Problem Sheet 1: Solutions

APM 384

Autumn 2014

Throughout this problem sheet let V_{1}, V_{2}, V_{3} be vector spaces.

1. Let $T_{1}, T_{2}: V_{1} \longrightarrow V_{2}$ be linear operators and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. Show that the following are also linear operators:
(a) $\lambda_{1} T_{1}$
(b) $T_{1}+T_{2}$
(c) $\lambda_{1} T_{1}+\lambda_{2} T_{2}$.

For each part we need to show that the resulting operator S satisfies $S\left(\mu_{1} v_{1}+\right.$ $\mu_{2} v_{2}$) for all $\mu_{1}, \mu_{2} \in \mathbb{R}$ and $v_{1}, v_{2} \in V_{1}$. But this is just definition chasing. For example, letting $S=\lambda_{1} T_{1}$:

$$
\begin{aligned}
S\left(\mu_{1} v_{1}+\mu_{2} v_{2}\right) & =\lambda_{1} T_{1}\left(\mu_{1} v_{1}+\mu_{2} v_{2}\right)=\lambda_{1}\left[\mu_{1} T_{1}\left(v_{1}\right)+\mu_{2} T_{1}\left(v_{2}\right)\right] \\
& =\lambda_{1} \mu_{1} T_{1}\left(v_{1}\right)+\lambda_{1} \mu_{2} T_{1}\left(v_{2}\right)=\mu_{1} S\left(v_{1}\right)+\mu_{2} S\left(v_{2}\right) .
\end{aligned}
$$

The other parts are solved in a similar manner.
2. Let $T_{1}: V_{1} \longrightarrow V_{2}$ and $T_{2}: V_{2} \longrightarrow V_{3}$ be linear operators. Show that their composition $T_{2} \circ T_{1}: V_{1} \longrightarrow V_{3}$ is also a linear operator.

This is once more just definition chasing: let $\mu_{1}, \mu_{2} \in \mathbb{R}$ and $v_{1}, v_{2} \in V_{1}$. Then, by linearity of T_{1} and T_{2},

$$
\begin{aligned}
\left(T_{2} \circ T_{1}\right)\left(\mu_{1} v_{1}+\mu_{2} v_{2}\right) & =T_{2}\left(T_{1}\left(\mu_{1} v_{1}+\mu_{2} v_{2}\right)\right)=T_{2}\left(\mu_{1} T\left(v_{1}\right)+\mu_{2} T_{1}\left(v_{2}\right)\right) \\
& =\mu_{1} T_{2}\left(T_{1}\left(v_{1}\right)\right)+\mu_{2} T_{2}\left(T_{1}\left(v_{2}\right)\right) \\
& =\mu_{1}\left(T_{2} \circ T_{1}\right)\left(v_{1}\right)+\mu_{2}\left(T_{2} \circ T_{1}\right)\left(v_{2}\right)
\end{aligned}
$$

3. Show that u, v are solutions to the same linear homogeneous differential equation then so is $\lambda u+\mu v$ for any $\lambda, \mu \in \mathbb{R}$.
By definition this means that there exists some linear differential operator $T: \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right) \longrightarrow \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $T(u)=0$ and $T(v)=0$. But, by linearity of T it follows that

$$
T(\lambda u+\mu v)=\lambda T(u)+\mu T(v)=\lambda \cdot 0+\mu \cdot 0=0
$$

i.e. $\lambda u+\mu v$ also solves the differential equation.
4. Show that for any $j \in\{1, \ldots, d\}$

$$
e_{j} \nabla f(\vec{x})=\frac{\partial f}{\partial x_{j}}(\vec{x})
$$

For any vector $\vec{v} \in \mathbb{R}^{d}$ we have $e_{j} \cdot \vec{v}=v_{j}$ (the $j^{\text {th }}$ coordinate of v). But the $j^{\text {th }}$ co-ordinate of ∇f is $\frac{\partial f}{\partial x_{j}}$, so we are done.
5. Let $u: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be defined by $u(x, y, z)=x^{2} y^{3} e^{x-y} \cos (z)$.
(a) Compute ∇u and Δu.
(b) Hence compute the directional derivative of u in direction \vec{a}, where $\vec{a}=$

$$
\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right), e_{1} \text { respectively. }
$$

(a) We have

$$
\begin{aligned}
& \nabla u=\left(\begin{array}{c}
(2+x) x y^{3} e^{x-y} \cos (z) \\
(3-y) x^{2} y^{2} e^{x-y} \cos (z) \\
-x^{2} y^{3} e^{x-y} \sin (z)
\end{array}\right) \\
& \Delta u=\left(x^{2}+4 x+2\right) y^{3} e^{x-y} \cos (z)+y\left(6-3 y+y^{2} x^{2}\right) e^{x-y} \cos (z)-x^{2} y^{3} e^{x-y} \cos (z)
\end{aligned}
$$

