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Abstract. Customer arrival patterns observed in the real world typically exhibit strong sea
sonal effects. It is therefore natural to ask, can a nonhomogeneous Poisson process (NHPP) 
with a rate function that is the simple sum of sinusoids provide an adequate description of 
reality? If so, how can the sinusoidal NHPP be used to improve the performance of service 
systems? We empirically validate that the sinusoidal NHPP is consistent with arrival data 
from two settings of great interest in service operations: patient arrivals to an emergency 
department and customer calls to a bank call centre. This finding provides rigorous justifica
tion for the use of the sinusoidal NHPP assumption in many existing queuing models. We 
also clarify why a sinusoidal NHPP model is more suitable than the standard NHPP when the 
underlying arrival pattern is aperiodic (e.g., does not follow a weekly cycle). This is illustrated 
using data from a car dealership and also via a naturalistic staffing simulation based on the 
call centre. On the other hand, if the arrival pattern is periodic, we explain why both models 
should perform comparably. Even then, the sinusoidal NHPP is still necessary for managers 
to use to verify that the arrival pattern is indeed periodic, a step that is seldom performed in 
applications. Code for fitting the sinusoidal NHPP to data is provided on GitHub.
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1. Introduction
The customer arrival process is a key component of any 
service system, given that it describes the temporal 
demand for service. Consequently, there is much inter
est in studying arrival processes empirically in order to 
inform modelling. Remarkably, Brown et al. (2005) and 
Kim and Whitt (2014a, b) show that real-world arrival 
processes are empirically consistent with something as 
simple as a nonhomogeneous Poisson process (NHPP). 
This important finding raises the possible existence of a 
reasonably accurate “hydrogen atom” model of arrival 
processes, with the missing piece being the functional 
form of the arrival rate function. Given that customer 
arrival patterns typically exhibit seasonal effects, a 
promising candidate is the sinusoidal NHPP that has rate

λ(t) � c0 +
Xp

k�1
ckcos(2πνkt + φk): (1) 

The frequencies ν1, : : : ,νp can take on any values in a 
prespecified band [�B, +B], and φk ∈ [0, 2π) and ck are 
respectively the phase and amplitude of the kth sinu
soid. Furthermore, p does not have to be prespecified 
and can instead be estimated from data. The sinusoidal 
NHPP model (1) builds on the truncated Fourier series 
model in Eick et al. (1993), which restricts the frequencies 
to be integer multiples of one another (νk � kν1). This 
restriction results in a periodic function with period 1=ν1 
that can approximate any square-integrable function over 
a finite time interval, including trends (via its Fourier 
expansion). The more general form (1) allows for arrival 
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patterns that are sinusoidal but not necessarily periodic, for 
example, a pattern that has both a 7-day cycle and a 365.26- 
day cycle. The sinusoidal NHPP is attractive because it 
represents the simplest possible functional form for sea
sonal patterns, and is one of the most analytically tractable.1

Supposing that the sinusoidal NHPP model is in fact a 
reasonable description of reality, our first goal is to clarify 
how managers can use it to improve the performance of 
service systems. We do this in Section 2 by considering 
separately the class of sinusoidal arrivals that are periodic 
and the class that are aperiodic. An illustrative example of 
aperiodic arrivals is given by the solid line in Figure 1, 
which shows daily customer call volumes for a car dealer
ship in Turkey during the first half (H1) of 2017. We see 
strong nonweekly cycles driven by the timings of incen
tive programs and multiyear model refresh cycles. For 
these data, we expect the sinusoidal NHPP model to per
form better than the standard approach for implementing 
NHPPs, which is to fit a piecewise constant (PC; or poly
nomial) arrival rate to the data. As will be explained, this 
is because the standard approach requires (i) the arrival 
pattern to be periodic and that (ii) the decision maker 
knows the length of the period, which is typically as
sumed to be one week. As Figure 1 shows, the predictions 
generated from the sinusoidal model (blue dashed line) 
are indeed much closer to the truth than predictions from 
the standard approach (red dotted line).

To more systematically contrast the performances of the 
sinusoidal and standard NHPP approaches, in Section 3, 
we use a naturalistic staffing simulation based on data 
from a bank call centre in the United States. The data pro
vide enough resolution to identify the intraday variations 
in call volumes for staffing, and the arrival pattern is also 
aperiodic: In addition to a dominant weekly cycle, we also 
detect the existence of {15.2, 31.1, 93.3} day cycles in the 
arrival pattern. By varying the amplitudes of the non
weekly cycles in the simulation relative to the weekly one, 
we see that staffing decisions based on (1) progressively 

outperform the standard approach as the underlying 
arrival rate deviates from a weekly structure.

An example of a periodic arrival pattern comes from 
patient arrivals to an emergency department (ED) in the 
United States, which we will empirically show to be weekly 
periodic. For such arrivals, we expect both the sinusoidal 
and standard NHPP approaches to be comparable, 
matching what we see in the simulation study. However, 
in practice, it is rarely known a priori whether the arrival 
rate for a particular setting is periodic, let alone what the 
period is. In applications, the periodicity assumption is 
rarely checked beforehand. The simulation results dem
onstrate that it is important to first fit the sinusoidal 
NHPP to arrivals data in order to verify periodicity before 
proceeding further. Hence, (1) is still useful in this case.

After showing why managers should care about sinusoi
dal NHPPs, our second goal is to rigorously test the sinusoi
dal NHPP assumption in real-world settings. In Section 4, 
we develop an exact parametric bootstrap test for whether a 
given arrivals data set is generated from a sinusoidal NHPP. 
We use this test in Section 5 to obtain the first systematic evi
dence that the sinusoidal NHPP is consistent with data from 
two settings of great interest in service operations: patient 
arrivals to an emergency department and customer calls to a 
bank call centre. This is an important finding for the basic sci
ence of service systems, because it provides firm support for 
many existing queuing models that rely heavily on this pre
viously untested assumption. Our finding provides the first 
rigorous justification for its use.

For researchers interested in applying the sinusoidal 
NHPP model, we include a description of the estimation 
procedure we use to fit (1) in Appendix A. The accompa
nying code can be found at www.github.com/rgurlek/ 
sine-NHPP.

1.1. Related Work
A popular way to model NHPPs is to use a piecewise 
constant arrival rate function, for example, by averaging 

Figure 1. Daily Number of Calls to a Car Dealership (Solid Line) 

0

10

20

30

40

Jan Apr Jul

2017

A
rr
iv
al
s

Actual Piecewise−constant Sinusoidal

Note. The sinusoidal model and the piecewise constant one are fit to data from an earlier period, and their predictions for this period are displayed.
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over arrival counts for Tuesdays, 10:00 a.m. to 11:00 a.m., 
over successive weeks. Although this approach can 
approximate any weekly periodic arrival rate arbitrarily 
well with small enough intervals, it is nonetheless discon
tinuous. For continuous rate functions, piecewise linear 
functions have been proposed (Massey et al. 1996, Zheng 
and Glynn 2017), and if some smoothness is also desired, 
cubic splines can be employed (Alizadeh et al. 2008).

However, arrival patterns occurring in the real world 
typically exhibit strong seasonal patterns, as can be seen 
in emergency departments (Zeltyn et al. 2011, Saghafian 
et al. 2012, Armony et al. 2015, Shi et al. 2015, Whitt and 
Zhang 2019). This naturally points to (1) as a candidate 
for the arrival process, which also comes with the benefit 
of being infinitely smooth. Although special forms of (1) 
are frequently assumed in analytic queuing models,2
until recently, it was challenging to fit (1) to data, which 
may have hindered its adoption in practice. This is 
because neither the number of frequencies (p) nor the 
frequencies themselves are assumed to be known in (1), 
making this an infinite-dimensional estimation problem. 
The problem was only recently solved in the statistical 
learning literature (Shao and Lii 2011, Chen et al. 2019). 
In this paper, we use a variant of the fitting procedure in 
Chen et al. (2019), which achieves the best possible fre
quency resolution.

