
Suggested Exercises for the Midterm

APM 384: PDEs

Autumn 2014

1 Questions

Below are some suggested problems you may want to attempt in preparation for the
midterm. There are many excellent problems in Haberman for which you can find
solutions in the back of the book: those are marked with an asterisk. Of course, the
best exercises are those you can find on the various problem sheets. So you should
certainly make sure that you understand the solutions to those.

Since you haven’t had any exercises on Fourier Series yet you may want to start
with exercises 5 onwards going back to exercises 1 to 4.

The answers to these exercises can be found at the end of this sheet. However,
there is little to be gained by looking at the answers before seriously attempting to
solve the problems by yourself.

1. The method of characteristics: In class, the exercises and handouts we
saw many examples of how to apply the method of characteristics to fist-order
linear PDEs in two variables. Try to extend this method to the homogeneous
case in three dimensions: i.e. try to solve the PDE

a(x, y, z)ux + b(x, y, z)uy + c(x, y, z)uz + d(x, y, z)u(x, y, z) = 0 (1)

subject to the boundary condition u(x, y, 0) = f(x, y).

2. Separation of Variables:

(a) Whenever we solved an eigenvalue problem we chose a particular sign for
the eigenvalues. Check that we did not lose any generality by showing
that there is no eigenvalue for the other sign.

(b) Do the starred exercises in section 2.5 of Haberman.

3. Complex differentiable and harmonic functions:

(a) Show that the following functions are harmonic:

u1(x, y) = xy

u2(x, y) = ex sin(y).
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(b) Check that the mean value theorem holds by computing∫ 2π

0

u1(x+ cos(θ), y + sin(θ)) dθ

(c) Find minima and maxima for u1 on the unit disc {(x, y) ∈ R2 : x2 +
y2 ≤ 1}. Check the maximum principle by showing that they lie on the
boundary.

4. Fourier Series: Show that

(a) the product of two even functions is even

(b) the product of two odd functions is even

(c) the product of an even and an odd function is odd

(d) the sum of two even functions is even

(e) the sum of two odd functions is odd

Is the sum of an even and an odd function even or odd?

5. (a) Find the Fourier series for the following functions fj : [−π, π] −→ R
i. f1(x) = x3

ii. f2(x) = cos(x)

iii. f3(x) = ex

(b) For the examples above check that the method of complex Fourier series
works by finding coefficients cn such that fj(x) =

∑
n∈Z cne

inπx
L .

6. Recall that product-form solutions to the heat equation on [0, L], with zero
temperature prescribed on the boundaries, are given by

uB,n(t, x) = B sin
(nπx
L

)
e−(nπL )

2
t

for B ∈ R and n ∈ {1, 2, . . .}. Use this, and superposition of solutions, to
solve the heat equation with zero temperature on the boundary and initial
heat profile given by u(0, x) = f(x) where

(a) f(x) = x(x− L)

(b) f(x) = sin
(
3πx
L

)
(c) f(x) = cos(πx

L
)− cos

(
3πx
L

)
7. Recall that product-form solutions to the heat equation on [0, L], with perfectly

insulated ends, are given by

uA,n(t, x) = A cos
(nπx
L

)
e−(nπL )

2
t

for A ∈ R and n ∈ {0, 1, 2, . . .}. Use this, and superposition of solutions, to
solve the heat equation with insulated ends and initial heat profile given by
u(0, x) = f(x) where
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(a) f(x) = 2

(b) f(x) = x2(2x− 3L)

(c) f(x) = 2 cos(3πx
L

)− cos
(
5πx
L

)
8. In the lectures we saw that if f : [−L,L] −→ R is continuously differentiable

then we may write f(x) =
∑

m∈Z cme
imπx
L . Show that

cm =
1

2L

∫ L

−L
f(x)e−

imπx
L (2)

for all m ∈ Z.

2 Answers

1. Suppose u is a solution to the problem and that X(t), Y (t) and Z(t) satisfy
the coupled ordinary differential equations

Ẋ(t) = a(X(t), Y (t), Z(t)) X(0) = x0 (3)

Ẏ (t) = b(X(t), Y (t), Z(t)) Y (0) = y0 (4)

Ż(t) = c(X(t), Y (t), Z(t)) Z(0) = 0 (5)

where x0 and y0 are two parameters, to be chosen later. Then, by the chain rule
and then by the fact that u is a solution, the function U(t) = u(X(t), Y (t), Z(t))
satisfies

U̇(t) = Ẋ(t)
∂u

∂x
+ Ẏ (t)

∂u

∂y
+ Ż(t)

∂u

∂z

= a(X(t), Y (t), Z(t))
∂u

∂x
+ b(X(t), Y (t), Z(t))

∂u

∂y
+ c(X(t), Y (t), Z(t))

∂u

∂z

= −d(X(t), Y (t), Z(t))u(X(t), Y (t), Z(t)) = −d(X(t), Y (t), Z(t))U(t)

U(0) = u(X(0), Y (0), Z(0)) = u (x0, y0, 0) = f (x0, y0) .

