

Note. Standard errors are reported in parentheses.
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In the second mixed logit model, we estimate {wl, βl, 

αl1, : : : , αl,10}
2
l�1 in the choice probability

w1
exp(α1j� β1Pij)

1+
P10

k�1exp(α1k� β1Pik)

+w2
exp(α2j� β2Pij)

1+
P10

k�1exp(α2k � β2Pik)
:

Both models are estimated using BIOGEME. We also fit 
a linear demand model with parameters {αj, βj}

10
j�1 and 

{βjk , γjk}j≠k. The choice probability of product j in the 
linear model is

αj� βjPij +
X

k≠j
(βjkIikPik + γjk(1� Iik)), 

fitted using the ordinary least squares. Here, Iik ∈

{0, 1} is the indicator for whether product k is in-
cluded in the assortment seen by customer i. Note 
that we fit the choice probability separately for product 
j � 1, : : : , 10 and the no-purchase probability is one 
minus their sum.

We generate three data sets for the estimated models 
considering m � 50 and n � 10. The historical prices Pij 
are drawn from {0:9Pj , 0:95Pj , Pj , 1:05Pj , 1:1Pj}, where 
Pj is the average price of product j in the IRI data. The 
customer choices are then generated using one of the 
three models. We calculate the prices using the optimal 
solution to (OP-MIP) and cutoff pricing and plug them 
into the three models to evaluate their expected reven-
ues. We also compute the expected revenue of the 
incumbent prices, which is the average product prices 
in the IRI data under the three models.

Note that we apply our proposed approach to the 
data sets generated from the estimated models and then 
evaluate the expected revenues of the model-based 
prices, the optimal solution to (OP-MIP), or cutoff pric-
ing under the corresponding models. A seemingly more 
straightforward approach is to directly apply model- 
free assortment pricing to the original IRI data set and 
then obtain the optimal prices. However, the major con-
cern is the conflation of the model misspecification error 
and the efficacy of the pricing schemes. Suppose the 
model-free prices calculated using the IRI data perform 
poorly under, say, the MNL model. There might be two 

reasons: (1) the estimated MNL model accurately cap-
tures the pattern in the IRI data set but the data-driven 
approach fails to approximate the optimal prices of the 
MNL model, or (2) the MNL model does not fit the data 
and the data-driven approach, which is solely based on 
the data, cannot possibly approximate the optimal 
prices of the MNL model. We lack a reliable way to dis-
entangle the two factors, the goodness of fit versus the 
performance of our approach. By the simulated data 
sets using the three models, we can control the goodness 
of fit and isolate the performance of the data-driven pric-
ing schemes. Nevertheless, because the three models are 
fitted using the IRI data, they are expected to capture the 
choice patterns in reality to a large degree.

We also do not compare model-free assortment pricing 
with the optimal prices under the three models, but only 
the incumbent prices. This is because the optimal prices of 
the three models are not realistic. For example, the optimal 
prices under the MNL model are $59.45 for all products, 
and the average optimal price under the linear demand 
model is $99.70. However, the price range of the top 10 pur-
chased products in the IRI razors data is $3.29–$7.51, and 
the model-free assortment pricing recommends prices 
(both optimal and cutoff) between $5.68 and $6.64. That is, 
the estimated demand models cannot extrapolate the 
demand outside the price range although they may approx-
imate the demand patterns inside the price range well. 
Thus, the resulting optimal prices are not implementable, 
further suggesting the stability of the model-free approach.

Table 5 shows our results for this experiment with 200 
instances for each of the three estimated models. The lin-
ear model generates significantly lower expected reven-
ues than the other two, possibly because the estimated 
demand is lower in the region around the incumbent 
prices in the linear model. Compared with the incum-
bent prices, data-driven assortment pricing significantly 
improves the expected revenue under all three demand 
models. It suggests that our approach offers a robust 
improvement in this setting.