Although this paper studies an NHPP arrival model 
that has a deterministic rate, we note that there is a 
stream of literature surveyed in Ibrahim et al. (2016) that 
treats the arrival process as an NHPP with a stochastic 
rate, that is, a Cox process. This can happen if λ(t)
depends on unobserved or stochastic variables, which 
will introduce additional uncertainty into the estimate of 
the rate. See the discussions in Jongbloed and Koole 
(2001), Steckley et al. (2005, 2009), Akşin et al. (2007), Bas
samboo et al. (2010), Koçağa et al. (2015), Ibrahim (2018), 
Whitt and Zhang (2019), Sun and Liu (2021), and the 
references therein. These more complex models repre
sent refinements of the NHPP and are suited to support
ing decision making over short time scales, where recent 
information (e.g., today’s realized demand, weather 
forecast) can be used as variables to forecast demand for 
the near future.

Recently, a subclass of the Cox process called the 
Hawkes process has gained attention as a model for 
arrivals over even shorter time scales. In a Hawkes 
arrival process, an arrival increases the intensity of 
another arrival through self-excitation (Daw and Pen
der 2018, 2022; Gao and Zhu 2018; Daw et al. 2021). For 
example, Daw et al. (2021) studies a contact centre 
where customers chat over text with service representa
tives, and the arrival of messages from the customers is 
likely to “excite” the arrival of responses from the repre
sentatives. The time scale under consideration here is 
on the order of minutes, which makes for a novel high- 
frequency setting.

2. Implications of the Sinusoidal NHPP 
for Managing Service Systems

Even though the sinusoidal NHPP (1) is parsimonious 
and intuitively appealing, it may not be immediately 
obvious how it adds value to the management of ser
vice systems. The utilitarian manager may question 
why they should abandon existing NHPP models in 
favour of (1). In this section, we articulate how the sinu
soidal NHPP model can be used to improve the perfor
mance of service systems, and in the next section, we 
back up our argument with results from a naturalistic 
simulation.

Specifically, we examine whether there are particular 
types of sinusoidal arrival patterns for which the use of 
(1) can improve the performance of service systems. The 
answer is of course relative to the other NHPP models 
currently in use, the most popular ones being piecewise 
constant or piecewise linear arrival rates (Massey et al. 
1996, Zheng and Glynn 2017). Although these models 
are nonparametric and do not require the arrival rate 
λ(t) to be periodic, the value of λ(t) is unknown in prac
tice and can only be estimated over some past time inter
val 0 ≤ t ≤ T. To extrapolate λ(t) into the future (t > T) 
for prescriptive use, inevitably one has to assume that 
λ(t) repeats itself periodically, that is, λ(t) � λ((t�T)
mod T) for t > T. A period of one day or one week is 
commonly assumed in applications, but this is rarely 
verified empirically beforehand.

Hence, to use the existing arrival rate models for deci
sion making, it is necessary to first assume that λ(t) is 
periodic, and that its period is known to the decision 
maker. This insight suggests that we segment sinusoidal 
arrival patterns into two classes: periodic patterns and 
aperiodic ones.

2.1. Periodic Patterns
If the underlying arrival rate is periodic, then the sinu
soidal NHPP offers no clear advantage over existing 
NHPPs, besides being infinitely smooth. This is because 
the latter can also approximate λ(t) arbitrarily well over 
the duration of one period, if the length of the period is 
known. However, in reality, it is rarely known a priori 
whether the arrival rate for a particular setting is peri
odic, let alone what the period is. Hence, before applying 
existing NHPP models, managers should still first fit a 
sinusoidal NHPP to check whether the periodicity 
assumption is reasonable. If so, the period can then be 
inferred from the estimated frequencies. As an example, 
this is done in Section 5.1, where we verify that a weekly 
period is appropriate for the patient arrivals to an emer
gency department, in agreement with Whitt (2018).

2.2. Aperiodic Patterns
Suppose the frequencies identified by the fitted sinusoi
dal NHPP are not compatible with a weekly periodic 
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structure. Using existing NHPPs would then lead to sub
stantial biases if the amplitudes of the nonweekly cycles 
were sufficiently large, in which case the sinusoidal 
NHPP would outperform. We saw an example of this in 
Section 1 regarding customer calls to a Turkish car deal
ership. A description of the data set and the analysis can 
be found in Appendix B. Customer calls to the bank call 
centre that we study in Section 5.2 are another example 
of aperiodic arrivals: For one of the major customer clas
ses, called Voice Response Unit (VRU)-Premier, we 
identify three cycles (15.2, 31.1, and 93.3 days) from the 
data that do not fit with the rest of the week-based 
cycles.

To recap, the sinusoidal NHPP model is necessary 
and valuable in either scenario. For the first case, it 
serves as a spectral technique for verifying and estimat
ing the periodicity of the arrival pattern. As such, it com
plements rather than competes with existing NHPP 
models. For the second case, it directly serves as the 
arrival model to use for prescriptive planning. Via the 
use of naturalistic simulations, in the next section, we 
illustrate the possible performance gains from using the 
sinusoidal NHPP to staff service systems driven by ape
riodic customer arrivals.

3. Performance of Staffing Policies Based 
on Sinusoidal NHPP Models

We construct a sequence of naturalistic staffing simula
tions for the bank call centre we will empirically study in 
Section 5.2. We focus on the VRU-Premier customer 
class, whose call pattern exhibits nonweekly cycles. 
(Table 3 lists all the frequencies identified from the data.) 
The simulations allow us to see how the performance of 
the sinusoidal NHPP varies as the underlying arrival 
pattern deviates from a weekly periodic structure. This 
is achieved by gradually increasing the amplitudes of 
the nonweekly cycles relative to the week-based ones.3

3.1. Arrival Model
The arrival rate functions used to generate the simula
tions are piecewise constant and inherit the cycles esti
mated for the VRU-Premier class: a week-based cycle, a 
15.2-day cycle, a 31.1-day cycle, and a 93.3-day cycle. We 
specify a family of arrival rates indexed by α ∈ {0, 1, 2, 3}
as

λ(t;α) � cα +WEEKLYi(t) + α{CYC1j(t) +CYC2k(t)

+CYC3ℓ(t)}, (2) 

for which we have the following: 
• The week-based fixed effects {WEEKLYi}

336
i�1 for 

each of the 7 × 24 × 2 � 336 30-minute subintervals of a 
week. The width of the subintervals are approximately 
how often staffing levels are adjusted in call centres 
(Dietz 2011).

• The fixed effects {CYC1j}
10
j�1 for the 15.2-day cycle, 

broken into 10 piecewise constant subintervals of equal 
width, and {CYC2k}

10
k�1 and {CYC3ℓ}10

ℓ�1 follow the 
same approach for the 31.1-day cycle and the 93.3-day 
cycle, respectively. Having more subintervals allows us 
to better reproduce the exact cycle, but the piecewise 
constant ground truth will also converge toward a 
smooth cyclic one. This would give the sinusoidal 
NHPP an increasing advantage.
• The constant cα is set as the smallest one that en

sures λ(t;α) ≥ 0. Given that it is constant, it plays no 
role in determining the seasonality of the arrivals.

For our purpose of investigating how the cycles in the 
arrival pattern affect the relative performance of staffing 
policies based on the sinusoidal NHPP, the trend is of ancil
lary interest and is excluded from (2).4 The values of the 
seasonal fixed effects {WEEKLYi}i, {CYC1j}j, {CYC2k}k, 
and {CYC3ℓ}ℓ are estimated in the following way. First, 
the arrivals in the VRU-Premier data are aggregated into 
30-minute subintervals, where yt is the count for the subin
terval that begins at time t �m=2 hours for m ≥ 0. These 
are then regressed onto dummies for the seasonal effects 
and also an intercept and a linear trend. Only the seasonal 
effects are used in (2).

When α � 0, the arrival rate (2) is purely weekly peri
odic. A weekly periodic piecewise constant model that is 
fit to arrivals data generated from λ(t; 0) should then 
perform the best. However, as α grows, the nonweekly 
cycles will come to dominate, so the sinusoidal NHPP 
should perform better.

3.2. Simulation Model
We first model the call centre as an Mt=M=st queue 
where customer calls arrive according to λ(t;α). The 
staffing level at time t is st, which can be adjusted every 
30minutes. From the data, we estimate the exponential 
service rate to be 18.6 customers per hour per agent. As a 
second model, we allow for a completely general service 
time distribution, that is, Mt=G=st, as a contrast to the 
simple exponential one in the first model. The distribu
tion for the general service time is estimated from the 
empirical distribution of the call durations. Although it 
is possible to also add customer abandonment to the 
model, as is done in the analysis of the dealership data 
(Appendix B), the results there suggest that our qualita
tive findings would not change as α increases.

