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1 Complex differentiation

1.1 The complex numbers

Denote by that C = {x + iy : x, y ∈ R} the field of complex numbers. Here i is the
imaginary unit and satisfies i2 = −1. Together with commutativity, associativity
and distributivity of addition and multiplication this allows us to add, subtract,
multiply and divide any two complex numbers: if x1, x2, y1, y2 ∈ R,

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) (1.1)

(x1 + iy1)− (x2 + iy2) = (x1 − x2) + i(y1 − y2) (1.2)

(x1 + iy1) · (x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1) (1.3)

(x1 + iy1)

(x2 + iy2)
=
x1x2 + y1y2
x22 + y22

+ i
x2y1 − x1y2
x22 + y22

. (1.4)

A number of the form iy where y ∈ R is said to be purely imaginary. If x, y ∈ R
then the real and imaginary parts of z = x + iy are x and y respectively. This is
often denoted x = <(z) and y = =(z). We also denote the complex conjugate of z,
namely x− iy by z. Note that

<(z) =
1

2
(z + z) (1.5)

=(z) =
1

2i
(z − z) . (1.6)

We can also graphically represent C in the Cartesian plane, denoting x+ iy by the
point (x, y). This bijection between R2 and C will be very useful in the following.

1.2 Complex functions

If f : C −→ C is any function, i.e. f(z) ∈ C for all z ∈ C we can view f as either
a single function of one complex variable, or as two functions of two real variables,
via the real and imaginary part. We will often denote the latter by u, v, writing

u(x, y) = <f(x+ iy) and v(x, y) = =f(x+ iy). (1.7)
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It is natural to ask about differentiability of complex functions. Since we can divide
by complex numbers we can take derivatives of functions with complex arguments,
by taking the same definitions as for functions of real variables:

Definition 1.1. A function f : C −→ C is said to be complex differentiable at z ∈ C
if the limit, as h→ 0 and h ∈ C of the difference quotient,

f(z + h)− f(z)

h
(1.8)

exists. If it exists we denote it by f ′(z)

Notice that we have to let h → 0 through the complex numbers, so we have to be
able to approach zero from any direction in the plane. From this fact it follows
that complex differentiable functions have very special properties. In particular the
real and imaginary part of a complex differentiable function satisfy nice differential
equations.

Theorem 1.2 (Cauchy–Riemann equations). If f : C −→ C is complex differen-
tiable and u(x, y) and v(x, y) are defined by (1.7) then

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (1.9)

Proof. Because we can allow h → 0 from any direction, we can in particular let h
be real. Thus

f ′(z) = lim
h→0
h∈R

f(z + h)− f(z)

h
= lim

h→0
h∈R

[
u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h

]
=
∂u

∂x
+ i

∂v

∂x
. (1.10)

Similarly, we can let h be purely imaginary, i.e. we write h = ik and let k → 0
throught the reals. Then

f ′(z) = lim
k→0
h∈R

f(z + ik)− f(z)

ik
= lim

h→0
h∈R

[
u(x, y + k)− u(x, y)

ik
+ i

v(x+ h, y)− v(x, y)

ik

]
Since 1

i
= −i we obtain

f ′(z) = −iuy + vy. (1.11)

Since (1.10) and (1.11) refer to the same quantity and two complex numbers are
equal if and only if their real and imaginary parts are equal, (1.9) follow.

Example 1.3. 1. We saw in lectures that the function given by f(z) = z is
complex differentiable. As an exercise you can check that this is also true for
f(z) = zn where n ∈ N.

2. Since h
h

does not have a limit as h → 0 and h ∈ C, the function given by
f(z) = z is not complex differentiable.
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Example 1.4. Another important example of a complex differentiable function is
the exponential function, defined, for z ∈ C, by

exp(z) =
∞∑
n=0

zn

n!
.

We will take for granted that this series converges for every z ∈ C, but we will
also see that it is complex differentiable. A crucial property is that exp(z1 + z2) =
exp(z1) exp(z2):

exp(z1 + z2) =
∞∑
n=0

(z1 + z2)
n

n!
=
∞∑
n=0

1

n!

n∑
k=0

n!

k!(n− k)!
zk1z

n−k
2

=
∞∑
n=0

n∑
k=0

zk1
k!

zn−k2

(n− k)!
.

Interchanging the two summations (which is justifiable) and introducing the change
of variables m = n− k we get

exp(z1 + z2) =
∞∑
k=0

∞∑
n=k

zk1
k!

zn−k2

(n− k)!
=
∞∑
k=0

zk1
k!

∞∑
m=0

zm2
m!

= exp(z1) exp(z2).

This allows us to prove that exp is complex differentiable:

exp(z + h)− exp(z)

h
=

exp(h)− 1

h
exp(z) =

[
1

h

∞∑
n=1

hn

n!

]
exp(z)

=

[
1 +

∞∑
n=2

hn−1

n!

]
exp(z)

All the terms in the remaining series in the bracket on the right-hand side are of
the form hn−1n! for n ≥ 2, hence they converge to zero as h → 0. So the complex
exponential function is differentiable and has itself as the derivative (just as for the
real exponential function).

