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This handout contains some basic concepts and results about measure theory that
we will need in the tool. The usage of measure theory in probability is always a
balancing act: on the one hand measure theory is a very powerful tool and indis-
pensable for any rigorous treatment of our subject. On the other hand it is very
technical, and it is easy to get bogged down in the details while forgetting about
the probabilistic intuition.

1 Measure spaces and measurable maps

We begin this collection of facts about measure theory with a few definitions. Most
of the concepts and results from this section extend to infinite measures, but we do
not need this here.

1.1 Measure spaces

Definition 1.1. Let Ω be a set. A set F of subsets of Ω is called a σ-algebra if

1. ∅ ∈ F

2. A ∈ F implies Ω \ A ∈ F

3. If An ∈ F for all n ∈ N then
⋃∞

n=1 An ∈ F .

The pair (Ω,F) is also referred to as a measure space.

The probabilistic interpretation of this construction is that Ω is the sample space,
i.e. the set of possible outcomes, say, of an experiment. Under this point of view F is
the set of events that may take place in the experiment. More precisely, F represents
the events about which we can obtain information. In this sense, considering a larger
σ-algebra corresponds to having more information.

Examples 1.2.

1. For any set Ω the power set 2Ω is a σ-algebra on Ω. It is finite if Ω is finite
and uncountably infinite otherwise.
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2. On the other hand, {Ω,∅} is also a σ-algebra on Ω. This is the smallest σ-
algebra on any set. The probabilistic interpretation is that the only events
are ‘something happens’ and ‘nothing happens’. Unsurprisingly this σ-algebra
will not appear very often in our course.

3. Let Ω = {1, 2, 3, 4, 5, 6}, which could model the rolling of a single ordinary die
once. Since this is a finite set there is no problem with allowing every subset of
Ω to be an event, so we will consider the measure space (Ω, 2Ω). For example,
the set {1, 2, 3} would correspond to the event that a number no bigger than
3 comes up. Similarly {2, 4, 6} denotes the event that we get an even number.

4. Continuing the example of rolling a die, suppose now that a person (who didn’t
see the outcome) is only provided with the information whether the number 1
came up. For such an observer, the set {1, 2, 3} would not be an event (because
she could not determine whether it happened or not). The σ-algebra encoding
the information available to her is {∅,Ω, {1}, {2, 3, 4, 5, 6}}.

5. Let ΩN = {H,T}N , which might represent the outcome of N subsequent coin
flips, where H denotes heads and T denotes tails. For example, if N = 8 then
(H,H, T, T, T,H,H,H) would correspond to two heads, followed by three tails
and then another three heads. For any N ∈ N the set ΩN is finite and therefore
we can equip it with the power set sigma algebra, F = 2ΩN . If we wanted to
simulate an unbounded number of coin tosses we would need to be a bit more
careful: see exercise 1.12 below.

Definition 1.3. Let Ω be a set and A a collection of subsets of Ω. The σ-algebra
generated by A, denoted by σ(A), is the smallest σ-algebra on Ω that contains A.
We can construct it explicitly by putting

σ(A) =
⋃
{F ⊃ A : F is a σ-algebra on Ω} .

The set we are taking the intersection over is non-empty (because it contains 2Ω),
therefore this is well-defined.

Remark 1.4. Notice that for any A ⊂ 2Ω the σ-algebra σ(A) is also generated by
{Ω \ A : A ∈ A}.

Example 1.5. Let (Ω1,F1) and (Ω2,F2) be two measurable spaces. Their product
is given by the measurable space (Ω1×Ω2,F1⊗F2), where F1⊗F2 is generated by
the measurable rectangles :

F1 ⊗F2 = σ ({A1 × A2 : A1 ∈ F1, A2 ∈ F2}) .

1.2 The Borel σ-algebra

One of the most important sets in probability theory that we will want to equip with
a measurable structure is the real line, or more generally Rd. We would naturally
require intervals (or, in Rd, rectangles) to be measurable, and it turns out that the
smallest σ-algebra that contains these must contain all Borel sets :
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Definition 1.6. The σ-algebra generated by the open sets in Rd is called the Borel
σ-algebra and denoted by Bd. If d = 1 we omit the exponent and just write B.
Elements of Bd are also referred to as Borel measurable sets or just Borel sets.

The Borel σ-algebra is not the largest σ-algebra one can sensibly define on Rd, that
distinction usually goes to the σ-algebra of Lebesgue measurable sets. However, these
are much more difficult to define and do not bring any advantage for the kind of
probability theory we will discuss in this course. There are ‘much more’ Lebesgue
measurable sets than Borel sets: the cardinality of the Lebesgue measurable sets is
the same as the power set of R, whereas the cardinality of B is just that of R.

