Problem Sheet 2

APM 384

September 18, 2014

1. Find the general solution to the PDE

$$u_x + u_y = y. \tag{1}$$

subject to the boundary condition $u(0, y) = e^y$.

So we have a(x, y) = b(x, y) = 1, c(x, y) = 0, g(x, y) = y and $x_0 = 0$. Thus our characteristic curves are solutions (X(t), Y(t), U(t)) to

$$\dot{X}(t) = t,$$
 $X(0) = 0$ (2)

$$\dot{Y}(t) = t,$$
 $Y(0) = y_0$ (3)

$$\dot{U}(t) = Y(t)$$
 $U(0) = e^{y_0}$. (4)

Solving first (2) and (3) yields X(t) = t and $Y(t) = t + y_0$ (Step 1). This transforms (4) to $\dot{U}(t) = t + y_0$ which, together with the initial condition yields $U(t) = \frac{t^2}{2} + y_0 t + e^{y_0}$ (Step 2). Now we solve, for given $x, y \in \mathbb{R}$, the equations X(t) = x and Y(t) = y - x, i.e. t = x and $y_0 = y - x$ (Step 3). Putting it all together yields

$$u(x,y) = \frac{x^2}{2} + (y-x)x + e^{y-x}.$$

I leave it up to you to perform Step 4, i.e. check that this function indeed solves (1).

2. Consider the PDE

$$Au_x + Bu_y + Cu = G \tag{5}$$

where A, B, C, G are non-zero constants (i.e. don't depend on the arguments x and y). Solve (5) together with the boundary condition $u(x, 0) = \sin(x)$.

In this exercise the boundary condition is given at a particular value of y, rather than x. So we need to interchange the roles of x_0 and y_0 , i.e. we choose $y_0 = 0$ and leave x_0 as a parameter, to be chosen in Step 3. Step 1: We need to solve $\dot{X}(t) = A$ subject to $X(0) = x_0$ and $\dot{Y}(t) = B$ subject to Y(0) = 0. Thus we have $X(t) = At + x_0$ and Y(t) = Bt. Step 2: We solve $\dot{U}(t) = C - Gt$, i.e. $U(t) = \frac{G}{C} + \kappa e^{-Ct}$ for some constant κ . The initial condition $U(0) = \sin(x_0)$ implies that $\kappa = \sin(x_0) - \frac{G}{C}$. Step 3: Solving X(t) = x and Y(t) = y for t

and x_0 yields $t = \frac{y}{B}$ and $x_0 = x - \frac{A}{B}y$. Step 4: putting things together we need to check that

$$u(x,y) = \frac{G}{C} + \left[\sin\left(x - \frac{A}{B}y\right) - \frac{G}{C}\right]e^{-\frac{C}{B}y}$$

satisfies (5) and the boundary condition.

3. Solve the PDE

$$u_x + xu_y = x^2. ag{6}$$

subject to the boundary condition u(0, y) = y.

Here we have a(x, y) = 1, b(x, y) = x, c(x, y) = 0, g(x, y) = y and $y_0 = 0$. Step 1: Solving $\dot{X}(t) = 1$ subject to X(0) = 0 yields X(t) = t. Next we solve $\dot{Y}(t) = X(t) = t$ with $Y(0) = y_0$ and obtain $Y(t) = \frac{t^2}{2} + y_0$. Step 2: We have to solve $\dot{U}(t) = X(t)^2 = t^2$ subject to $U(0) = y_0$. I.e. $U(t) = \frac{t^3}{3} + y_0$. Step 3: t = X(t) = x and $\frac{t^2}{2} + y_0 = Y(t) = y$ are obtained by setting t = x and $y_0 = \frac{x^2}{2} - y$. Step 4: check that

$$u(x,y) = \frac{x^3}{3} + \frac{x^2}{2} - y$$

satisfies (6).

4. Find the general solution to the PDE

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0. \tag{7}$$

Here we don't have a boundary condition so we impose an artificial one: we note that u(0, y) is a function of y only, which we denote by f(y). Of course, we will not be able to say anything f unless we are also given a boundary condition. Let us now apply the method of characteristics: in Step 1 we solve $\dot{X}(t) = \dot{Y}(t) = t$ subject to X(0) = 0 and $Y(0) = y_0$, i.e. X(t) = t and $Y(t) = t + y_0$. Step 2: the ODE $\dot{U}(t) = 0$ with initial condition $U(0) = f(y_0)$ has the constant function $U(t) = f(y_0)$ as its only solution. Step 3: t = x and $y_0 = y - x$. Step 4: So the general solution to (7) is given by u(x, y) = f(x-y), for an arbitrary continuously differentiable function f.