For each model and for each α ∈ {0, 1, 2, 3}, we gener
ate call arrivals and service times over 12months to use 
as the in-sample period, and also generate a 13th month 
as the test period. This is in line with the empirical analy
sis of the bank call centre data in Section 5.2, where the 
sinusoidal NHPP is fit to data from April 2001 to March 
2002, and April 2002 is held out as the test period. The 
simulated in-sample period is used to fit three compet
ing NHPP models to use for planning staffing levels for 
the test period: 
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• Weekly PC: The arrival rate is piecewise constant 
over each of the 168 hours of the week. The weekly 
period is a typical assumption in applications where 
spectral methods are not used beforehand to inspect 
the frequencies in the arrival pattern. Note that the 
ground truth (2) is also piecewise constant.
• Monthly PC: The arrival rate pattern is piecewise 

constant and repeats every 30 days. The model employs 
the same number of intervals as Weekly PC, but is based 
on a 30-day period rather than a 7-day one.
• Sine: This is the sinusoidal NHPP (1).

3.3. Staffing Policies
Staffing decisions for the test period depend not only on 
the arrival and service rates fitted to the in-sample 
period, but also on the manager’s objective. We consider 
two commonly used objectives: 
• Delay: The probability that an arriving customer 

has to wait before receiving service is
P(Nt ≥ st), 

where Nt is the number of customers currently in the 
system. The manager’s problem is to find the smallest st 
subject to the constraint that the delay probability is 
below a prespecified threshold. A 20% threshold is used 
in this study.
• Cost: The expected cost of staffing plus customer 

waiting cost is
csalary · st + cwait · E max(Nt � st, 0):

The manager’s problem is to choose st to minimize this. 
The waiting cost cwait � $70.5/hour is based on the one 
for high-priority customers of an Israeli bank call centre 
in 2008 (Akşin et al. 2013), but adjusted to 2021U.S. sal
ary levels. The agent staffing cost csalary � $15.7/hour is 
taken from the average 2004 U.S. call centre salary figure 
in Hillmer et al. (2004), adjusted to 2021 dollars.

Our goal is not to develop optimal staffing policies 
under each objective. Rather, we aim to compare the per
formances of the arrival models under a widely used 
staffing rule called the modified-offered-load (MOL) 
approximation as described in Feldman et al. (2008). We 
use the MOL approximation to set st for each 30-minute 
interval in the test period. In the context of an Mt=G=st 
queue, the MOL approach first calculates the mean 
number of busy servers, m∞t , for the infinite server ver
sion of the queue, that is, Mt=G=∞. The term m∞t has a 
closed-form expression, and we use its maximum value 
inside an interval as the offered load for the finite-server 
queue. The stationary distribution of this queue is then 
used to solve for the manager’s problem to obtain st.

3.4. Results
Tables 1 and 2 display the performance of using the PC 
and Sine models fits to staff the call center during the 
test period, for the Mt=M=st and Mt=G=st models, 

respectively. Before delving into the results, note that 
the PC models share the same piecewise constant struc
ture as the ground truth (2) used to generate the data. 
This gives the Weekly PC model an unfair advantage 
especially when α � 0, because in this case, its weekly 
period is also correctly specified for the underlying 
arrival rate.

For the staffing policies driven by the delay objective, 
we first calculate the percentages of customers who had 
to wait during the test period, Pwait, and then report the 
amounts in excess of 20% in the left columns of the tables:

max(Pwait � 20%, 0):

If this is zero, then the staffing policy achieves the 
intended goal of capping the proportion of customers 
who have to wait to 20%. Focusing on the results for the 
Mt=M=st ground truth first (Table 1), we see that the 
staffing policy based on the Sine model achieves 
the delay target for all values of α, whereas the staffing 
policy based on the Weekly PC model fails as the non
weekly cycles grow with α. For example, when α � 3, 
the proportion of customers who have to wait is 20+
10 � 30% under the Mt=M=st ground truth, which is 
50% higher than the cap. Even worse, the Monthly PC 
model misses the delay target by 15 percentage points 
even when α � 0.

For the staffing policies driven by the cost objective, 
we report the average daily costs realized during the test 
period in the right columns of the tables. Once again 
focusing first on Table 1, we see that Sine staffing always 
performs better than Weekly PC staffing, except for the 
weekly periodic case (α � 0). We observe cost savings of 
up to 19% as the nonweekly cycles grow with α. As men
tioned earlier, the Weekly PC model enjoys an unfair 
advantage over the Sine model when α � 0. Despite this, 
Sine staffing is less than 0.5% more costly in this case. 
Monthly PC staffing performs the worst of the three, 
with costs that are two to three times higher than those 
incurred under Sine staffing.

The poor performance of the Monthly PC model even 
at α � 0 (when only a weekly cycle exists) is due to the 
fact that it is unable to adapt to the seven-day cycle, 
because 30 is not a multiple of seven. The performance is 
further exacerbated by the other nonmonthly cycles as α 
grows. With this understanding, it suffices to focus on 
the Weekly PC benchmark for the simulation based on 
the Mt=G=st ground truth (Table 2). We see that the situ
ation is essentially the same as in the case for Mt=M=st. 
Thus, whether we assume exponential or general service 
times, Sine staffing always performs better than Weekly 
PC staffing, except for the weekly periodic case (α � 0).

Putting the results together, we see as expected that the 
sinusoidal NHPP outperforms when the arrival pattern 
deviates from a periodic structure. This finding is robust 
to the service time distribution employed, from the sim
ple exponential to completely general ones. Applications 
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that employ existing NHPP models implicitly assume 
that the arrival pattern is periodic, but this assumption is 
rarely tested beforehand. Our results demonstrate that 
failing to do so can lead to significant performance losses.

4. Testing for Sinusoidal NHPPs
Having provided arguments for why managers should 
care about the sinusoidal NHPP (1), before employing 
them, we still have to first verify that it is in fact a rea
sonable model for real-world arrivals. Given customer 
arrival timestamps {tj}

N(T)
j�1 generated from an arrival 

process N(·) in the observation window (0, T], we de
velop a statistical test for whether N(·) is a sinusoidal 
NHPP. Specifically, the null hypothesis of interest is

HsNHPP
0 : N(·) ∈N

sNHPP
� {NHPPs with rate function (1)}:

Note that this is more stringent than the null hypothesis 
tested in Brown et al. (2005) and Kim and Whitt (2014a),

HNHPP
0 : N(·) ∈N

NHPP
� {NHPPs with any rate function}, 

because N sNHPP
⊂N

NHPP. For example, tests based on 
HNHPP

0 cannot distinguish an NHPP with a linear rate 
from an NHPP with a sinusoidal one, because both 
belong in N NHPP. In other words these tests have no sta
tistical power to reject nonsinusoidal NHPPs. This is by 
design, because Brown et al. (2005) and Kim and Whitt 
(2014a) are interested only in whether the arrival process 
is an NHPP, so they treat the arrival rate function as a 
nuisance parameter.

On the other hand, tests based on the sharper null 
HsNHPP

0 , such as the one we develop here, go one step 
further to pin down the functional form of the arrival 
rate function. To do this, we first need an estimate of the 
sinusoidal rate function. Given that a fitting procedure 
did not exist until recently, this may explain the lack of 
work on validating the sinusoidal NHPP to date.

4.1. Fitting Sinusoidal NHPPs
Fitting the sinusoidal NHPP (1) is more complicated 
than fitting the special case of the truncated Fourier 
series model in Eick et al. (1993). In the latter, the fre
quencies ν1, : : : ,νp are prespecified, so the amplitudes 
c0, : : : , cp and phases φ1, : : : ,φp can be estimated using 
(complex-valued) linear regression. The more flexible 
case (1) allows the frequencies to be free, so they also 
need to be estimated from data as well. Appendix C pro
vides a stunning counterexample showing how stan
dard spectral methods can fail at this.

Fortunately, the statistical learning technique intro
duced in Chen et al. (2019) is able to provably recover (1) 
if the underlying arrival process is indeed a sinusoidal 
NHPP. However, the approach uses a thresholding step 
that is not trivial to apply. In Appendix A, we introduce 
a simpler variant that works well in practice (Algorithm 
A.1), with code provided on GitHub (www.github. 
com/rgurlek/sine-NHPP). This is the method that will 
be used in this paper, and is also the approach we rec
ommend to managers of service systems.