So in three dimensions we first solve the system (3), (4), (5), then plug in
the functions X(t), Y (t), Z(t) into the ODE U̇(t) = −d(X(t), Y (t), Z(t))U(t),
which we solve together with the initial condition U(0) = fx0, y0.

For given (x, y, z) it now remains to choose x0, y0 and t such that X(t) = x,
Y (t) = y and Z(t) = z. With these choices, U(t) is then the value of our
solution u at the point (x, y, z).

2. See Haberman.

3. (a) Differentiating u1 twice with respect to either variable gives zero, so the
function is harmonic. For u2 you have two choices. You can either com-
pute directly or use the connection to complex analysis: the real and
imaginary parts of a complex differentiable function are harmonic. Since
u2 is the imaginary part of f(z) = ez it is harmonic.
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(b) This is a straightforward computation. For example:∫ 2π

0

u1(x+ cos(θ), y + sin(θ)) dθ =

∫ 2π

0

[(x+ cos(θ))− (y + sin(θ))] dθ

= 2π(x− y) +

∫ 2π

0

cos(θ) dθ −
∫ 2π

0

sin(θ) dθ

= 2π(x− y) = 2πu(x, y).

(c) u1 is maximised when x = 1 and y = 0 and minimised when x = −1
and y = 0. Thus, the maxima lie on the boundary. Now the maximum
of ex cos(y) on the unit disc is clearly at (x, y) = (1, 0), since the func-
tion ex is increasing everywhere, and cos(y) is symmetric about zero and
decreasing on the interval [0, 1]. Similarly it is easy to verify that the
minimum is at (x, y) = (−1, 0).

4. (a) If f, g are even then (fg)(x) = f(−x)g(−x) = f(x)g(x) = (fg)(x), so fg
is even.

(b) If f, g are odd then (fg)(−x) = f(−x)g(−x) = (−f(x))(−g(x)) =
(fg)(x), so fg is even.

(c) If f is even and g is odd then (fg)(−x) = f(−x)g(−x) = f(x)(−g(x)) =
−(fg)(x), so fg is odd.

(d) If f and g are even then (f + g)(−x) = f(−x) + g(−x) = f(x) + g(x) =
(f + g)(x), so f + g is even.

(e) If f and g are odd then (f + g)(−x) = f(−x) + g(−x) = −f(x)− g(x) =
−(f + g)(x), so f + g is even.

In general the sum of an even and an odd function is neither even nor odd.
Take e.g. f(x) = x (odd) and g(x) = x2 (even), then their sum is neither!

5. (a) Since f(x) = x3 defines an odd function it follows immediately that
the cosine coefficients satisfy An(f) = 0. Integrating by parts several
times we see that an antiderivative for sin(x)x3 is given by the function
x(6−n2x2)

n3 cos(nπx) + 3(n2x2−2)
n4 sin(nπx). Thus

Bn(f) =
1

π

[
x(6− n2x2)

n3
cos(nπx) +

3(n2x2 − 2)

n4
sin(nπx)

]π
x=−π

=
2π(n2π2 − 6)

πn3
(−1)n.

(b) Clearly A1(f) = 1, An(f) = 0 for n 6= 1 and Bn(f) = 0 for all n.

(c) We have

A0(f) =
1

2π

∫ π

−π
ex dx =

1

2π
[ex]πx=−π =

eπ

π
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and, if n ≥ 1,

An(f) =

∫ π

−π
cos(nx) ex dx =

[
ex

1 + n2
(cos(nx) + n sin(nx))

]π
x=−π

=
2eπ

1 + n2
(−1)n.

Finally, for n ≥ 1 we also have

Bn(f) =

∫ π

−π
sin(nx) ex dx =

[
ex

1 + n2
(sin(nx)− n cos(nx))

]π
x=−π

=
2neπ

π + πn2
(−1)n−1.

6. By superposition of solutions we know that for any real coefficients bn the
function

u(t, x) =
∞∑
n=1

bn sin
(nπx
L

)
e−(nπL )

2
t

satisfies the PDE and boundary conditions. Hence our task is to find the right
coefficients bn for u to satisfy the initial condition. Since e0 = 1,

u(0, x) =
∞∑
n=1

bn sin
(nπx
L

)
it follows by the Fourier theorem that we need to choose bn = Bn(f), i.e. the
nth sine coefficient of the Fourier series of f . I leave you to calculate these for
the three initial conditions given.

7. Similar to the question above, except this time we need the cosine coefficients.

8. There are different ways to answer the question; here is one with relatively
little computations to do. We already know that the function can be written
as such a series. Using this knowledge we only need to compute∫ L

−L
e
imπx
L e

inπx
L dx =

∫ L

−L
e
i(m+n)πx

L dx

=

{
2L if m+ n = 0

0 otherwise.

Therefore, interchanging infinite summation with integrals without justifica-
tion as usual, ∫ L

−L
f(x)e

imπx
L dx =

∑
n∈Z

cn

∫ L

−L
e
imπx
L e

inπx
L dx

= 2Lcm

from which, of course, the desired identity follows.
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