It will be convenient to note that it is not necessary to have all open sets in order
to generate B. For example, we can look at various types of intervals1. The proof
of the following proposition is an exercise.

Proposition 1.7. The following sets all generate B:

a) The set of closed sets in R,

b) {(a, b) : a < b}

c) {(a, b] : a < b}

d) {[a, b) : a < b}

e) {[a, b] : a < b}

f) {(−∞, x) : x ∈ R}

g) {(−∞, x) : x ∈ R}

Notice that there was nothing special about R or Rd in the original definition of the
Borel sets; for any topological space X we can define by B(X) the σ-algebra on X
generated by the open sets of X. For example we can think about B(a, b).

We may also sometimes wish to allow the value +∞ to be involved. In such
a situation we will be forced to restrict to the positive reals only and we denote
by [0,∞] the set of extended positive reals. In particular we can make this into a
topological space (by the one-point compactification for those versed in topology)
and talk about B[0,∞]. This will become relevant in the study of random variables,
which we sometimes may wish to allow to attain the value ∞.

1.3 Measurable functions and random variables

Recall that for a function f : X −→ Y and A ⊆ Y we denote by f−1(A) the inverse
image of A under f , i.e. the set

f−1(A) = {x ∈ X : f(x) ∈ A}.

Definition 1.8. Let (Ω1,F1) and (Ω2,F2) be measurable spaces. A function f : Ω1 −→
Ω2 is said to be F1/F2 measurable if f−1(B) ∈ F1 for all B ∈ F2.

1A similar result holds for the higher dimensional Borel sets, but we will not need this here.
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When no confusion arises we often omit reference to the σ-algebras and just talk
about measurable maps from Ω1 to Ω2. In particular, if Ω2 = Rd it will be understood
that, unless otherwise specified, we view it as equipped with the Borel σ-algebra.

We first note that, in order to check measurability, it is enough to check the
condition on a generating set. The proof of this result is an exercise:

Proposition 1.9. Let (Ω1,F1) and (Ω2,F2) be measurable spaces, and suppose that
A ⊆ F2 generates F2, that is σ(A) = F2. If f : Ω1 −→ Ω2 satisfies f−1(B) ∈ F1 for
all B ∈ A, then f is measurable with respect to F1 and F2.

Note that, trivially, any such function f is measurable if F1 = 2Ω1 , whereas in the
case F1 = {∅,Ω} only the constant functions are measurable. Recall from above
that the σ-algebra generated by a set of subsets A of Ω is the smallest σ-algebra
containing the same information asA. Similarly we can define the smallest σ-algebra
that encodes the information given by a set of measurable maps:

Definition 1.10. Let I be some finite or countable indexing set and Xj : Ω1 −→
Ω2, j ∈ I be measurable maps. The σ-algebra generated by {Xj : j ∈ I} is given by

σ (Xj : j ∈ I) = σ
({
X−1

j (A) : A ∈ F2, j ∈ I
})

A very important special case (in fact, the most important one for our course) is
when Ω2 = Rd and F2 = Bd:

Definition 1.11. A measurable map X : Ω −→ Rd is called a random variable.

Example 1.12. Recall Example 1.2.5 from above but suppose that we do not know
in advance how many coin tosses will occur. In this case we can also consider
Ω∞ = {−1, 1}N (with −1 representing heads and 1 representing tails), which would
model an infinite sequence of coin tosses. In this case we need to be a bit more
careful how to define our σ algebra. One way to do this would be to define, for each
n ∈ N, the random variable Xn(ω) = ωn. That is, Xn denotes the outcome of the
nth toss. We can then define F = σ(Xn : n ∈ N), which is a natural σ-algebra to
consider. It contains precisely the information we can obtain about our sequence by
observing a finite number of individual outcomes.

Sometimes we may wish to allow our random variables to attain the value +∞.
As briefly discussed above, the price to pay for this is that we have to restrict our
random variables to take positive values only, and a [0,∞]-valued random variable
is nothing else than a F1/B[0,∞] measurable function.

