Problem Sheet 3

APM 384

Autumn 2014

1. Using the method of separation of variables or otherwise, solve the BVP

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { if } 0<x<L \text { and } 0<y<H \tag{1}\\
u(0, y)=u(x, 0)=u(x, H)=0 \tag{2}\\
u(L, y)=g_{2}(y) . \tag{3}
\end{gather*}
$$

2. Using the method of separation of variables or otherwise, solve the BVP

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { if } 0<x<L \text { and } 0<y<H \tag{4}\\
u(0, y)=u(x, 0)=u(L, y)=0 \tag{5}\\
u(x, 0)=f_{1}(x) . \tag{6}
\end{gather*}
$$

These two questions can be solved analogously to the other cases treated in the book and lectures respectively.
3. Show that $|z|^{2}=z \bar{z}$ and $\Re(z)=\frac{1}{2}(z+\bar{z})$ and $\Im(z)=\frac{1}{2 i}(z-\bar{z})$ for all $z \in \mathbb{C}$. Let us write $z=x+i y$ where $x, y \in \mathbb{R}$. Then

$$
z \bar{z}=(x+i y)(x-i y)=x^{2}-(i y)^{2}=x^{2}+y^{2}=|z|
$$

and further

$$
\begin{aligned}
\frac{1}{2}(z+\bar{z}) & =\frac{1}{2}(x+i y+x-i y)=\frac{2 x}{2}=\Re(z) \\
\frac{1}{2 i}(z-\bar{z}) & =\frac{1}{2 i}(x+i y-(x-i y))=\frac{2 i y}{2 i}=\Im(z)
\end{aligned}
$$

4. Let D be a domain in \mathbb{C} and let $f: D \longrightarrow \mathbb{C}$ be complex differentiable. For $x, y \in \mathbb{R}$ define $u(x, y)=\Re f(x+i y)$ and $v(x, y)=\Im f(x+i y)$. In this exercise we will show that u and v are harmonic in D.
(a) Using the Cauchy-Riemann equations show that $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}$.
(b) Find a similar expression for $\frac{\partial^{2} u}{\partial y^{2}}$ and deduce that $\Delta u(x, y)=0$ for all $(x, y) \in D$.
(c) Show similarly that v is harmonic in D.

See problem sheet 4 .
5. In this question we obtain Laplace's equation in polar co-ordinates. Suppose that $u(x, y)$ satisfies $\Delta u=0$ and $v(r, \theta)=u(r \cos (\theta), r \sin (\theta))$. Show that

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}=0
$$

This is a straightforward calculation.
6. (a) Check that the following three functions are harmonic:
i. $u(x, y)=x+1$
ii. $u(x, y)=y(x-1)$
iii. $u(x, y)=x y$.

This is a straightforward calculation. Alternatively observe that each of these is the real or imaginary part of a complex differentiable function.
For example in i. we have $u(x, y)=\Re f(x+i y)$ where $f(z)=z+1$.
(b) For each function u from part (a) check directly that the maximum principle holds, i.e. show that

$$
u(0,0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(\cos (t), \sin (t)) d t
$$

Another straightforward computation.
7. Prove that $e^{i \pi}+1=0$.

Take $y=\pi$ in the equation $e^{i y}=\cos (y)+i \sin (y)$.