4.2. The Statistical Test
Given a consistent estimate λ̂(t) of the sinusoidal arrival 
rate, we divide the arrivals window (0, T] into subinter
vals and test the null HsNHPP

0 within each subinterval. 
Because no model is perfect, we do not expect the parsi
monious sinusoidal NHPP model to fit well to all subin
tervals. Therefore, if it passes a goodness-of-fit test for a 
large majority of subintervals, then we deem it to be a 
reasonable model. We first propose a test for a single 
time interval, and then describe multiple testing correc
tions for applying the test to all subintervals.

4.2.1. Single Subinterval. Consider testing for the arrival 
process N(·) generating the arrivals t1, : : : , tN in an interval 

Table 1. Performances Under the Mt=M=st Ground Truth

α

Delays in excess of 20% Daily cost

Sine (%) Weekly PC (%) Monthly PC (%) Sine (baseline) ($) Weekly PC ($) Monthly PC ($)

0 0.0% 0.0 15a 6,520 6,500b 12,760b

1 0.0% 0.0 20a 6,680 6,710b 15,930b

2 0.0% 3.3a 24a 6,800 7,080b 18,520b

3 0.0% 10a 31a 7,010 8,330b 25,590b

Note. The lowest cost is in bold.
aDelay probability exceeds 20% by more than three standard errors (based on 100 replications of the test period).
bMean difference in costs is more than three standard errors away from zero.

Table 2. Performances Under the Mt=G=st Ground Truth

α

Delays in excess of 20% Daily cost

Sine (%) Weekly PC (%) Sine (baseline) ($) Weekly PC ($)

0 0.0 0.0 6,480 6,450b

1 0.0 0.0 6,620 6,630b

2 0.0 4.1a 6,750 7,010b

3 0.0 9.3a 6,930 7,650b

Note. The lowest cost is in bold.
aDelay probability exceeds 20% by more than three standard errors 

(based on 100 replications of the test period).
bMean difference in costs is more than three standard errors away 

from zero.
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[t0, t0 + L).5 We use the time-change property of NHPPs 
as articulated in Proposition 1 below to develop an exact 
parametric bootstrap test that applies to an NHPP with a 
given hypothesized arrival rate function. This differs from 
the test in Brown et al. (2005) and Kim and Whitt (2014a), 
which is based on the conditional uniform property of 
homogeneous Poisson processes. Their test does not specify 
a particular functional form for the arrival rate of the 
NHPP, so they use a Poisson process with a constant rate 
to locally approximate the unknown arrival rate over 
small time subintervals. This results in a nonexact test that 
requires the subinterval widths to shrink at an appropriate 
rate for it to be asymptotically valid.

Proposition 1. The arrivals t1, : : : , tN follow an NHPP 
with rate (1) and cumulative rate Λ(t) �

R t
0λ(u)du if and 

only if

{uj � exp[Λ(tj�1)�Λ(tj)]}j (3) 

are independent and identically distributed (i.i.d.) U(0, 1).

It follows that if the distribution of {uj}j deviates signifi
cantly from uniformity, we should reject the null that 
t1, : : : , tN come from an NHPP with rate λ(t). One possible 
test for this is to use the Kolmogorov–Smirnov statistic

sup
t∈(0,1)

1
N
XN

k�1
I(uj ≤ t)� t

�
�
�
�
�

�
�
�
�
�
, (4) 

whose exact null distribution can be obtained using 
parametric bootstrap. Observe from Proposition 1 that 
this test is consistent in power, that is, there is no other 
arrival process besides an NHPP with rate λ(t) for which 
{uj}j are i.i.d. U(0, 1). In the case where there is no arrival 
in [t0, t0 + L), the probability that a Poisson distribution 
with mean Λ(t0 + L)�Λ(t0) is equal to zero,

exp[�{Λ(t0 + L)�Λ(t0)}], (5) 

serves as the p-value for the null hypothesis.
In practice, substituting the estimated Λ̂(t) for Λ(t)

means that the null hypothesis we are actually testing is 
that the arrival process is an NHPP with the particular 
sinusoidal rate λ̂(t). Note that this even more stringent 
than HsNHPP

0 , which is to test whether the NHPP rate 
function follows any sinusoidal pattern at all.

4.2.2. All Subintervals. If each subinterval is of length L, 
then applying the test above to each subinterval will yield 
T/L hypothesis tests. A multiple testing correction is then 
needed to control the number of false rejections at the 5% 
level. For a single test (i.e., T=L � 1), this corresponds to 
controlling the type I error, and a generalization of the 
type I error to multiple tests is the familywise error rate

FWE � P(#false positives > 0): (6) 

To see why it is not enough to just control the type I 
error of each individual test (i.e., reject a test whenever 

its p-value is less than 0.05), suppose for simplicity that 
we have 10 independent tests, and that all null hypoth
eses are true. Thus, the probability that each test results 
in a false rejection is 0.05, but the probability that there 
is at least one false rejection among the tests is FWE �
1� 0:9510 > 0:4.

We will use the procedure of Holm (1979) to ensure 
that FWE ≤ 0:05. The procedure is uniformly more pow
erful than the better-known Bonferroni correction, and 
works in the following way: Let P(1), : : : , P(T=L) be the 
ordered p-values from the smallest to the largest, and 
compute the smallest k such that

P(k) >
0:05

T=L+ 1� k : (7) 

The null hypotheses associated with P(1), : : : , P(k�1) are 
then rejected, whereas the ones associated with the 
larger p-values are not.

Note that the FWE is the probability that any of the 
rejected nulls is a false rejection, so it can be very hard to 
control when there are a large number of tests. A popu
lar alternative is to control the false discovery rate

FDR � E #false rejections
#rejections

� �

(8) 

instead, which is the expected proportion of false rejec
tions among all the rejected nulls. This criterion is less 
stringent and provides more statistical power because 
FDR ≤ FWE; hence, any test that controls FWE automati
cally controls FDR as well. As a separate check, we will 
use the procedure in theorem 1.3 of Benjamini and Yeku
tieli (2001) to control the FDR at the 5% level. This proce
dure seeks the largest k such that

P(k) ≤
0:05k

(T=L)
PT=L

j�1 (1=j)
, (9) 

and rejects the null hypotheses associated with P(1), 
: : : , P(k).

5. Validating the Sinusoidal NHPP in 
Real-World Settings

Armed with the statistical test developed in Section 4
for assessing the sinusoidal NHPP assumption, we now 
analyze arrivals data from two settings of great interest 
to the service operations community: patient arrivals to 
an emergency department and customer calls to a bank 
call centre. Our results provide empirical support for 
the sinusoidal NHPP assumption, but in general, each 
new setting should be validated before use. The analysis 
we follow here can serve as a template for testing those 
settings as well.

5.1. ED Patient Arrivals
We analyze a data set from the ED of a U.S. academic hos
pital containing timestamps for 168,392 patient arrivals 
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from 2014 to third quarter (Q3) of 2015 (T � 652 days). In 
addition, the Emergency Severity Index (ESI) of each 
patient is also recorded, with level 1 being the most severe 
(e.g., cardiac arrest) and level 5 the least (e.g., rash). Infor
mation on demand for ED services is a critical input to 
staffing and other operational decisions that influence the 
efficiency of healthcare delivery, and it enables the con
struction of high-resolution queuing simulations. For the 
ED in question, ESI level 1 trauma patients (< 1% of arri
vals) are assigned to dedicated bedspaces on arrival and 
are therefore excluded from the analysis.

ESI level 2 patients are treated in a ward separate 
from the other ESI levels, so from a capacity manage
ment perspective, we will analyze this group on its own. 
Previously, Chen et al. (2019) fitted a sinusoidal rate for 
this group using their technique, and visually compared 
the fit to the empirical average rate for each hour of the 
week. Such a cursory analysis is, however, far from com
plete, because the arrival rate itself tells us nothing about 
the statistical process of the arrivals: The fitted rate can 
be consistent with a Cox process with a mean rate that is 
sinusoidal, and it can even be consistent with a deter
ministic arrival process. Here, we systematically analyze 
the data to determine whether the arrival data come 
from a sinusoidal NHPP.