(b) This is a straightforward calculation. For example,

$$
\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \cdot \nabla u=(y(2+x)+2(3-y) x) x y^{2} e^{x-y} \cos (z)=(2 y-x y+6 x) x y^{2} e^{x-y} \cos (z)
$$

6. Find the solution to the boundary value problem

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0 \tag{1}
\end{equation*}
$$

with boundary condition $u(0, y)=\cos (y)$.
We use the method of characteristics. We first need to solve $\dot{X}(t)=1$ and $\dot{Y}(t)=1$ subject to $X(0)=0$ and $Y(0)=y_{0}$ where y_{0} is a parameter to be chosen later. We obtain $X(t)=t$ and $Y(t)=t+y_{0}$. The next step is to solve $U(t)=0$ subject to $U(0)=\cos \left(y_{0}\right)$, which immediately leads to $U(t)=\cos \left(y_{0}\right)$ for all t. Let now $(x, y) \in \mathbb{R}^{2}$ be given. It remains to find values for t and y_{0} such that $X(t)=x$ and $Y(t)=y$. This can be achieved by chosing $t=x$ and $y_{0}=y-x$. Hence the solution to the BVP given by (1) and the boundary condition is

$$
u(x, y)=\cos (y-x)
$$

which I leave for you to verify.
7. Solve the PDE

$$
\begin{equation*}
y \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=u \tag{2}
\end{equation*}
$$

subject to $u(x, 0)=x$.
Here we are given a boundary condition as a function of x rather than y, so we interchange the roles of x and y. So we introduce a parameter x_{0} to be chosen later and set $y_{0}=0$. We need to solve $\dot{X}(t)=Y(t)$ and $\dot{Y}(t)=1$ subject to $(X(0), Y(0))=\left(x_{0}, 0\right)$. Solving first for Y yields $Y(t)=t$, which transforms the ODE for X into $\dot{X}(t)=t$. Together with the initial condition we obtain $X(t)=\frac{t^{2}}{2}+x_{0}$. Next we solve $\dot{U}(t)=U(t)$ subject to $U(0)=x_{0}$, i.e. $U(t)=x_{0} e^{t}$. For given $x, y \in \mathbb{R}$ we need to choose $t=y$ and $x_{0}=x-\frac{y^{2}}{2}$ in order to have $X(t)=x$ and $Y(t)=y$. Thus the solution to (2) with the boundary condition is given by

$$
u(x, y)=\left(x-\frac{y^{2}}{2}\right) e^{y}
$$

8. (hard) Consider the following PDE for a function u of three arguments:

$$
\begin{equation*}
\frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0 \tag{3}
\end{equation*}
$$

subject to the boundary condition $u(0, y, z)=y+z$. Extend the method of characteristics we discussed in class to the three-dimensional setting and solve this system.
Following the same approach as in the two-dimensional problem we introduce a parameter t and let X, Y, Z be solutions to the coupled ODEs

$$
\begin{array}{rlrl}
\dot{X}(t) & =1, & X(0)=0 \\
\dot{Y}(t) & =Y(t) & & Y(0)=y_{0} \\
\dot{Z}(t) & =Z(t) & & Z(0)=z_{0}
\end{array}
$$

where now we have two parameters y_{0} and z_{0} that we need to specify later. Then we have $X(t)=t$ and $Y(t)=y_{0} e^{t}$ and $Z(t)=z_{0} e^{t}$. Applying the chain rule as before we see that if u satisfies (3) then $U(t):=u(X(t), Y(t), Z(t))$ must satisfy $U^{\prime}(t)=0$ (check it, using the PDE!) and $U(0)=u\left(0, y_{0}, z_{0}\right)=$ $y_{0}+z_{0}$. Thus U doesn't actually depend on t and therefore $U(t)=y_{0}+z_{0}$ for all y_{0} and z_{0}. Now let $x, y, z \in \mathbb{R}$. The last step is to find t, y_{0} and z_{0} such that $(X(t), Y(t), Z(t))=(x, y, z)$. This can be achieved by choosing $x=t$ and then $y_{0}=y e^{-x}$ and $z=z e^{-x}$. The solution to (3) and the boundary condition is therefore

$$
u(x, y, z)=y_{0}+z_{0}=(y+z) e^{-x} .
$$