8. Practical Considerations and 
Concluding Remarks

We point out a few practical considerations when our 
approach is applied to real-world problems. The first 
issue is censoring, that is, when a customer walks away 

Table 5. Expected Revenues of Data-Driven Assortment Pricing and the 
Incumbent Prices Under the Three Models Fitted Using the IRI Data

Fitted demand model

Pricing method MNL Mixed logit Linear demand

Data-driven optimal 1.507 (0.007) 1.513 (0.008) 1.197 (0.018)
Data-driven cutoff pricing 1.730 (0.007) 1.731 (0.007) 1.477 (0.019)
Incumbent prices 1.464 (—) 1.468 (—) 0.944 (—)

Note. Standard errors are reported in parentheses.
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without purchasing and, thus, cannot be observed in 
the data. Many pricing approaches struggle to handle 
censoring and completely ignoring data censoring may 
result in price distortion. Fortunately, our approach can 
handle data censoring well. Indeed, as mentioned in 
Remark 1, customers who do not buy anything can be 
removed from the data set without affecting the result-
ing prices. As a result, the data-driven prices do not 
depend on the censored customers.

One implicit assumption we make is that consumers 
have price-sensitivity identical to one, reflected in the 
quasilinear utilities. In fact, this assumption can be eas-
ily relaxed. The IC polyhedron can be constructed in 
the same fashion as long as an individual customer has 
the same known price sensitivity for all products. In 
this case, dividing (1) by the same factor results in the 
same polyhedron, and the theoretical results still hold.

Another assumption we make is that the firm does 
not observe the new incoming customer’s information 
and, hence, assumes the customer behaves similarly to 
one of the previously seen customers with equal proba-
bility. In practice, the firm may potentially know that 
the customer is a returning customer. Then, one can 
analytically solve Model (OP-MIP) for that customer. If 
the firm has seen the customer beforehand, it is optimal 
under the worst case valuations of the customer to set 
the prices equal to the ones the customer observed in 
the customer’s historical purchase. Moreover, using 
consumer features to predict shopping behavior is a pop-
ular practice in modern retailing (see Elmachtoub et al. 
2021 for the value of personalized pricing). For example, 
an arriving consumer may have a similar background to a 
segment of past customers. To incorporate consumer fea-
tures, we may put different weights (as opposed to equal 
weights) on the IC polyhedra V1, V2, : : : , Vm in the formu-
lation based on how similar the arriving consumer is to a 
past one. Computationally, our approach can still accom-
modate this case. It remains an exciting research direction 
to capture the consumer features and properly reflect 
them in the weights.

Incorporating product features is another exciting 
direction. Consumers form valuations for the base 
model of a product and certain add-on features. The 
valuation for a product configuration can be obtained 
as the sum of valuations of the base model and the 
added features. In this setting, the IC polyhedron of 
valuations can still be formulated for customers in the 
transaction data. In contrast to our problem, the pricing 
should concern the configurations instead of a separate 
base model and features. Yet it remains an open prob-
lem if nonlinear pricing can be analyzed and efficiently 
solved.

Whereas we are mainly interested in a situation in 
which the number of customers is low relative to num-
ber of products, scalability is still important from a 

practical point of view. We demonstrate in Section 7 that 
our mixed-integer programming reformulations can 
handle midscale problems with hundreds of samples. 
For large-scale data, our best approximation (cutoff pric-
ing) is of low complexity and scales linearly with the 
number of samples. Whereas it provides interpretable 
and intuitive prices without the need for a commercial 
solver, such an approximation also has a robust theoreti-
cal guarantee and good empirical performance as sug-
gested by our numerical study.
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Endnotes
1 This is referred to as the online problem, which should not be con-
fused with the notion of online retailing.
2 We argue that this is a reasonable assumption. To estimate F(·)
accurately in a model-based approach, the historical prices need to 
span the whole price range, presumably by conducting an experi-
ment with random prices.
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