ESI level 3 to level 5 arrivals are not only distinct from 
level 2 from a capacity management standpoint, they are 
also behaviourally different in a way that can potentially 
violate the NHPP property. Whereas level 2 patients 
require immediate care from the time illness occurs, 
lower-acuity patients belonging to levels 3 to 5 often 
have flexibility to delay seeking treatment. Thus, even if 
the occurrence of illness among these patients follows an 

NHPP, the flexibility to postpone treatment may result 
in non-NHPP arrivals to the ED. Indeed, our analysis 
suggests that low-acuity cases may delay seeking treat
ment going into the weekend, resulting in a spike in visit 
volume on Monday. Therefore, it is necessary to analyze 
this group independently of ESI level 2.

5.1.1. ESI Level 2. A total of 66,240 patient arrivals were 
assigned an ESI level of 2. As shown in the left panel of 
Figure 2, our fitting procedure (Algorithm A.1 in Appen
dix A) selected four intraday frequencies and six week- 
based ones. The intraday frequencies include a daily cycle 
(ν̂1 � 1:00), a 12-hour cycle (ν̂2 � 2:00), an 8-hour cycle 
(ν̂3 � 3:00), and a 6-hour one (ν̂4 � 4:00). The week-based 
cycles include a 1-week cycle (ν̂4 � 0:142), a 1/2-week 
cycle (ν̂5 � 0:286), a 1/3-week cycle (ν̂6 � 0:429), a 1/5- 
week cycle (ν̂7 � 0:714), a 1/6-week cycle (ν̂8 � 0:857), 
and a 1/8-week cycle (ν̂6 � 1:143).

Given that the fitted rate has a weekly period, we can 
compare it to the empirical average arrival rate for each 
hour of the week (right panel of Figure 2). The estimate 
reveals two intraday peaks, the first at around 11:00 a.m. 
and the second at around 5:00 p.m. We also see that the 
intensity of arrivals fades steadily into the weekend. For 
most parts of the week, the sinusoidal fit does a very 
good job capturing the variation in the empirical arrival 
rate, at least from a visual standpoint.

To use the statistical tests from Section 4 to rigorously 
quantify the goodness of fit of a sinusoidal NHPP, we 
divide the arrival data into time subintervals of length 
L � 2 hours. Of the resulting T=L � 7, 824 subintervals, 
the null hypotheses for only 7% of them are rejected, and 
this is before applying any multiple testing corrections 

Figure 2. ESI Level 2 Arrivals 

Notes. The left panel shows the centralized windowed periodogram ((A.3) in Appendix A). The selected threshold is represented by the dashed 
horizontal line, and the location of the frequency estimates ν̂k are given by the vertical ones. In the right panel, the estimated arrival rate (arrivals 
per day) over the course of a week is given by the solid line. The dashed and dotted line represents the empirical average arrival rate for each 
hour of the week.

Chen et al.: Can Customer Arrival Rates Be Modelled by Sine Waves? 
Service Science, 2024, vol. 16, no. 2, pp. 70–84, © 2023 The Author(s) 77 



(which will reject even fewer hypotheses). Hence, the 
sinusoidal NHPP is a reasonable model for ESI level 2 
arrivals.

5.1.2. ESI Levels 3 to 5. There were in aggregate 99,205 
arrivals assigned to ESI levels 3 to 5. Figure 3 shows that 
three of the intraday frequencies from the level 2 case 
are selected (the six-hour cycle is now absent), and only 
the 1/5- and 1/6-week cycles are selected from the 
week-based ones. The estimated arrival rate exhibits a 
more subdued day-of-week effect when compared with 
level 2, but the midday peak is now more pronounced 
relative to the evening one. We know from Fourier the
ory that capturing these time-localized effects will re
quire more sine waves than the sparse specification (1) is 
designed for, which explains the sinusoidal model’s 
underfit to the large peaks early on in the week. Interest
ingly, the peaks drop from Thursday on as the weekend 
approaches, and culminates in a substantial spike in arri
vals on Monday. As alluded to earlier, this could be 
related to the fact that low-acuity patients have flexibil
ity in deciding when to seek treatment. Future research 
should look into the behavioural mechanisms behind 
this pattern.

Despite this potential complication, only 8% of the 
7,824 subintervals are rejected, just slightly more than 
for level 2 arrivals. Thus, the sinusoidal NHPP remains a 
good model for ESI level 3–5 arrivals.

5.1.3. Seasonal Effects. No year-based seasonal cycles 
(365/12 (monthly), 365/4 (quarterly), 365/2, 365) are 
selected from the data. As explained in Appendix A, our 
fitting procedure cannot resolve frequencies that are 

within 4=T � 4=652 cycles/day of each other, so it is pos
sible that we missed cycles larger than 652=4 � 163 days, 
that is, the semiannual and annual cycles. To see 
whether these cycles actually exist in the data, we add 
them to the set of frequencies selected by our procedure 
and reestimate the amplitudes of the cycles. For both ESI 
groups, we find that the semiannual cycle is negligible, 
and that the annual cycle is weaker than the weakest fre
quency signal selected by our procedure. For example, 
for ESI levels 3 to 5, the amplitudes of the selected fre
quencies range from 4.0 to 44. The amplitudes of the 
semiannual and annual cycles are 0.82 and 3.3, respec
tively. Thus, our finding is consistent with Whitt (2018), 
which argues that a week is the natural period to use in 
healthcare settings.

5.2. Customer Calls to a Bank Call Centre
The call data come from a bank in the United States, and 
were kindly made available by the SEELab at Technion 
(Mandelbaum 2017). The bank’s call centre consists of 
sites across the Northeast that are integrated into one 
virtual centre. About a fifth of the callers seek to speak 
with a live agent, whereas the rest conduct self-service 
transactions at the VRU, Announcement, or Message 
stages. Kim and Whitt (2014a, section 5.4) studies 
whether the call arrivals between 7:00 a.m. and 10:00 
p.m. in the 30 days of April 2001 can be modelled by 
NHPPs. Among the eight call types in the data, six are 
found to pass the NHPP test in more than 75% of days. 
These call types are VRU-Premier, VRU-Business, VRU- 
Loan, VRU-Summit, Business, and Message.

To further test whether arrivals from these call types 
can be modelled by a sinusoidal NHPP, we use calls 

Figure 3. ESI Levels 3 to 5 

Notes. The left panel shows the centralized windowed periodogram, selected threshold, and locations of the frequency estimates ν̂k. The right 
panel shows the estimated (solid line) and empirical (dashed and dotted line) arrival rates over the course of a week.
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arriving between April 2001 and March 2002 inclusive to 
fit the arrival rate, and hold out April 2002 as the test 
period. Arrivals of the type VRU-Summit appeared in 
only 140 days of record during the period (up until 
August 2001); therefore, we consider only the other five 
types of calls.

Table 3 shows the 21 frequencies selected by our fit
ting procedure for the arrival rate of VRU-Premier calls. 
In addition to the intraday and the week-based cycles, 
frequencies with periods of 15.2 days, 31.1 days, and 
93.3 days are also selected. Because these do not divide 
seven evenly, the arrival rate for a specific hour of a par
ticular day of week will vary from week to week, mak
ing it impossible to plot the empirical arrival rates over 
the course of a week like those in Figures 2 and 3. The 
deviation from a weekly structure may also explain a 
portion of the overdispersion discovered in Kim and 
Whitt (2014a).

The first column of Table 4 displays the number of 
calls of each type from April 2001 to March 2002 inclu
sive. We see that VRU-Loan has the lightest call volume, 
but on a per unit time basis, even this has roughly four 
times as many arrivals as ESI levels 3–5 in Section 5.1. 
This allows us to use 30-minute subintervals for the sta
tistical tests in Section 4, which is approximately how 
often staffing levels are adjusted in call centres (Dietz 
2011). The last two columns of Table 4 show the results 
of applying the tests to the April 2001 period studied in 
Kim and Whitt (2014a). Whether we correct for multiple 
testing issues using FWE or FDR, we see that the null 
hypotheses for most of the subintervals are not rejected. 
Applying the tests to call arrivals in the April 2002 test 
period yields similar results (Table 5). Taken together, 
our results build on the finding in Kim and Whitt 
(2014a) by further showing that the sinusoidal NHPP is 
a reasonable model for NHPP call types.

