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This is the second exercise sheet that will contribute to your final mark. Please
hand in solutions before the lecture on Wednesday October 30. Unless otherwise
specified (Ω,F ,P) is a generic probability space. Each question is worth 20 marks.

1. Show that Xn −→ X a.s. if and only if for every ε > 0

P {|Xn −X| ≥ ε i.o.} = 0. (1)

2. Let An ∈ F , n ∈ N. Show that

(a) lim infn→∞An ⊆ lim supn→∞An

(b) (lim supn→∞An)c = lim infn→∞A
c
n

(c)

P
(

lim sup
n→∞

An

)
≥ lim sup

n→∞
P (An) ≥ lim inf

n→∞
P (An) ≥ P

(
lim inf
n→∞

An

)
(2)

3. Let Xn be random variables such that 0 ≤ Xn ≤ Xn+1 for all n ∈ N

(a) Let further cn be real numbers such that 0 ≤ cn ≤ cn+1 for all n ∈ N.
Show that if there exists a sequence (nk : k ∈ N) such that

lim
k→∞

Xnk

cnk
−→ 1 (3)

almost surely, as n −→∞, then in fact

lim
n→∞

Xn

cn
−→ 1. (4)

(b) Deduce that if additionally n−β

a
EXn −→ 1 for a, β > 0 and var(Xn) ≤

Cnγ for B > 0 and γ < 2β then n−βXn −→ a a.s.

4. Let X be a random variable.

(a) Suppose that G(x) =
∫ x
−∞ g(y) dy for g : R −→ [0,∞). Show that

E [G(X)] =

∫ ∞
−∞

g(y)P(X > y) dy. (5)

1



(b) Deduce a bound on EeaX in terms of P (X > x)

5. Let Xn ∈ L2(Ω,F ,P) for all n ∈ N (not necessarily independent). Suppose
EXn = 0 and that there exists a sequence of real numbers (an)n∈N such that
an −→ 0 as n −→ 0 and EXnXm ≤ am−n for n < m. (The lack of absolute
values on the left-hand side is not a typo.) Show that

1

n

n∑
k=1

Xk −→ 0 in probability as n −→∞. (6)

6. Let F : [0, 1] −→ R be measurable and such that
∫ 1

0
|f(y)| dy <∞ (for exam-

ple, f could be continuous or, more generally, bounded).

(a) Let Un, n ∈ N be independent uniform random variables on (0, 1) (i.e.
P(Un < x) = x for x ∈ (0, 1)). Show that

1

n

n∑
k=1

f (Uk) −→
∫ 1

0

f(y) dy (7)

(b) If also
∫ 1

0
|f(y)|2 dy < ∞ (again, any bounded function satisfies this –

why?) use Chebychev’s inequality to get an estimate for

P

{∣∣∣∣∣ 1n
n∑
k=1

f (Uk)−
∫ 1

0

f(y) dy

∣∣∣∣∣ > an−1/2

}
(8)

This gives a method for numerically evaluating integrals, called Monte-Carlo
integration

7. Let (Xn : n ∈ N) be independent random variables. Show that there exists
K > 0 such that Xn ≤ K a.s. for all n ∈ N if and only if there exists C > 0
such that

∞∑
n=1

P (Xn > C) <∞. (9)

8. Let Xn : n ∈ N be independent and such that P(Xn = 0) = pn and P(Xn =
1) = 1− pn.

(a) Show that Xn −→ 0 in probability if and only if pn −→ 0

(b) Show that Xn −→ 0 a.s. if and only if
∑

n pn <∞.
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