2 Probability measures

Having discussed the concept of a measure space we now introduce the reason for
considering such spaces: measures. While we give the general definition for mea-
sures, our focus will lie on finite measures since any finite measure can be rescaled to
a probability measures. Many results will continue to hold for infinite measures (or
at least, ‘reasonable’ ones), but with additional complications that are not relevant
to our course.
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Definition 2.1. A (finite) measure on a measure space (Ω,F) is a map µ : F −→
[0,∞] such that

1. µ(∅) = 0,

2. for any disjoint countable collection {Aj ∈ F : j ∈ N} of sets in F we have

µ

(⋃
k∈N

Ak

)
=
∞∑
k=1

µ (Ak) .

Definition 2.2. A probability space is a triple (Ω,F ,P) where Ω is a set, called
the sample space, F is a σ algebra, called the space of events and P is a probability
measure on (Ω,F), that is a measure such that P(Ω) = 1.

We collect some elementary facts about measures. The first property is monotonic-
ity, the second subadditivity and the last two say that we do not lose anything if we
approximate a set by a sequence of sets from within or without. We say that An ↑ A
if A1 ⊆ A2 ⊆ A3 ⊆ . . . and A =

⋃∞
n=1 An. Similarly An ↓ A if A1 ⊇ A2 ⊆ A3 ⊇ . . .

and A =
⋂∞

n=1An.

Proposition 2.3. Let (Ω,F ,P) be a probability space.

1. If A ⊆ B then P(A) ≤ P(B)

2. For any countable collection {Aj ∈ F : j ∈ N} of sets in F we have

µ

(⋃
k∈N

Ak

)
≤

∞∑
k=1

µ (Ak) .

3. If An ↑ A then (µ(An) : n ∈ N) is an increasing sequence that converges to
µ(A).

4. If An ↓ A then (µ(An) : n ∈ N) is a decreasing sequence that converges to µ(A).

Proof. These are a good exercise to do if you have never done it before. Otherwise
see Theorem 1.1.1 in Durrett.

Example 2.4. Let (Ω1,F1,P1) and (Ω2,F2,P2) be probability spaces. We would like
to construct a (hopefully unique) probability measure P1⊗P2 on (Ω1×Ω2,F1⊗F2)
such that

P1 ⊗ P2(A1 × A2) = P1(A1)P2(A2).

Thus we have already specified our probability measure on the set of ‘measurable
rectangles’ {A1×A2 : Aj ∈ Fj} which is easily seen to be a π-system (see below). It
now follows from Proposition 2.8 below that there can be at most one such probabil-
ity measure. Let us assert without proof that there always exist such a probability
measure which we call the product measure of P1 and P2.
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2.1 Existence and uniqueness of extension

One of the nice things about measures is that you do not need to specify them on
every single set. Let (Ω,F ,P) be a probability spaces.

Definition 2.5. A collection A of subsets of Ω such that Ω ∈ A and A,B ∈ A
implies A ∩B ∈ A is called a π-system.

Proposition 2.6. Let µ and ν be probability measures on (Ω,F). If A is a π-system
on Ω such that σ(A) = F and µ(A) = ν(A) for every A ∈ A, then µ and ν agree
on F .

Proof. Notice that the set B of all sets on which µ and ν agree is a Dynkin system,
that is closed under differences and countable disjoint unions. Therefore we need to
show that the smallest Dynkin system containing a π-system A is equal to σ(A), a
result usually referred to as Dynkin’s theorem. Similar to σ-algebras there always
exists a smallest Dynkin system containing a collection of sets A, denoted D(A).

First note that a Dynkin system that is also a π-system is a σ algebra, which is
left as a (relatively hard) exercise.

This means that we can a probability measure is uniquely defined by specifying
its values on a π-system containing Ω. But can we always construct a probability
measure by assigning some numbers to the sets in a π-system? Of course, any such
function would need to have certain consistency properties. It turns out that we
need a bit more measure theoretic language.

Definition 2.7. A π-system S on Ω is said to be a semialgebra on Ω if it contains
∅ and Ω and for every A ∈ S there exist disjoint C1, . . . , Cn with Cj ∈ S and
Ω \ A =

⋃n
j=1Cj.

If S is a semialgebra on Ω then we can write any set A ∈ σ(S) as the finite disjoint
union of elements of S. This decomposition allows us to extend a σ-additive set
function on S to a probability measure on σ(S). The proof of this result is a bit
involved and we omit it.

Proposition 2.8. Let S be a semialgebra on Ω and P̃ : S −→ [0, 1] a σ-additive

function on S such that P̃(Ω) = 1. Then there exists a unique probability measure
P on Ω such that

P(S) =
k∑

j=1

P̃(Sj)

for all S ∈ σ(S) with disjoint decomposition S =
⋃

j Sj of sets Sj ∈ S.
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