6. Discussion
Special forms of the sinusoidal NHPP (1) have long been 
employed in the queuing literature. This is the first 
paper to systematically validate the model as a reason
able one for arrival processes of interest in service opera
tions, providing firm support for the many existing 
queuing models that rely heavily on this previously 
untested assumption. From a prescriptive viewpoint, 
our work clarifies how the sinusoidal NHPP can be used 
to improve the performance of service systems. Our sim
ulation results highlight the importance of first verifying 
the periodicities in the arrivals data before imposing a 
periodic structure on the fitted arrival rate function.

Given the simplicity and tractability of the sinusoidal 
NHPP, we hope our findings will spur more interest 
in its practical adoption. In turn, we hope this will 
encourage queuing theorists to revisit the sinusoidal 
NHPP as a workhorse model for time-varying arrivals. 
Such efforts could generate further analytical results that 
add to the existing ones for sinusoidal arrival rates (Eick 
et al. 1993, Feldman et al. 2008, Liu and Whitt 2012), 
potentially leading to a virtuous cycle where theory 
advances practice and vice versa.
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Table 3. Frequencies Selected for the Arrival Rate of VRU- 
Premier Calls

# cycles per day # cycles per week Other cycles

1 to 4 1 to 6, 8 to 13, 15, 20 1 cycle per 15.2 days
1 cycle per 31.1 days
1 cycle per 93.3 days

Table 4. In-Sample Results from Applying the Tests in Section 4 to Calls to the Bank in April 2001

# calls btwn April 2001 and March 2002 # calls in April 2001

% subintervals not rejected

FDR ≤ 0:05 (%) FWE ≤ 0:05 (%)

VRU-Premier 1,071,481 96,187 97 98
VRU-Business 2,571,511 218,163 83 90
VRU-Loan 208,328 13,782 99 99
Business 987,606 71,010 84 91
Message 977,579 78,914 85 90

Note. Thirty-minute subintervals are used to group calls between 7:00 a.m. and 10:00 p.m., resulting in a total of 900 subintervals.

Table 5. Results from Applying the Tests in Section 4 to 
Calls to the Bank in the April 2002 Test Period

# calls in 
April 2002

% subintervals not rejected

FDR ≤ 0:05 (%) FWE ≤ 0:05 (%)

VRU-Premier 98,910 97 98
VRU-Business 225,862 77 86
VRU-Loan 16,610 99 99
Business 88,988 86 90
Message 101,619 70 80

Note. Thirty-minute subintervals are used to group calls between 
7:00 a.m. and 10:00 p.m., resulting in a total of 900 subintervals.
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Appendix A. Estimation Procedure for Fitting (1)
Here we introduce a simpler variant of the estimation proce
dure in Chen et al. (2019) that works well in practice. Code for 
implementing this can be found at www.github.com/rgurlek/ 
sine-NHPP. Before diving into the details of the estimation, 
there are two considerations that researchers interested in 
deploying sinusoidal NHPPs should be aware of.

First, the frequencies ν1, : : : ,νp in (1) cannot be too close to 
each other, for otherwise it would be impossible to distinguish 
between them in a noisy setting. It suffices for the frequencies to 
be spaced apart from one another by more than O(1=T). To 
make things concrete, we assume this gap is O(log T=T). In 
finite samples, our procedure also requires the gap between fre
quencies to be sufficiently positive, that is, no smaller than 4=T:

min
k≠k′
|νk � νk′ | �max(4, log T)=T: (A.1) 

Second, the precision of the frequency estimates {ν̂k}k need 
to be sharper than O(1=T) in order to obtain consistent esti
mates for λ(t) itself, that is,

max
k
|νk � ν̂k | � op(1=T): (A.2) 

Unlike (A.1), this is a property required of the estimation 
procedure, rather than an assumption imposed on the 
arrival rate. Note that (A.2) is stronger than consistency of 
the frequency estimates, which requires only a precision of 
op(1). In Appendix C, we present a spectacular real-life 
example to show how standard spectral techniques can fail 
to achieve (A.2), and hence lead to disastrously wrong esti
mates for λ(t).

To provide intuition for our estimation approach under 
the frequency resolution (A.1), the frequency components of 
the arrival process N(t) �

P
jI(tj ≤ t) consists of ν1, : : : ,νp 

mixed in with the frequency components of statistical noise. 
This is because we can decompose the arrival process into its 
Doob–Meyer form,

dN(t) � λ(t)dt+ dε(t), 
where ε(t) is Poisson noise. We can separate out ν1, : : : ,νp from 
the noise frequencies by thresholding: With high probability, 
all of the frequency components of ε(t) have amplitudes less 

than some threshold τ that is decreasing in T. This threshold 
represents the level of noise in the frequency domain. Thus, 
graphing the power spectrum of N(t) and then eliminating fre
quencies whose amplitudes are less than τ will leave behind a 
band of frequencies around each νk. Picking the frequency cor
responding to the largest amplitude within each band pro
vides us with estimates for the νk’s. Figure A.1 illustrates the 
idea for p � 2.

Although there exists a theoretically justified bound for τ, 
in practice, the noise level can often be eyeballed from the 
power spectrum plot; see, for example, Figures 2 and 3. 
Hence, we will select τ by visual inspection instead. We veri
fied that this yields essentially the same arrival rate fits in 
our empirical analyses, showing that this simpler approach 
is effective in practice. This is to be expected, because only 
frequencies with small amplitudes (on par with the noise 
level) might be missed this way, whereas the overall arrival 
rate fit is driven by the dominant frequencies.

The estimation procedure is described in Algorithm A.1. We 
make two remarks. First, the frequency components of N(t) can 
be visualized using a periodogram, which plots the frequency 
amplitudes against the frequencies (see Figure A.1). Algorithm 
A.1 uses the centralized and windowed periodogram

|Hc(ν) | �
1
T

Z T

0
w(t)e�2πiνt dN(t) �N(T)

T dt
� ��

�
�
�

�
�
�
�

�
1
T
X

j
sin2 πtj

T

� �

e�2πiνtj �N(T) sin(πTν)e�iπTν

2πTν{1� (Tν)2}

�
�
�
�
�

�
�
�
�
�
,

(A.3) 

where the choice of window w(t) � sin2(πt=T) is optimized 
for the frequency gap (A.1). Second, when plotting |Hc(ν) |
on a frequency grid, the grid needs to be at least as fine as 
o(1=T); otherwise, the resulting frequency estimates may not 
satisfy (A.2).

Chen et al. (2019) shows that their technique will consis
tently recover the sinusoidal NHPP (1) if, informally, the 
ratio of the largest to the smallest amplitude maxk |ck |=mink 
|ck | is less than 14.5. This can, however, be greatly relaxed. 
For example, if the constant four appearing in the fre
quency gap (A.1) is relaxed to six, then the maximum 
allowable ratio can be increased to over 100, provided that 
we replace the window in (A.3) with w(t) � sin4(πt=T) and 
substitute r � 3=T in Step 2 of Algorithm A.1. Given that 
Algorithm A.1 is the same as in Chen et al. (2019) save for 
the choice of τ, we also expect consistent recovery under 
the same conditions. If theoretical guarantees for the esti
mation procedure are absolutely required for a particular 
application, then the threshold used in Chen et al. (2019) 
can always be used.

Algorithm A.1 (Procedure for Fitting (1)) 
1 Graph the periodogram |Hc(ν) | defined in (A.3) over the 

range [�B, +B] of frequencies of interest.
2 Set r � 2=T and visually estimate the noise level τ from 

the periodogram.
3 Identify the frequency region R � {ν : r ≤ |ν | ≤ B, |Hc(ν) | >

τ}where the value of periodogram exceeds τ.
4 Set ν0 � 0, k � 1 and repeat the following steps: 

Figure A.1. Illustration of the Estimation Procedure in Algo
rithm A.1 (Reproduced from Chen et al. (2019)) 

 |Hc( )|

 

1 2

Notes. In the depicted periodogram, there are two signal frequencies, 
ν1 and ν2. Setting τ (horizontal line) above the ambient noise level 
leaves behind two bands (between the pairs of vertical lines) that con
tain ν1 and ν2.
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• Find the highest stationary peak of the periodogram in 
R and set ν̂k as the corresponding frequency location. If 
no peaks exist, then exit loop.
• Perform the updates k← k+ 1 and R← R\(ν̂k � r, ν̂k + r). 

