Problem Sheet 2

APM 384

September 18, 2014

1. Find the general solution to the $P D E$

$$
\begin{equation*}
u_{x}+u_{y}=y . \tag{1}
\end{equation*}
$$

subject to the boundary condition $u(0, y)=e^{y}$.
So we have $a(x, y)=b(x, y)=1, c(x, y)=0, g(x, y)=y$ and $x_{0}=0$. Thus our characteristic curves are solutions $(X(t), Y(t), U(t))$ to

$$
\begin{array}{ll}
\dot{X}(t)=t, & X(0)=0 \\
\dot{Y}(t)=t, & \\
\dot{U}(t)=Y(t) & =y_{0} \\
& U(0)=e^{y_{0}} .
\end{array}
$$

Solving first (2) and (3) yields $X(t)=t$ and $Y(t)=t+y_{0}$ (Step 1). This transforms (4) to $\dot{U}(t)=t+y_{0}$ which, together with the initial condition yields $U(t)=\frac{t^{2}}{2}+y_{0} t+e^{y_{0}}$ (Step 2). Now we solve, for given $x, y \in \mathbb{R}$, the equations $X(t)=x$ and $Y(t)=y-x$, i.e. $t=x$ and $y_{0}=y-x$ (Step 3). Putting it all together yields

$$
u(x, y)=\frac{x^{2}}{2}+(y-x) x+e^{y-x}
$$

I leave it up to you to perform Step 4, i.e. check that this function indeed solves (1).
2. Consider the PDE

$$
\begin{equation*}
A u_{x}+B u_{y}+C u=G \tag{5}
\end{equation*}
$$

where A, B, C, G are non-zero constants (i.e. don't depend on the arguments x and y). Solve (5) together with the boundary condition $u(x, 0)=\sin (x)$.
In this exercise the boundary condition is given at a particular value of y, rather than x. So we need to interchange the roles of x_{0} and y_{0}, i.e. we choose $y_{0}=0$ and leave x_{0} as a parameter, to be chosen in Step 3. Step 1: We need to solve $\dot{X}(t)=A$ subject to $X(0)=x_{0}$ and $\dot{Y}(t)=B$ subject to $Y(0)=0$. Thus we have $X(t)=A t+x_{0}$ and $Y(t)=B t$. Step 2: We solve $\dot{U}(t)=C-G t$, i.e. $U(t)=\frac{G}{C}+\kappa e^{-C t}$ for some constant κ. The initial condition $U(0)=\sin \left(x_{0}\right)$ implies that $\kappa=\sin \left(x_{0}\right)-\frac{G}{C}$. Step 3: Solving $X(t)=x$ and $Y(t)=y$ for t
and x_{0} yields $t=\frac{y}{B}$ and $x_{0}=x-\frac{A}{B} y$. Step 4: putting things together we need to check that

$$
u(x, y)=\frac{G}{C}+\left[\sin \left(x-\frac{A}{B} y\right)-\frac{G}{C}\right] e^{-\frac{C}{B} y}
$$

satisfies (5) and the boundary condition.
3. Solve the PDE

$$
\begin{equation*}
u_{x}+x u_{y}=x^{2} . \tag{6}
\end{equation*}
$$

subject to the boundary condition $u(0, y)=y$.
Here we have $a(x, y)=1, b(x, y)=x, c(x, y)=0, g(x, y)=y$ and $y_{0}=0$. Step 1: Solving $\dot{X}(t)=1$ subject to $X(0)=0$ yields $X(t)=t$. Next we solve $\dot{Y}(t)=X(t)=t$ with $Y(0)=y_{0}$ and obtain $Y(t)=\frac{t^{2}}{2}+y_{0}$. Step 2: We have to solve $\dot{U}(t)=X(t)^{2}=t^{2}$ subject to $U(0)=y_{0}$. I.e. $U(t)=\frac{t^{3}}{3}+y_{0}$. Step 3: $t=X(t)=x$ and $\frac{t^{2}}{2}+y_{0}=Y(t)=y$ are obtained by setting $t=x$ and $y_{0}=\frac{x^{2}}{2}-y$. Step 4: check that

$$
u(x, y)=\frac{x^{3}}{3}+\frac{x^{2}}{2}-y
$$

satisfies (6).
4. Find the general solution to the $P D E$

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0 . \tag{7}
\end{equation*}
$$

Here we don't have a boundary condition so we impose an artificial one: we note that $u(0, y)$ is a function of y only, which we denote by $f(y)$. Of course, we will not be able to say anything f unless we are also given a boundary condition. Let us now apply the method of characteristics: in Step 1 we solve $\dot{X}(t)=\dot{Y}(t)=t$ subject to $X(0)=0$ and $Y(0)=y_{0}$, i.e. $\quad X(t)=t$ and $Y(t)=t+y_{0}$. Step 2: the ODE $\dot{U}(t)=0$ with initial condition $U(0)=f\left(y_{0}\right)$ has the constant function $U(t)=f\left(y_{0}\right)$ as its only solution. Step 3: $t=x$ and $y_{0}=y-x$. Step 4: So the general solution to (7) is given by $u(x, y)=f(x-y)$, for an arbitrary continuously differentiable function f.
5. Recall that, on the way to deriving the heat equation we arrived at

