Topics in Probability: Problem Sheet 1

Janosch Ortmann

September 14, 2013

On this first sheet no exercises are assessed. You are encouraged to work through all problems. Unless otherwise specified, $(\Omega, \mathcal{F}, \mathbb{P})$ is a general probability space.

1. Show that for any collection $A_n \in \mathcal{F}, n \in \mathbb{N}$, of measurable sets in Ω there exists disjoint $B_n \in \mathcal{F}, n \in \mathbb{N}$, such that $B_n \subseteq A_n$ for all $n \in \mathbb{N}$ and

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n.$$

- 2. A set \mathcal{A} of subsets of Ω is called an *algebra* if it contains the empty set and $A, B \in \mathcal{A}$ imply $\Omega \setminus A \in \mathcal{A}$ and $A \cup B \in \mathcal{A}$. (Thus, we have removed the countable part of the union condition.)
 - (a) Let $\Omega = \mathbb{N}$ and let \mathcal{A} be the *cofinite algebra* on \mathbb{N} , i.e.

$$\mathcal{A} = \{ S \subseteq \mathbb{N} : \text{ either } S \text{ or } \mathbb{N} \setminus S \text{ is finite} \}.$$

Show that \mathcal{A} is indeed an algebra, but not a σ -algebra.

(b) For any set Ω , show that

$$\mathcal{B} = \{ A \subseteq X : \text{ either } A \text{ or } \Omega \setminus A \text{ is countable} \}$$

is a σ -algebra on Ω .

- (c) Show that $\mathcal{B} = 2^{\Omega}$ if Ω is countable.
- 3. Prove Proposition 1.7 from the handout.
- 4. Show that $X: \Omega_1 \longrightarrow \Omega_2$ is $\mathcal{F}_1/\mathcal{F}_2$ measurable if and only if $\sigma(X)$ is contained in \mathcal{F}_1 .
- 5. Prove Proposition 1.9 from the handout.
- 6. Prove that any continuous function between two topological spaces is measurable with respect to their Borel σ -algebras.
- 7. Let $(X_n, n \in \mathbb{N})$ be non-negative random variables (i.e. measurable maps $X_n \colon \Omega \longrightarrow [0, \infty)$). Show that the following are $[0, \infty]$ valued random variables:

- i) $\sup_{n\in\mathbb{N}} X_n$,
- ii) $\inf_{n \in \mathbb{N}} X_n$
- iii) $\limsup_{n \in \mathbb{N}} X_n$
- iv) $\liminf_{n\in\mathbb{N}} X_n$
- 8. Show that if $X_n : \Omega_1 \longrightarrow \Omega_2$ is $\mathcal{F}_1/\mathcal{F}_2$ -measurable for each $n \in \mathbb{N}$ and $\mathcal{F}_2 = \sigma(\mathcal{A})$ then

$$\sigma(X_n : n \in \mathbb{N}) = \sigma \left\{ X_n^{-1}(A) : n \in \mathbb{N}, A \in \mathcal{A} \right\}.$$

- 9. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be continous at all but countably many points. Show that f is Borel measurable.
- 10. Prove Proposition 2.3 from the handout.
- 11. Prove the inclusion-exclusion formula: for $A_1, \ldots, A_n \in \mathcal{F}$,

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} \mathbb{P}(A_{k}) - \sum_{k < l} \mathbb{P}\left(A_{k} \cap A_{l}\right) + \sum_{j < k < l} \mathbb{P}\left(A_{j} \cap A_{k} \cap A_{l}\right) - \dots + (-1)^{n-1} \mathbb{P}\left(\bigcap_{j=1}^{n} A_{j}\right).$$

(Hint: Note that $\bigcup_k A_k = \Omega \setminus \bigcap_{k=1}^n (\Omega \setminus A_k)$.)