This removes a neighbourhood of radius r centred at ν̂k 
from R.

5 ĉ0, : : : , ĉp and φ̂1, : : : , φ̂p are given by the moduli and 
phases of the entries of the complex-valued vector Ĝ

�1y, 
where the (j, k)-entry of the (p+ 1) × (p+ 1)matrix Γ̂ is

Γ̂jk � e�iπT ν̂ j�ν̂k( ) sin{πT(ν̂ j� ν̂k)}

πT(ν̂ j � ν̂k)
, 

and the kth entry of the (p+ 1)-vector y is 1=T
P

je�2πiν̂k tj.

Appendix B. Customer Calls to a Car Dealership
These data consist of daily customer call volumes for a car 
dealership in Turkey from January 2015 to June 2017, inclu
sive, with the first two years set aside as the in-sample 
period, and H1 2017 reserved for the test period. Each 
arrival is a phone call by a potential customer, and they are 
served by one of the sales staff between the business hours 
of 8:30 a.m. and 6:30 p.m., six days a week (closed Sundays). 
As a result, we will operate under a six-day week. The mean 
and median numbers of calls received per day are 19.1 and 
18, respectively, with a high of 92. The arrival pattern over 
the entire period is given in Figure B.1. We see strong sea
sonal patterns that extend well beyond the weekly time 
frame, driven possibly by the timings of incentive programs 
and multiyear model refresh cycles.

Fitting Sine and PC Arrival Models
We fit the Sine and PC models from Section 3 to the 
in-sample period of the dealership data. The fitted models 
are then used to plan staffing for the test period.

In contrast to the ED and bank call centre data, where we 
observe the exact times of the calls, the dealership data 
report only the aggregate number of calls per day. For these 
discretized data, the statistical methods for the former 

settings are not applicable, so to estimate the periodicities 
for the Sine model, we use discrete Fourier transform. The 
counterexample in Appendix C shows that this is subopti
mal for estimating frequencies from bucketed arrivals data, 
so the performances we report here for the sinusoidal NHPP 
likely underestimate its true performance.

Specifically, for the PC model, we regress the daily arrival 
counts onto a linear trend as well as dummies for the six 
business days of the week for the dealership. The fitted PC 
daily arrival rate for day t is then given by the coefficient for 
the day of the week for t plus the trend effect. For the Sine 
model, we estimate the frequencies of the arrival pattern by 
applying discrete Fourier transform to the centered and 
detrended daily arrival counts.6 The amplitudes and phases 
for the identified cycles are then estimated by regression 
jointly with the intercept and the linear trend. Table B.1
ranks the estimated cycles by amplitude.

Staffing in Test Period
To evaluate the operational performances of Sine and PC 
models for staffing, note that we cannot plan staffing at an 
intraday resolution as in Section 3, because the intraday var
iation in arrivals cannot be identified from the aggregated 
data. Hence we consider a setup where the staffing level is 
set just once a day. This turns out to coincide with the dealer
ship’s staffing policy: If an employee is staffed to work on a 
particular day, they work for the whole day.

For day t in the test period, we model the system as an 
M=M=st +M (Erlang A) queue. Brown et al. (2005, p. 47) de
monstrates how theoretical rules implied by this model 
“hold with reasonable precision” in the real world. The 
objective is to choose the staffing level st for day t in order to 
minimize the sum of labor cost and expected customer aban
donment cost for that day, that is,

C(st,λ(t)) :� csalary · st+λ(t) ·P(Ab |st) ·P(Conv) · cprofit: (B.1) 

Here, csalary � 230 Turkish lira (TL) is the daily wage for the 
dealership, λ(t) is the daily arrival rate, P(Ab |st) is the con
ditional steady-state probability of customers leaving the 

Figure B.1. Daily Call Volumes to the Turkish Dealership from January 2015 to June 2017 
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system without being served, P(Conv) � 0:10 is the sales con
version rate estimated by the manager, and cprofit � 4, 000 TL 
is the estimated average profit from a sale (including after- 
sales services). The average service and patience times are 
60 minutes and 10 minutes, respectively. The probability 
P(Ab |st) is estimated using the equation presented in Man
delbaum and Zeltyn (2009).

Hence, given a predicted daily arrival rate λ̂(t) (from either 
Sine or PC) for day t in the test period, the prescribed staffing 
level is ŝt � arg minsC(s, λ̂(t)). Its performance is evaluated by 
C(ŝt, Nt), where Nt is the actual number of arrivals on day t. 
Averaging this over the days in the test period produces an 
overall performance measure for Sine or PC. We see from 
Table B.2 that Sine incurs significantly lower cost, in line with 
Figure 1, which shows that Sine also produces superior predic
tions for call volumes in the test period.

Appendix C. Counterexample Illustrating Why the 
Level of Frequency Estimation 
Precision (A.2) Is Needed

We consider a subset of 66,240 patient arrivals to an aca
demic emergency department in the Unites States from 2014 
to Q3 of 2015 (T � 652 days of observations). This subset cor
responds to patients who are assigned ESI level 2, a measure 

of emergency severity. The data come from a capacity plan
ning project for the emergency department, and to model 
patient demand, we fit the sinusoidal NHPP to it. We ini
tially employed a standard discrete Fourier transform to 
estimate the periodicities in the arrival pattern. This requires 
bucketing the arrivals into discrete time bins, and the mean 
bin count in bucket (t, t+∆] is
Z t+∆

t
λ(t)dt� c0∆+

Xp

k�1
c′kcos 2πνkt+φk�

π
2

� �
+ c′′k cos(2πνkt+φk)

� c0∆+
Xp

k�1
c′′′k cos(2πνkt+φ′k), 

which has the same periodicities as λ(t). The left panel of 
Figure C.1 displays the power spectrum for the centred arrival 
counts bucketed by three-hour intervals. The horizontal axis 
displays a range of frequencies present in the count data, and 
the height of a spike is the squared amplitude of the cosine 
wave with the corresponding frequency. The plot reveals the 
presence of eight dominant frequencies in the data, the largest 
one being 1.0015 cycles/day.

To fit (1) using just these eight cosines, we reestimate their 
amplitudes ck and phases φk using least squares. The red 
dashed line in the right panel of Figure C.1 shows the result
ing fit over the course of a Wednesday. Compared with the 
solid line representing the average hourly arrival count, the 
estimated arrival rate is essentially flat and completely fails 
to capture the intraday variation in arrivals. It is surprising 
that using an approach as standard as the discrete Fourier 
transform would lead to such discrepancies.

In this example, one might guess that the dominant fre
quency 1.0015 cycles/day is really just a noisy estimate of 
the daily cycle. Suppose we refit (1) to the seven other fre
quencies in addition to the daily cycle, that is, we replace 
1.0015 cycles/day with 1 cycle/day and keep all other fre
quencies the same. The blue dotted line in Figure C.1 shows 
the resulting fit, which is a significant improvement over the 
previous one. This suggests that the frequency estimation 
error of 0.0015, which is 1=T � 1=652 in this case, is too large. 
In fact, replacing 1:0015 � 1+ 1=T with a slightly more pre
cise estimate of the daily cycle, say, 1+ 1=(T log T), already 
provides a much more sensible fit (green dashed and dotted 
line).

Why?
The amplitude estimation involves regressing the arrival 
counts onto the explanatory variables {cos(2πν̂kt)}8k�1, where 
ν̂1, : : : , ν̂8 are the estimated frequencies. Because, in this case, 
ν̂1 � 1:0015 � 1+T�1 is likely a noisy estimate of ν1 � 1, using 
cos(2πν̂1t) as an explanatory variable in lieu of cos(2πν1t)
would result in model misspecification. For example, at time 
t � T=2, the bias

cos(2πν̂1 t)� cos(2πν1t) � cos
(

2π 1+ 1
T

� �
T
2

)

� cosπT

��2cosπT 

does not vanish as T→∞. Hence, the true amplitude may 
not be recoverable in the limit. On the other hand, if the preci
sion of ν̂1 satisfies (A.2), that is, ν̂1 � 1+ o(1)=T, then the 

Table B.1. Cycles Identified from the Dealership Data

Cycle (in calendar days) Amplitude

338 4.47
7.00 4.37
195 4.11
153 4.00
3.50 3.62
34.3 3.23
74.5 2.78
30.6 2.39
15.2 2.38
94.4 2.24
60.7 2.09
14.2 2.00
9.84 1.91
12.2 1.87
23.4 1.85
25.3 1.84
40.1 1.76
11.4 1.55
2.33 1.50
16.8 1.41
6.92 1.17

Note. The length of the cycle is scaled so that a seven-day cycle 
contains six business days for the dealership.

