Problem Sheet 2

APM 384

September 21, 2014

On this sheet, questions 1 through 6 are assessed. Please write up your answers, *staple the sheets together* and hand them in to your TA in your tutorial session, either on Thursday **September 25** or Friday **September 26**.

1. Find the general solution to the PDE

$$u_x + u_y = y. \tag{1}$$

subject to the boundary condition $u(0, y) = e^y$.

2. Consider the PDE

$$Au_x + Bu_y + Cu = G \tag{2}$$

where A, B, C, G are non-zero constants (i.e. don't depend on the arguments x and y). Solve (2) together with the boundary condition $u(x, 0) = \sin(x)$.

3. Solve the PDE

$$u_x + xu_y = x^2. aga{3}$$

subject to the boundary condition u(0, y) = y.

4. Find the general solution to the PDE

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0. \tag{4}$$

5. Recall that, on the way to deriving the heat equation we arrived at

$$c\rho \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2}.$$
(5)

where c, ρ, K_0 were positive constants. Suppose that a function u(t, x) satisfies (5) together with the boundary condition

$$-K_0 \frac{\partial u}{\partial x}(t,0) = -H \left[u(t,0) - u_B(t) \right]$$
(6)

for some function u_B and another constant H > 0. Find constants γ_1, γ_2 such that the function \tilde{u} defined by $\tilde{u}(t, x) = u(\gamma_1 t, \gamma_2 x)$ satisfies

$$\frac{\partial \widetilde{u}}{\partial t} = \frac{\partial^2 \widetilde{u}}{\partial x^2} \tag{7}$$

$$\frac{\partial \widetilde{u}}{\partial x}(t,0) = \widetilde{u}(t,0) - \widetilde{u}_B(t)$$
(8)

where (of course!) $\tilde{u}_B(t) = u_B(\gamma_1 t)$. Make sure you justify your answer, i.e don't just write down γ_1 and γ_2 but rather prove that your claim is correct.

6. Consider the ODE $\phi''(x) = -\lambda \phi(x)$ and recall that if $\lambda < 0$ the general solution is given by

$$\phi(x) = A \cosh\left(\sqrt{-\lambda}x\right) + B \sinh\left(\sqrt{-\lambda}x\right). \tag{9}$$

for any real numbers A, B.

- (a) Show that if we additionally impose the boundary condition $\phi(0) = \phi(L) = 0$ for some L > 0 then we must have A = B = 0, i.e. the only solution is the zero function.
- (b) Show that the same is true for the boundary condition $\phi'(0) = \phi'(L) = 0$.
- 7. (not assessed) Let $f: [0, L] \longrightarrow \mathbb{R}$ be continuous. Recall that the statement that f is continuous is equivalent to saying that for all $\epsilon > 0$ there exists $\delta = \delta(\epsilon) > 0$ such that for all $x, y \in [0, L]$ with $|x y| < \delta$ we have $|f(x) f(y)| < \epsilon$.
 - (a) Show that if f(x) > 0 for some x > 0 then there exists $\delta > 0$ such that $[x \delta, x + \delta] \subseteq [0, L]$ and $f(y) > \frac{f(x)}{2}$ for all $y \in [x \delta, x + \delta]$.
 - (b) Deduce that $\int_{x-\delta}^{x+\delta} f(y) \, dy > 0.$
 - (c) Show similarly that if f(x) < 0 for some $x \in [0, L]$ then there exists $\delta > 0$ such that $[x \delta, x + \delta] \subseteq [0, L]$ and $\int_{x-\delta}^{x+\delta} f(y) \, dy < 0$.
 - (d) Deduce that if $\int_a^b f(y) dy = 0$ for all $a, b \in [0, L]$ then f(y) = 0 for all $y \in [0, L]$.