Topics in Probability: Problem Sheet 7

Janosch Ortmann

December 3, 2013

Here are some extra practice questions before the final exam. Unless otherwise specified $(\Omega, \mathcal{F}, \mathbb{P})$ is a generic probability space and \mathcal{G} is a sub- σ algebra of \mathcal{F} .

- 1. Show that if $X_n \geq 0$ for all $n \in \mathbb{N}$ and $N_t = \sup\{n \in \mathbb{N} : \sum_{k=1}^n \leq t\}$ then $N_t + 1$ is a stopping time.
- 2. Prove the Parseval relation: for probability measures μ, ν on \mathbb{R}^d with characteristic functions ϕ_{μ}, ϕ_{ν} ,

$$\int \phi_{\nu}(t)\mu(dt) = \int \phi_{\mu}(t)\nu(dt). \tag{1}$$

3. In this exercise we prove that if S_* is a recurrent random walk in \mathbb{R}^d then for $\delta > 0$

$$\sup_{r<1} \int_{(-\delta)} \operatorname{Re}\left(\frac{1}{1 - r\phi(y)}\right) dy. \tag{2}$$

Write $S_n = \sum_{k=1}^n$ and denote by ϕ the characteristic function of X_1 .

- (a) Show that $1 \cos(x) \ge \frac{x^2}{4}$ for $|x| \le \frac{\pi}{3}$.
- (b) Using Parseval's relation and the measure with density $\frac{\delta(1-\cos(x/\delta))}{\pi x^2}$ show that

$$\mathbb{P}\left(\left\|S_n\right\|_1 < \frac{1}{\delta}\right) \ge \int \prod_{j=1}^d \frac{\delta\left(1 - \cos\left(t_j/\delta\right)\right)}{\pi t_j^2} \, \phi^n(t) \, dt \tag{3}$$

(c) Deduce that for r < 1,

$$\sum_{n=1}^{\infty} r^n \mathbb{P}\left(\|S_n\|_1 < \frac{1}{\delta}\right) \ge \int \prod_{j=1}^d \frac{\delta\left(1 - \cos\left(t_j/\delta\right)\right)}{\pi t_j^2} \frac{1}{1 - r\phi(t)} dt \qquad (4)$$

- (d) Deduce that (2) must hold.
- 4. Recall that for $A, B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$ we defined $\mathbb{P}(A|B) = \frac{\mathbb{P}\{A \cap B\}}{\mathbb{P}\{B\}}$. Let $A \in \mathcal{G}$ and $B \in \mathcal{F}$ and show that

$$\mathbb{P}(A|B) = \frac{\mathbb{E}\left(\mathbb{P}(B|\mathcal{G}) \, 1_G\right)}{\mathbb{E}\left(\mathbb{P}(B|\mathcal{G})\right)}.$$

- 5. Prove that Chebychev's, Jensen's and Hölder's inequalities hold for conditional expectation
- 6. For $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ define $var(X|\mathcal{G}) = \mathbb{E}(X^2|\mathcal{F}) \mathbb{E}(X|\mathcal{F})^2$. Prove that

$$\operatorname{var}(X) = \mathbb{E}\left[\operatorname{var}\left(X|\mathcal{G}\right)\right] + \operatorname{var}\left[\mathbb{E}\left(X|\mathcal{G}\right)\right]. \tag{5}$$

7. Let $N \in L^2$ be a random variables taking values in the natural numbers \mathbb{N} such that and let X_1, X_2, \ldots be i.i.d random variables, also independent of N, with $\mathbb{E}X_j = \mu$ and $\text{var}X_j = \sigma^2$. Show that

$$\operatorname{var}\left(\sum_{k=1}^{N} X_{k}\right) = \sigma^{2} \mathbb{E} N + \mu^{2} \operatorname{var}\left(N\right).$$