Table B.2. Comparison of NHPP Models for Setting 
Staffing Levels in the Test Period H1 2017

Mean daily cost ($) Excess over Sine (95% CI)

Sine 1,662
PC 1,821 9.6% (6.7%, 12.5%)

Note. CI, Confidence interval.
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misspecification bias is asymptotically negligible:

cos(2πν̂1 t)� cos(2πν1t) � cos 2π 1+ o(1)
T

� �
T
2

� �

� cosπT

� cos{πT+ o(1)}� cosπT→ 0:

Although Rice and Rosenblatt (1988) were the first to show 
that (A.2) is theoretically necessary for ordinary time series, 
to our knowledge, this is the first real arrivals example to 
show that the issue actually matters in practice, and is not 
just a mathematical pathology.

In this particular, case one might argue that 1.0015 cycles/day 
is clearly a noisy estimate for the daily cycle, so the analysis 
above is unnecessary. However, in general, the “obvious true” 
frequency may be wrong if the frequency estimate is, say, 1.93 
cycles/day: As recounted in Parker (2011), the Allies’ planning 
of the Normandy landings hinged on understanding the peri
odicities in tidal heights, which represent the arrival rate of fluid 
parcels. In a prescient act of patriotism, P. S. Laplace demon
strated mathematically in 1776 that the dominant frequencies 
are 1.93 cycles/day and 2.00 cycles/day. Without this, the Allies 
would have had to determine the frequencies empirically 
instead, and mistakenly rounding 1.93 to 2 might well have 
changed the course of history.

Endnotes
1 If the arrival rate takes on the form of (1), then closed-form expres
sions for certain performance outcomes can be derived for 
Mt=G=∞, Mt=M=st +M, and Mt=G=st +G queues (Eick et al. 1993, 
Feldman et al. 2008, Liu and Whitt 2012, Liu 2018).
2 See Green and Kolesar (1991), Eick et al. (1993), Jennings et al. 
(1996), Green et al. (2001), Feldman et al. (2008), Liu and Whitt 
(2012), Whitt (2014, 2016), Chan et al. (2016), and Liu (2018).
3 Unlike the bank call centre data, where we observe the exact times 
of the calls, the Turkish dealership data come aggregated at a daily 
level, so they cannot be used to set staffing at an intraday resolution. 

Using an alternate setup where staffing is fixed for each day, in 
Appendix B, we show that staffing with the sinusoidal NHPP also 
leads to better performance in the test period.
4 It is straightforward to incorporate trends in the sinusoidal and 
existing NHPP models, as is done for the dealership data in Appen
dix B. The sinusoidal NHPP remains superior in this setting.
5 Arrival times that have been rounded (e.g., to the nearest second) 
will require unrounding to remove interarrival times of zero if multiple 
arrivals are rounded to the same second. We follow Brown et al. (2005) 
and Kim and Whitt (2014a) in adding uniform random numbers 
between [0, 1] seconds to the timestamps to mitigate the problem.
6 A fine frequency grid is employed, which can be achieved by pad
ding the vector of daily counts with zeroes so that the resulting vec
tor contains 100,000 entries.
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Akşin Z, Ata B, Emadi S, Su C (2013) Structural estimation of callers’ 
delay sensitivity in call centers. Management Sci. 59(12):2727–2746.

Alizadeh F, Eckstein J, Noyan N, Rudolf G (2008) Arrival rate approxi
mation by nonnegative cubic splines. Oper. Res. 56(1):140–156.

Armony M, Israelit S, Mandelbaum A, Marmor Y, Tseytlin Y, Yom- 
Tov G (2015) On patient flow in hospitals: A data-based 
queueing-science perspective. Stochastic Systems 5(1):146–194.

Bassamboo A, Randhawa R, Zeevi A (2010) Capacity sizing under 
parameter uncertainty: Safety staffing principles revisited. Man
agement Sci. 56(10):1668–1686.

Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in 
multiple testing under dependency. Ann. Statist. 29(4):1165–1188.

Brown L, Gans N, Mandelbaum A, Sakov A, Shen H, Zeltyn S, Zhao 
L (2005) Statistical analysis of a telephone call center: A queueing- 
science perspective. J. Amer. Statist. Assoc. 100(469):36–50.

Chan C, Dong J, Green L (2016) Queues with time-varying arrivals 
and inspections with applications to hospital discharge policies. 
Oper. Res. 65(2):469–495.

Figure C.1. (Left) Power Spectrum of ED Arrival Data for ESI Level 2 Patients, Centred to Remove the Zero Frequency Compo
nent (Constant Intercept) and (Right) Estimated Arrival Rates over the Course of a Wednesday 

Note. In the left panel, eight dominant frequencies stand out, the largest one being 1.0015 cycles/day.

Chen et al.: Can Customer Arrival Rates Be Modelled by Sine Waves? 
Service Science, 2024, vol. 16, no. 2, pp. 70–84, © 2023 The Author(s) 83 



Chen N, Lee D, Negahban S (2019) Super-resolution estimation of 
cyclic arrival rates. Ann. Statist. 47(3):1754–1775.

Daw A, Pender J (2018) Queues driven by Hawkes processes. Sto
chastic Systems 8(3):192–229.

Daw A, Pender J (2022) An ephemerally self-exciting point process. 
Adv. Appl. Probab. 54(2):340–403.

Daw A, Castellanos A, Yom-Tov G, Pender J, Gruendlinger L (2021) 
The co-production of service: Modeling service times in contact 
centers using Hawkes processes. Working paper, Marshall School 
of Business, the University of Southern California, Los Angeles.

Dietz D (2011) Practical scheduling for call center operations. Omega 
39(5):550–557.

Eick S, Massey W, Whitt W (1993) Mt=G=∞ queues with sinusoidal 
arrival rates. Management Sci. 39(2):241–252.

Feldman Z, Mandelbaum A, Massey W, Whitt W (2008) Staffing of 
time-varying queues to achieve time-stable performance. Man
agement Sci. 54(2):324–338.

Gao X, Zhu L (2018) Functional central limit theorems for stationary 
Hawkes processes and application to infinite-server queues. 
Queueing Systems 90(1):161–206.

Green L, Kolesar P (1991) The pointwise stationary approximation for 
queues with nonstationary arrivals. Management Sci. 37(1):84–97.

Green L, Kolesar P, Soares J (2001) Improving the SIPP approach for 
staffing service systems that have cyclic demands. Oper. Res. 
49(4):549–564.

Hillmer S, Hillmer B, McRoberts G (2004) The real costs of turnover: 
Lessons from a call center. Human Resource Planning 27(3):34–42.

Holm S (1979) A simple sequentially rejective multiple test proce
dure. Scandinavian J. Statit. 6(2):65–70.

Ibrahim R (2018) Managing queueing systems where capacity is ran
dom and customers are impatient. Production Oper. Management 
27(2):234–250.

Ibrahim R, Ye H, L’Ecuyer P, Shen H (2016) Modeling and forecast
ing call center arrivals: A literature survey and a case study. 
Internat. J. Forecasting 32(3):865–874.

Jennings O, Mandelbaum A, Massey W, Whitt W (1996) Server staffing 
to meet time-varying demand. Management Sci. 42(10):1383–1394.

Jongbloed G, Koole G (2001) Managing uncertainty in call centres 
using Poisson mixtures. Appl. Stochastic Models Bus. Indust. 17(4): 
307–318.

Kim S, Whitt W (2014a) Are call center and hospital arrivals well 
modeled by nonhomogeneous Poisson processes? Manufactur
ing Service Oper. Management 16(3):464–480.

Kim S, Whitt W (2014b) Choosing arrival process models for service 
systems: Tests of a nonhomogeneous Poisson process. Naval 
Res. Logist. 61(1):66–90.
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