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1. Find the general solution to the PDE
Uy + Uy =Y. (1)

subject to the boundary condition u(0,y) = e¥.

So we have a(z,y) = b(z,y) = 1, ¢(z,y) = 0, g(x,y) = y and o = 0. Thus
our characteristic curves are solutions (X (¢),Y (t),U(t)) t
)

X(t) =t, X(0)=0 (2)

Y(t) =t Y(0) = yo (3)

U(t) =Y (t) U0) =e (4)
(

Solving first (2) and (3) yields X (¢) =t and Y (t) = ¢t + yo (Step 1). This
transforms (4) to U(t) = ¢ + yo which, together with the initial condition
yields U(t) = % + yot + ¥ (Step 2). Now we solve, for given z,y € R, the
equations X (t) = xz and Y(t) =y —z, i.e. t =2 and yp = y — x (Step 3).
Putting it all together yields

22

— 4+ (y—z)r+e "

u(x,y) = 9

I leave it up to you to perform Step 4, i.e. check that this function indeed
solves (1).

2. Consider the PDE
Auy + Buy+Cu=G (5)

where A, B,C,G are non-zero constants (i.e. don’t depend on the arguments
x and y). Solve (5) together with the boundary condition u(x,0) = sin(z).

In this exercise the boundary condition is given at a particular value of y,
rather than x. So we need to interchange the roles of zy and gy, i.e. we choose
Yo = 0 and leave xy as a parameter, to be chosen in Step 3. Step 1: We need to
solve X (t) = A subject to X (0) = xy and Y (t) = B subject to Y'(0) = 0. Thus
we have X (t) = At + z0 and Y () = Bt. Step 2: We solve U(t) = C' — Gt, i.e.
U(t) = & + ke~ for some constant x. The initial condition U(0) = sin (zo)
implies that £ = sin (zo) — €. Step 3: Solving X(t) = z and Y (t) = y for ¢
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and z¢ yields t = £ and 29 = o — % y. Step 4: putting things together we

need to check that

G : A G| _¢,
u(az,y)za—i— sin{z—Zy) -4l B

satisfies (5) and the boundary condition.
. Solve the PDE
Uy + U, = 2% (6)

subject to the boundary condition u(0,y) = y.

Here we have a(z,y) = 1, b(z,y) = z, c(z,y) = 0, g(z,y) = y and yo = 0.
Step 1: Solving X (t) = 1 subject to X(0) = 0 yields X (¢) = t. Next we solve
Y (t) = X(t) = t with Y(0) = y and obtain Y (t) = % + yo. Step 2: We have
to solve U(t) = X (t)? = t? subject to U(0) = yo. Le. U(t) = % + yo. Step
3:t=X(t) =z and % +yo = Y (t) = y are obtained by setting ¢ = x and

Yo = % — y. Step 4: check that

satisfies (6).
. Find the general solution to the PDE

ou  Ou

—+ —=0. 7
or Oy (7)
Here we don’t have a boundary condition so we impose an artificial one: we
note that u(0,y) is a function of y only, which we denote by f(y). Of course,
we will not be able to say anything f unless we are also given a boundary

condition. Let us now apply the method of characteristics: in Step 1 we solve
X(t) = Y(t) = t subject to X(0) = 0 and Y (0) = yo, ie. X(t) = t and
Y (t) =t + yo. Step 2: the ODE U(t) = 0 with initial condition U(0) = f (yo)
has the constant function U(t) = f (yo) as its only solution. Step 3: ¢t = x and
Yo = y—x. Step 4: So the general solution to (7) is given by u(z,y) = f(z—vy),

for an arbitrary continuously differentiable function f.

. Recall that, on the way to deriving the heal equation we arrived at

ou 0%u
CPE = KO@- (8)

where ¢, p, Ky were positive constants. Suppose that a function u(t, ) satisfies
(8) together with the boundary condition

—KO%@, 0) = —H [u(t,0) — up(t)] 9)



for some function up and another constant H > 0. Find constants v, vs such
that the function u defined by u(t,z) = u(yt,y2x) satisfies
ou 0*u
ot Ox?
(t,0) = u(t,0) — up(t) (11)

(10)
ou
ox

where (of course!l) ug(t) = ug(mt). Make sure you justify your answer, i.e

don’t just write down vy, and vy but rather prove that your claim is correct.

Using the chain rule we see that 9%(t,0) = ’yl% [u(t,0) —up(t)] and

ou N Kg 82’&

ot A2 cp 0

— Ko _ Ko
So we need to choose 7, = 7 and 7, = NIk

6. Consider the ODE ¢ (x) = —Aé(x) and recall that if A < 0 the general solution

s given by
¢(r) = Acosh (\/—_)\x> + Bsinh (\/—_)\x> : (12)

for any real numbers A, B.

(a) Show that if we additionally impose the boundary condition ¢(0) = ¢(L) =

0 for some L > 0 then we must have A = B =0, i.e. the only solution is
the zero function.
Since cosh(0) = 1 and sinh(0) = 0, the condition ¢(0) = 0 immediately
yields A = 0. Then ¢(L) = 0 is equivalent to Bsinh (v=AL) = 0, but
since L # 0 and the hyperbolic sine only vanishes at the origin we must
have B =0

(b) Show that the same is true for the boundary condition ¢'(0) = ¢'(L) =0
— This follows similarly.

7. Let f:]0,L] — R be continuous. Recall that the statement that f is contin-
uous is equivalent to saying that for all € > 0 there exists 6 = (e) > 0 such
that for all x,y € [0, L] with |x — y| < § we have |f(x) — f(y)| < e.

(a) Show that if f(x) > 0 for some x > 0 then there exists 6 > 0 such that
[t — 0,2+ 0] C [0, L] and f(y) > @ forally € [x —§,x 4 4].

Choose € = @ > 0 in the definition of continuity. If § > 0 is large

enough so that either x — 0 < 0 or x + ¢ > L simply choose a smaller
value for ¢ until neither of these conditions hold.

(b) Deduce that fjjf fly)dy > 0.
By monotonicity of the integral f;f; fly)dy > fo @) — 5f(z) > 0.



(¢) Show similarly that if f(x) < 0 for some x € [0, L] then there exists 6 > 0
such that [x — 0,z + 6] C [0, L] and f;f; fly)dy < 0.
Here we choose € = —@ to see that for |x — y| < d we have |f(z) — f(y)| <

—@, iLe. f(y) < @ and then proceed analogously to part (b).

(d) Deduce that if fabf(y) dy = 0 for all a,b € [0,L] then f(y) = 0 for all
y € [0, L].
We have shown that if f(x) # 0 for some = € [0, L] then there must be

a,b € [0, L] such that f; f(y) dy # 0, which is simply the converse of the
claim.



