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On this sheet no exercises are assessed but you are encouraged hand in your solutions
to me in class on Monday, September 30. Unless otherwise specified, (Ω,F ,P) is a
general probability space.

1. Let X be a random variable with distribution function FX . Show that

i) P(X < x) = limε↓0 F (x− ε)
ii) P(X = x) = F (x)− limε↓0 F (x− ε).

2. Let X be a random variable with density function fx and φ : R −→ R such
that φ(X) ∈ L1(Ω,F ,P). Show that

E [φ(X)] =

∫
R
φ(x)f(x)dx.

3. i) Let X have standard normal distribution, i.e. its distribution function is
given by

fX(x) =
1

2π
e−x

2/2

and recall from lectures that E(X) = 0. Show that E[X2] = 1, so that
var(X) = 1.

ii) Let Y = aX + b. What are E(Y ), var(Y ) and the distribution function of
Y ?

4. In this exercise you will prove an extension of the Chebyshev inequality.

i) Let φ : R −→ [0,∞) be measurable and denote, for A ∈ B, the infimum
of φ over A by IA(φ). Show that

P(X−1(A)) ≤ E[φ(X)]

IA(φ)

ii) Deduce that, for a > 0,

P(−a < X < a) ≤ E |X|
a
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5. Let Xn ∈ L1(Ω,F ,P) such that
∑∞

n=1 E(Xn) <∞. Prove that

E

[
∞∑
n=1

]
=
∞∑
n=1

E(Xn).

6. Let Y ∈ L2(Ω,F ,P). Show that E[Y 2]P(Y > 0) ≥ (EY )2.

7. Let X be a positive integrable random variable. Show that the mapping
µ : F −→ R given by

µ(A) = E(X1A) =

∫
A

X(ω)P(dω)

defines a probability measure on (Ω,F ,P).

8. Analogously to L1 and L2 denote by Lk(Ω,F ,P) the space of random variables
X such that |X|k is integrable. Show that Ln(Ω,F ,P) ⊆ Lk(Ω,F ,P) whenever
k ≤ n.

9. Recall the following example from lectures: (Ω,F ,P) = ([0, 1],B[0, 1], µ) where
µ is Lebesgue measure and Xn = n1[0,1/n]. Why do none of our limit theorems
apply?
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