5. Recall that, on the way to deriving the heat equation we arrived at

$$c\rho \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2}.$$
(8)

where c, ρ, K_0 were positive constants. Suppose that a function u(t, x) satisfies (8) together with the boundary condition

$$-K_0 \frac{\partial u}{\partial x}(t,0) = -H \left[u(t,0) - u_B(t) \right]$$
(9)

for some function u_B and another constant H > 0. Find constants γ_1, γ_2 such that the function \widetilde{u} defined by $\widetilde{u}(t, x) = u(\gamma_1 t, \gamma_2 x)$ satisfies

$$\frac{\partial \widetilde{u}}{\partial t} = \frac{\partial^2 \widetilde{u}}{\partial x^2} \tag{10}$$

$$\frac{\partial \widetilde{u}}{\partial x}(t,0) = \widetilde{u}(t,0) - \widetilde{u}_B(t)$$
(11)

where (of course!) $\tilde{u}_B(t) = u_B(\gamma_1 t)$. Make sure you justify your answer, i.e don't just write down γ_1 and γ_2 but rather prove that your claim is correct. Using the chain rule we see that $\frac{\partial \tilde{u}}{\partial x}(t,0) = \gamma_1 \frac{H}{K_0} [\tilde{u}(t,0) - \tilde{u}_B(t)]$ and

$$\frac{\partial \widetilde{u}}{\partial t} = \frac{\gamma_1}{\gamma_2^2} \frac{K_0}{c\rho} \frac{\partial^2 u}{\partial x^2}.$$

So we need to choose $\gamma_1 = \frac{K_0}{H}$ and $\gamma_2 = \frac{K_0}{\sqrt{c\rho H}}$.

6. Consider the ODE $\phi''(x) = -\lambda \phi(x)$ and recall that if $\lambda < 0$ the general solution is given by

$$\phi(x) = A \cosh\left(\sqrt{-\lambda}x\right) + B \sinh\left(\sqrt{-\lambda}x\right). \tag{12}$$

for any real numbers A, B.

(a) Show that if we additionally impose the boundary condition $\phi(0) = \phi(L) = 0$ for some L > 0 then we must have A = B = 0, i.e. the only solution is the zero function.

Since $\cosh(0) = 1$ and $\sinh(0) = 0$, the condition $\phi(0) = 0$ immediately yields A = 0. Then $\phi(L) = 0$ is equivalent to $B \sinh(\sqrt{-\lambda}L) = 0$, but since $L \neq 0$ and the hyperbolic sine only vanishes at the origin we must have B = 0

- (b) Show that the same is true for the boundary condition $\phi'(0) = \phi'(L) = 0$. - This follows similarly.
- 7. Let $f: [0, L] \longrightarrow \mathbb{R}$ be continuous. Recall that the statement that f is continuous is equivalent to saying that for all $\epsilon > 0$ there exists $\delta = \delta(\epsilon) > 0$ such that for all $x, y \in [0, L]$ with $|x y| < \delta$ we have $|f(x) f(y)| < \epsilon$.
 - (a) Show that if f(x) > 0 for some x > 0 then there exists $\delta > 0$ such that $[x \delta, x + \delta] \subseteq [0, L]$ and $f(y) > \frac{f(x)}{2}$ for all $y \in [x \delta, x + \delta]$. Choose $\epsilon = \frac{f(x)}{2} > 0$ in the definition of continuity. If $\delta > 0$ is large enough so that either $x - \delta < 0$ or $x + \delta > L$ simply choose a smaller value for δ until neither of these conditions hold.
 - (b) Deduce that $\int_{x-\delta}^{x+\delta} f(y) \, dy > 0$. By monotonicity of the integral $\int_{x-\delta}^{x+\delta} f(y) \, dy > \int_{x-\delta}^{x+\delta} \frac{f(x)}{2} = \delta f(x) > 0$.

- (c) Show similarly that if f(x) < 0 for some $x \in [0, L]$ then there exists $\delta > 0$ such that $[x - \delta, x + \delta] \subseteq [0, L]$ and $\int_{x-\delta}^{x+\delta} f(y) \, dy < 0$. Here we choose $\epsilon = -\frac{f(x)}{2}$ to see that for $|x - y| < \delta$ we have $|f(x) - f(y)| < -\frac{f(x)}{2}$, i.e. $f(y) < \frac{f(x)}{2}$ and then proceed analogously to part (b).
- (d) Deduce that if $\int_a^b f(y) dy = 0$ for all $a, b \in [0, L]$ then f(y) = 0 for all $y \in [0, L]$. We have shown that if $f(x) \neq 0$ for some $x \in [0, L]$ then there must be $a, b \in [0, L]$ such that $\int_a^b f(y) dy \neq 0$, which is simply the converse of the claim.