$$
\begin{equation*}
c \rho \frac{\partial u}{\partial t}=K_{0} \frac{\partial^{2} u}{\partial x^{2}} . \tag{8}
\end{equation*}
$$

where c, ρ, K_{0} were positive constants. Suppose that a function $u(t, x)$ satisfies (8) together with the boundary condition

$$
\begin{equation*}
-K_{0} \frac{\partial u}{\partial x}(t, 0)=-H\left[u(t, 0)-u_{B}(t)\right] \tag{9}
\end{equation*}
$$

for some function u_{B} and another constant $H>0$. Find constants γ_{1}, γ_{2} such that the function \widetilde{u} defined by $\widetilde{u}(t, x)=u\left(\gamma_{1} t, \gamma_{2} x\right)$ satisfies

$$
\begin{align*}
\frac{\partial \widetilde{u}}{\partial t} & =\frac{\partial^{2} \widetilde{u}}{\partial x^{2}} \tag{10}\\
\frac{\partial \widetilde{u}}{\partial x}(t, 0) & =\widetilde{u}(t, 0)-\widetilde{u}_{B}(t) \tag{11}
\end{align*}
$$

where (of course!) $\widetilde{u}_{B}(t)=u_{B}\left(\gamma_{1} t\right)$. Make sure you justify your answer, i.e don't just write down γ_{1} and γ_{2} but rather prove that your claim is correct.
Using the chain rule we see that $\frac{\partial \widetilde{u}}{\partial x}(t, 0)=\gamma_{1} \frac{H}{K_{0}}\left[\widetilde{u}(t, 0)-\widetilde{u}_{B}(t)\right]$ and

$$
\frac{\partial \widetilde{u}}{\partial t}=\frac{\gamma_{1}}{\gamma_{2}^{2}} \frac{K_{0}}{c \rho} \frac{\partial^{2} u}{\partial x^{2}}
$$

So we need to choose $\gamma_{1}=\frac{K_{0}}{H}$ and $\gamma_{2}=\frac{K_{0}}{\sqrt{\text { cpH }}}$.
6. Consider the $O D E \phi^{\prime \prime}(x)=-\lambda \phi(x)$ and recall that if $\lambda<0$ the general solution is given by

$$
\begin{equation*}
\phi(x)=A \cosh (\sqrt{-\lambda} x)+B \sinh (\sqrt{-\lambda} x) . \tag{12}
\end{equation*}
$$

for any real numbers A, B.
(a) Show that if we additionally impose the boundary condition $\phi(0)=\phi(L)=$ 0 for some $L>0$ then we must have $A=B=0$, i.e. the only solution is the zero function.
Since $\cosh (0)=1$ and $\sinh (0)=0$, the condition $\phi(0)=0$ immediately yields $A=0$. Then $\phi(L)=0$ is equivalent to $B \sinh (\sqrt{-\lambda} L)=0$, but since $L \neq 0$ and the hyperbolic sine only vanishes at the origin we must have $B=0$
(b) Show that the same is true for the boundary condition $\phi^{\prime}(0)=\phi^{\prime}(L)=0$. - This follows similarly.
7. Let $f:[0, L] \longrightarrow \mathbb{R}$ be continuous. Recall that the statement that f is continuous is equivalent to saying that for all $\epsilon>0$ there exists $\delta=\delta(\epsilon)>0$ such that for all $x, y \in[0, L]$ with $|x-y|<\delta$ we have $|f(x)-f(y)|<\epsilon$.
(a) Show that if $f(x)>0$ for some $x>0$ then there exists $\delta>0$ such that $[x-\delta, x+\delta] \subseteq[0, L]$ and $f(y)>\frac{f(x)}{2}$ for all $y \in[x-\delta, x+\delta]$.
Choose $\epsilon=\frac{f(x)}{2}>0$ in the definition of continuity. If $\delta>0$ is large enough so that either $x-\delta<0$ or $x+\delta>L$ simply choose a smaller value for δ until neither of these conditions hold.
(b) Deduce that $\int_{x-\delta}^{x+\delta} f(y) d y>0$.

By monotonicity of the integral $\int_{x-\delta}^{x+\delta} f(y) d y>\int_{x-\delta}^{x+\delta} \frac{f(x)}{2}=\delta f(x)>0$.
(c) Show similarly that if $f(x)<0$ for some $x \in[0, L]$ then there exists $\delta>0$ such that $[x-\delta, x+\delta] \subseteq[0, L]$ and $\int_{x-\delta}^{x+\delta} f(y) d y<0$.
Here we choose $\epsilon=-\frac{f(x)}{2}$ to see that for $|x-y|<\delta$ we have $|f(x)-f(y)|<$ $-\frac{f(x)}{2}$, i.e. $f(y)<\frac{f(x)}{2}$ and then proceed analogously to part (b).
(d) Deduce that if $\int_{a}^{b} f(y) d y=0$ for all $a, b \in[0, L]$ then $f(y)=0$ for all $y \in[0, L]$.
We have shown that if $f(x) \neq 0$ for some $x \in[0, L]$ then there must be $a, b \in[0, L]$ such that $\int_{a}^{b} f(y) d y \neq 0$, which is simply the converse of the claim.

