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1. Find the general solution to the PDE

ux + uy = y. (1)

subject to the boundary condition u(0, y) = ey.

So we have a(x, y) = b(x, y) = 1, c(x, y) = 0, g(x, y) = y and x0 = 0. Thus
our characteristic curves are solutions (X(t), Y (t), U(t)) to

Ẋ(t) = t, X(0) = 0 (2)

Ẏ (t) = t, Y (0) = y0 (3)

U̇(t) = Y (t) U(0) = ey0 . (4)

Solving first (2) and (3) yields X(t) = t and Y (t) = t + y0 (Step 1). This
transforms (4) to U̇(t) = t + y0 which, together with the initial condition
yields U(t) = t2

2
+ y0t + ey0 (Step 2). Now we solve, for given x, y ∈ R, the

equations X(t) = x and Y (t) = y − x, i.e. t = x and y0 = y − x (Step 3).
Putting it all together yields

u(x, y) =
x2

2
+ (y − x)x+ ey−x.

I leave it up to you to perform Step 4, i.e. check that this function indeed
solves (1).

2. Consider the PDE

Aux +Buy + Cu = G (5)

where A,B,C,G are non-zero constants (i.e. don’t depend on the arguments
x and y). Solve (5) together with the boundary condition u(x, 0) = sin(x).

In this exercise the boundary condition is given at a particular value of y,
rather than x. So we need to interchange the roles of x0 and y0, i.e. we choose
y0 = 0 and leave x0 as a parameter, to be chosen in Step 3. Step 1: We need to
solve Ẋ(t) = A subject to X(0) = x0 and Ẏ (t) = B subject to Y (0) = 0. Thus
we have X(t) = At+ x0 and Y (t) = Bt. Step 2: We solve U̇(t) = C −Gt, i.e.
U(t) = G

C
+ κe−Ct for some constant κ. The initial condition U(0) = sin (x0)

implies that κ = sin (x0) − G
C

. Step 3: Solving X(t) = x and Y (t) = y for t
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and x0 yields t = y
B

and x0 = x − A
B
y. Step 4: putting things together we

need to check that

u(x, y) =
G

C
+

[
sin

(
x− A

B
y

)
− G

C

]
e−

C
B
y

satisfies (5) and the boundary condition.

3. Solve the PDE

ux + xuy = x2. (6)

subject to the boundary condition u(0, y) = y.

Here we have a(x, y) = 1, b(x, y) = x, c(x, y) = 0, g(x, y) = y and y0 = 0.
Step 1: Solving Ẋ(t) = 1 subject to X(0) = 0 yields X(t) = t. Next we solve
Ẏ (t) = X(t) = t with Y (0) = y0 and obtain Y (t) = t2

2
+ y0. Step 2: We have

to solve U̇(t) = X(t)2 = t2 subject to U(0) = y0. I.e. U(t) = t3

3
+ y0. Step

3: t = X(t) = x and t2

2
+ y0 = Y (t) = y are obtained by setting t = x and

y0 = x2

2
− y. Step 4: check that

u(x, y) =
x3

3
+
x2

2
− y

satisfies (6).

4. Find the general solution to the PDE

∂u

∂x
+
∂u

∂y
= 0. (7)

Here we don’t have a boundary condition so we impose an artificial one: we
note that u(0, y) is a function of y only, which we denote by f(y). Of course,
we will not be able to say anything f unless we are also given a boundary
condition. Let us now apply the method of characteristics: in Step 1 we solve
Ẋ(t) = Ẏ (t) = t subject to X(0) = 0 and Y (0) = y0, i.e. X(t) = t and
Y (t) = t+ y0. Step 2: the ODE U̇(t) = 0 with initial condition U(0) = f (y0)
has the constant function U(t) = f (y0) as its only solution. Step 3: t = x and
y0 = y−x. Step 4: So the general solution to (7) is given by u(x, y) = f(x−y),
for an arbitrary continuously differentiable function f .

5. Recall that, on the way to deriving the heat equation we arrived at

cρ
∂u

∂t
= K0

∂2u

∂x2
. (8)

where c, ρ,K0 were positive constants. Suppose that a function u(t, x) satisfies
(8) together with the boundary condition

−K0
∂u

∂x
(t, 0) = −H [u(t, 0)− uB(t)] (9)
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for some function uB and another constant H > 0. Find constants γ1, γ2 such
that the function ũ defined by ũ(t, x) = u(γ1t, γ2x) satisfies

∂ũ

∂t
=
∂2ũ

∂x2
(10)

∂ũ

∂x
(t, 0) = ũ(t, 0)− ũB(t) (11)

where (of course!) ũB(t) = uB(γ1t). Make sure you justify your answer, i.e
don’t just write down γ1 and γ2 but rather prove that your claim is correct.

Using the chain rule we see that ∂ũ
∂x

(t, 0) = γ1
H
K0

[ũ (t, 0)− ũB(t)] and

∂ũ

∂t
=
γ1
γ22

K0

cρ

∂2u

∂x2
.

So we need to choose γ1 = K0

H
and γ2 = K0√

cρH
.

6. Consider the ODE φ′′(x) = −λφ(x) and recall that if λ < 0 the general solution
is given by

φ(x) = A cosh
(√
−λx

)
+B sinh

(√
−λx

)
. (12)

for any real numbers A,B.

(a) Show that if we additionally impose the boundary condition φ(0) = φ(L) =
0 for some L > 0 then we must have A = B = 0, i.e. the only solution is
the zero function.

Since cosh(0) = 1 and sinh(0) = 0, the condition φ(0) = 0 immediately
yields A = 0. Then φ(L) = 0 is equivalent to B sinh

(√
−λL

)
= 0, but

since L 6= 0 and the hyperbolic sine only vanishes at the origin we must
have B = 0

(b) Show that the same is true for the boundary condition φ′(0) = φ′(L) = 0.
– This follows similarly.

7. Let f : [0, L] −→ R be continuous. Recall that the statement that f is contin-
uous is equivalent to saying that for all ε > 0 there exists δ = δ(ε) > 0 such
that for all x, y ∈ [0, L] with |x− y| < δ we have |f(x)− f(y)| < ε.

(a) Show that if f(x) > 0 for some x > 0 then there exists δ > 0 such that

[x− δ, x+ δ] ⊆ [0, L] and f(y) > f(x)
2

for all y ∈ [x− δ, x+ δ].

Choose ε = f(x)
2

> 0 in the definition of continuity. If δ > 0 is large
enough so that either x − δ < 0 or x + δ > L simply choose a smaller
value for δ until neither of these conditions hold.

(b) Deduce that
∫ x+δ
x−δ f(y) dy > 0.

By monotonicity of the integral
∫ x+δ
x−δ f(y) dy >

∫ x+δ
x−δ

f(x)
2

= δf(x) > 0.

3



(c) Show similarly that if f(x) < 0 for some x ∈ [0, L] then there exists δ > 0

such that [x− δ, x+ δ] ⊆ [0, L] and
∫ x+δ
x−δ f(y) dy < 0.

Here we choose ε = −f(x)
2

to see that for |x− y| < δ we have |f(x)− f(y)| <
−f(x)

2
, i.e. f(y) < f(x)

2
and then proceed analogously to part (b).

(d) Deduce that if
∫ b
a
f(y) dy = 0 for all a, b ∈ [0, L] then f(y) = 0 for all

y ∈ [0, L].

We have shown that if f(x) 6= 0 for some x ∈ [0, L] then there must be

a, b ∈ [0, L] such that
∫ b
a
f(y) dy 6= 0, which is simply the converse of the

claim.
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