By comparing the series definition for exp with the Taylor expansions for sin and
cos and using the fact that i2n = (−1)n and i2n+1 = (−1)ni we obtain the following
equation, for x ∈ R

eiy = cos(y) + i sin(y)

and so, more generally,

ex+iy = ex (cos(y) + i sin(y)) .

Noting that |eiy| =
√

cos2(y) + sin2(y) = 1, we can write ex+iy as the product of its
magnitude part ex, which is a positive number and its direction part eiy, which lies
on the unit circle (its normal to the circle makes angle y with the positive x-axis).

It also follows that exp is periodic, with (complex) period 2πi.
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An important result in complex analysis is Cauchy’s theorem, which tells us that
the values of a complex differentiable function at a point are determined by those
on a circle around the point. For z ∈ C and r > 0 denote by B(z, r) the disk around
z or radius r and by ∂B(z, r) the circle around z with radius r:

B(z, r) = {z ∈ C : |z| < r} and ∂B(z, r) = {z ∈ C : |z| = r} .

Theorem 1.5 (Cauchy’s theorem). Let f be complex differentiable and z ∈ C.
Then, for any r > 0,

f(z) =
1

2πi

∫
∂B(0,r)

f(w)

z − w
dw.

One way of proving this theorem is by applying the mean value theorem about
harmonic functions, see below.

2 Harmonic Functions

Recall that a function u is said to be harmonic in a domain D if it satisfies Laplace’s
equation there, i.e. ∆u(x) = 0 for all x ∈ D. A surprising fact is that the real and
imaginary parts of complex differentiable functions are harmonic:

Theorem 2.1. Let f : C −→ C be complex differentiable and let u, v be defined as
in (1.7) (i.e. u and v are the real and imaginary parts of f respectively). Then u
and v are harmonic.

Proof. We will show this for u and leave the proof for v as an exercise. By the
Cauchy–Riemann equations,

∆u = uxx + uyy =
∂

∂x
(ux) +

∂

∂y
(uy)

=
∂

∂x
(vy)−

∂

∂y
(vx) = vxy − vyx = 0.

An important property of a harmonic function u is the fact that we can obtain the
value of u(x, y) by taking the average value of u on a circle around (x, y). This is
referred to as the mean-value property:

Theorem 2.2 (Mean-value theorem). Let u be harmonic in a domain D. If (x, y) ∈
D then for any r > 0 such that B((x, y), r) ⊆ D we have

u(x, y) =
1

2π

∫ 2π

0

u(x+ r cos(t), y + r sin(t)) dt. (2.1)

Remark 2.3. By using the identification between C and R2 outlined above and the
fact that eit = cos(t) + i sin(t) for all t ∈ R we could also write (2.1) as follows: for
any z ∈ D such that B(z, r) ⊆ D,

u(z) =
1

2π

∫
∂B(z,r)

u(z + eit)dt. (2.2)
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Using this together with the fact that the real and imaginary parts of a complex
differentiable function are harmonic this suggests an how to prove Cauchy’s theorem,
Theorem 1.5. But we will not go into details here.

Proof of Theorem 2.2. Let φ(r) denote the right-hand side. We know that φ(0)
equals the left-hand side. So if we could show that φ(r) is constant in r (i.e. it
does not change if r does) then we would have the result. We know that a function
is constant if and only if its derivative is zero, so we need to show that φ′(r) = 0.
Interchanging differentiation with the integral,

φ′(r) =
1

2π

∫ 2π

0

∂

∂r
u(x+ r cos(t), y + r sin(t))dt =

1

2π

∫ 2π

0

(
cos(t)
sin(t)

)
· ∇u dt

=
1

2π

∫
∂B(z,r)

v · ∇u dt

where v =

(
cos(t)
sin(t)

)
is the outward pointing unit normal to our integration curve

∂B(z, r), hence by Green’s theorem

φ; (r) =

∫
B(z,r)

∆u(x, y)dxdy = 0

because u is harmonic. Thus φ is constant and hence φ(r) = φ(0) = u(x, y) as
required.

Let D be a domain in R2, i.e. connected (any two points in D can be connected
by a curve in D) and open (D does not contain any of its boundary points). We
denote the set of boundary points of D by ∂D and the closure of D, i.e. the union
of D with its boundary points, by D. Thus D = D ∪ ∂D.

Corollary 2.3 (Maximum principle). Suppose that u is continuous on D and har-
monic in D. Then u has its maxima and minima on ∂D. In other words, if u has
a maximum or minimum at (x, y) ∈ D then (x, y) ∈ ∂D.

Proof. This follows from the Mean Value Theorem: if (x, y) ∈ D then there exists
r > 0 such that B((x, y), r) ⊆ D. But then u(x, y) is the average of the values of
u(x+r cos(t), y+r sin(t)), which cannot be the case if u has a maximum or minimum
at (x, y). Thus (x, y) must lie on the boundary.
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