Problem Sheet 5

APM 384

Autumn 2014

On this sheet, all questions are assessed. Exercises 1-2 are worth 5 points, exercises 3-4 are worth 10 points. Solutions are due in the lecture on **Monday 10 November**.

1. Consider the partial differential equation

$$\rho(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \alpha u(t, x) + c\rho(x)\frac{\partial u}{\partial t}$$
 (1)

- (a) Apply separation of variables, i.e. suppose that $u(t,x) = h(t)\phi(x)$ and find ODEs for h(t) and $\phi(x)$
- (b) Show that the ODE for ϕ you have found is a Sturm-Liouville problem
- (a) Separation of variables yields

$$\frac{h''(t) - ch'(t)}{h(t)} = \frac{\phi''(x)}{\rho(x)\phi(x)} + \alpha = \lambda$$

which leads to the ODEs

$$h''(t) - ch'(t) = \lambda h(t)$$

$$\phi''(x) + \alpha \phi(x) = \lambda \rho(x)\phi(x).$$

- (b) The latter is in SL form with p(x) = 1, $q(x) = \alpha$ and $\sigma = \rho$.
- 2. Show that the following ODEs can be written as Sturm-Liouville problems (i.e. find the corresponding functions p, q, σ)

(a)
$$x\phi''(x) + \phi'(x) + \lambda x\phi(x) = 0$$

 $x\phi''(x) + \phi'(x) = \frac{d}{dx}(x\phi'(x))$, so p(x) = x, q(x) = 0 and $\sigma(x) = x$. (In particular we need a > 0.)

(b)
$$(1-x^2)\phi''(x) - 2x\phi'(x) = (\lambda - x)\phi(x)$$

$$p(x) = 1 - x^2$$
, $q(x) = x$, $\sigma(x) = 1$.

(c)
$$\sin(x)\phi''(x) + \cos(x)\phi'(x) + \lambda\phi(x) = 0.$$

 $p(x) = \sin(x), q(x) = 0, \sigma(x) = 1$

3. Compute the Raleigh coefficient

$$\frac{\left[-p\phi_n(x)\phi'_n(x)\right]_a^b + \int_a^b p(x) \left[(\phi'_n(x))^2 - q(x)\phi_n^2(x)\right] dx}{\int_a^b \phi_n^2(x)\sigma(x) dx}$$
(2)

for the special case p(x) = 1, q(x) = 0 and $\sigma(x) = 1$ and

(a)
$$\beta_1 = \beta_3 = 1, \ \beta_2 = \beta_4 = 0$$

(b)
$$\beta_1 = \beta_3 = 0, \ \beta_2 = \beta_4 = 1.$$

As mentioned in the lectures, you may take a=0, in which case a direct computation yields $\lambda_n = \left(\frac{n\pi}{b}\right)^2$. Otherwise a simple shift deals with the general a case.

4. An operator L acting on a vector space of functions is said to be self-adjoint if

$$\int_{a}^{b} v(x) L(u)(x) dx = \int_{a}^{b} u(x) L(v)(x) dx$$
 (3)

for all continuously differentiable functions u and v. State whether the following operators are self-adjoint, acting on the space $C^3[a,b]$ of three times continuously differentiable functions without any boundary condition. Justify your answers:

(a)
$$L(f) = f'' + 3f'''$$

(b)
$$L(f) = f^2$$

(c)
$$L(f) = f$$

- (a) If we had some homogeneous boundary conditions the operator would be self-adjoint. This way, it is not, because of the boundary terms in the integration by parts formula.
- (b) This operator is not self-adjoint: consider, for example, $u(x) = x^2$ and $v(x) = \sin(x)$.
- (c) This operator is clearly self-adjoint.